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Abstract: Walnuts with their shells are a popular agricultural product in China. However, mildew
from growth can sometimes be processed into foods. It is difficult to visually determine which
walnuts have mildew without breaking the shells. A non-destructive method for detecting walnuts
with mildew was studied by combining spectral data with image information. A total of 120 “Lüling”
walnuts with shells were used for the mildew experiment. The characteristics of the spectral data
from six surfaces of all samples were collected in the range of 370–1042 nm on days 0, 15, and 30. The
spectrum was pretreated using SNV, and the feature bands were extracted using PCA and modeled
using a support vector machine (SVM). The results show that the overall classification accuracy was
93%, with an of accuracy of 100% for INEN walnuts (normal internally and externally). The accuracy
for IMEM walnuts (mildew internally and externally) reached 87.29%. There was an accuracy of
78.6% for IMEN walnuts (mildew internally and normal externally). The non-destructive detection of
mildewed walnuts can be undertaken using hyperspectral imaging technology, which provides a
new technique for exploring the mechanisms of walnuts with mildew.

Keywords: moldy walnut; hyperspectral imaging technology; classification; non-destructive

1. Introduction

Walnut (Juglans regia L.) is an important woody oilseed tree species in China, with
a high status in terms of economic and nutritional value. Walnuts contain a balanced
set of three nutrients. Among them, the fat content is approximately 50–60% and the
protein is 15–24%, with 12–16% carbohydrates, in addition to essential trace elements
and vitamins [1–3]. Walnuts can strengthen the brain, protect the liver, regulate cardiac
metabolic diseases, and reduce the risk of other non-communicable diseases [4].

China has the most extensive area for the cultivation and output of walnuts worldwide
as well as has the highest walnut consumption [5]. With their high nutritional value, walnut
kernels can be eaten alone or can be made into other products such as walnut milk, oil,
pastries, and candy. In recent years, with continuous improvements to quality of life,
consumer demand for processed walnut products is also growing. The quality of walnuts
plays a decisive role in these purchases, which puts forward strict requirements for China’s
walnut processing production lines.

Walnuts with shells are popular products in China. After ripe walnuts have been
picked, during transportation, processing, and storage, problems such as oil oxidation,
protein deterioration, color browning, flavor loss, and seed kernel mildew can occur [6,7].
When problem walnuts are eaten by mistake, it can cause mild food poisoning. Moldy
walnuts contain a lot of toxins, and severe cases can even cause cancer. At present, the
traditional detection method used to identify walnuts that have been harmed is manual
detection. During the sampling of walnut batches, it becomes necessary to break the shell
to determine its internal quality. Physical means or stoichiometry can be used to examine
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the walnut fatty acid content, oil oxidation value, seed kernel color, and other key values.
However, this method is time-consuming and labor-intensive and destroys the integrity of
the walnut shells [8].

There are several non-destructive detection methods that have been proposed by
researchers to evaluate in-shell walnuts. Jiang et al. [9] combined electronic nose responses
with physicochemical methods to detect internal quality changes in Chinese pecans after
different storage times. The voting method performed better in classification, with a 100%
accuracy rate. A partial least squares regression (PLSR) was used for the quantitative
regression of the acid values and peroxide values of pecan kernels. This study found
that E-nose had a high correlation with the internal quality of pecans. However, during
application, different detectors and detection environments have a greater impact on the
response signal of E-nose, and it is essential for the build models that can be adjusted for
different situations. X-ray imaging technology has also been applied in the non-destructive
testing of walnuts. Researchers examined the internal qualities of hard-shelled walnuts,
such as the integrity of the kernel, including whether they have been mothed by insects or
become hollow and the size of the walnut kernel [10,11]. Bernard et al. reconstructed 3D
images of walnuts using X-ray computed tomography (CT) and obtained morphological
measurements of walnuts, including the length, face, and peel diameter, and characteristics
that previously required the opening of walnuts, including the shell thickness, kernel
volume, and nut/shell ratio. Traits were determined that were previously difficult to
quantify, including the shell roughness, nut spherical degree, nut surface area, and nut
shape. However, the technique was expensive and failed in obtaining the qualitative
transformation characteristics of walnuts [12]. The application of spectroscopic technology
in non-destructive nut testing has also become increasingly extensive. Terahertz time
domain spectroscopy (THz-TDS) is a non-contact measurement technique in which the THz
spectrogram characterizes the interactions between molecules, enabling the measurement
of physical information about the sample [13]. Qi et al. [14] collected the THz-TDS spectra of
insect borer, mildew, and normal walnut shells and kernel slice standards. The differences
between the metamorphic and normal walnut spectra and absorption spectra were then
compared and analyzed. Bin et al. [15] measured the terahertz band absorption curve in
normal and insect-bored American pecan slices. This laid the foundation for the exclusion
of metamorphic walnuts. Near-infrared spectroscopy (NIR) can react to the main chemical
bond vibrations in organic molecules. Some researchers have used mapping combined with
stoichiometry to measure the water, fat, protein, and other contents as well as antioxidant
characteristics in walnuts. However, the near-infrared spectral resolution is high, but its
point scanning method can only provide an average spectrum of the object to be detected,
and it is unable to reflect the spatial distribution state of the analyte [16–19].

Hyperspectral imaging can make up for the shortcomings of near-infrared spec-
troscopy by combining images with near-infrared spectroscopy to obtain three-dimensional
optical image data comprising a range of wavelengths [20]. Ma et al. [21] collected hyper-
spectral images of “Wen 185” walnut kernels from Xinjiang in the ranges of 862.9–1704.02 nm
and 382.19–1026.66 nm and established protein and fat content prediction models, respec-
tively. This encompassed the full spectral band and the characteristic spectral band using
the partial least squares regression (PLSR) algorithm. A classification model of walnut ap-
pearance quality was then established using the decision tree algorithm. Chen et al. [22] per-
formed PLS modeling and analysis on data processed using different spectral pretreatment
methods. They concluded that modeling after SUV treatment was the most effective technique
for sorting walnut shells, walnut kernels, and distracted wood. Nogales-Bueno et al. [23] ap-
plied hyperspectral imaging techniques to identify five species of walnuts with
96% accuracy.

Hyperspectral imaging technology is favored by researchers for the non-destructive
testing of nuts because of its perfect spectral binding properties. Despite this, there are a few
researchers that are committed to the field of examining intact walnuts with shells. This is
because the hard shells of walnuts make it relatively difficult to study. To date, no researcher
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has applied this technology to the non-destructive testing of potentially moldy walnuts.
This study is based on hyperspectral imaging technology to explore non-destructive testing
methods for intact moldy walnuts with shells.

2. Results and Discussion
2.1. Comparison of Classification Models Based on Original Spectral Data

After any abnormal samples had been removed using the Martens distance discrimi-
nant method, walnuts with mildew (M) or that were normal (N) internally (I) and externally
(E) were combined, and the spectral data of the back and bottom surfaces were input as
variables. Mildewed walnuts were marked as 1, and walnuts that were normal were
marked as 0. The results were divided into four categories, namely IMEM, INEM, IMEN,
INEN. After manual discrimination, the numbers of samples in these four categories were
55, 1, 20, and 36. Three classification models were built based on the spectral data.

2.1.1. K-Nearest Neighbor (KNN)

The traditional K-nearest neighbor algorithm is a classic machine learning algorithm
proposed by Cover and Hart [24]. The basic principles are to calculate the distance between
the sample to be classified and all learning samples. The closest k of the nearest neighbors
is then selected and classified. KNN usually outputs most classes of the k nearest neighbors
and is sensitive to the k value. After comparing the experimental results, K = 4 in this paper.

2.1.2. Decision Tree (DT)

Decision trees are one of the most common techniques in data mining. They initially
appeared in the CLS (Concept Learning System). A model can be learned from a given
training dataset from a decision tree to classify unpredictable examples to obtain the final
decision result [25]. A decision tree comprises a root node, several internal nodes, and
several leaf nodes [26]. The Gini coefficient served as a dividing criterion in this study.

2.1.3. Support Vector Machine (SVM)

The SVM algorithm is designed for classification and regression problems. It aims to
construct an optimal separating plane (SP) by mapping the original data points from the
input space to form a high-dimensional feature space. The distances from all data points to
the SP are the minimum. The kernel function performs nonlinear mapping and plays an
important role in the procedure [27]. SVM can be used for linear and nonlinear multivariate
analysis problems, using systems of linear equations instead of quadratic programming to
solve support vectors. By selecting the appropriate kernel function, the speed and efficiency
of the modeling are guaranteed while generating a nonlinear map [28]. The present study
used RBF kernels for training.

Three classification models were built based on full-band spectral data, with the
training and verification sets randomly assigned in a 4:1 ratio, with each classifier operating
10 times to calculate its average value. The overall classification accuracy (OA) results are
shown in Table 1.

Table 1. OA (%) for different classification models for different mildew situations.

Classification Models
Back Bottom

Day 15 Day 30 Day 15 Day 30

KNN 85.5 74.99 86.65 68.25
DT 85.75 81.95 86.91 68.25

SVM 88.25 83.69 88.96 75.86

Table 1 provides data on the overall classification accuracy (OA) results. Among
the three classification models, the accuracy of the spectral data test collected on day 15
was generally higher than on day 30. However, the overall classification accuracy for the
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different mildew conditions did not exceed 90%. The OA for the selection of the walnut
back surface to establish a classification model was slightly higher than for the bottom
surface, and the SVM was better than the other models.

Given that the main purpose of this study was to explore whether hyperspectral
imaging technology can successfully identify mildewed walnuts, especially for IMEN
walnuts, it is necessary to consider the accuracy of the classification of the various mildew
conditions. The accuracy of each category (CA) is shown in Table 2.

Table 2. CA (%) of different classification models for different mildew conditions.

Classification
Models KNN DT SVM

Time Input IM
EM

IN
EM

IM
EN

IN
EN

IM
EM

IN
EM

IM
EN

IN
EN

IM
EM

IN
EM

IM
EN

IN
EN

day 15 Back 62.81 0 10 93.84 86.69 0 6.66 91.06 69.88 0 0 97.84

Bottom 76.96 0 5 96.13 76.8 0 10 89.78 75.34 0 0 96.73

day 30 Back 78.28 0 3.3 91.15 85.62 0 38.33 88.98 77.93 0 0 100

Bottom 58.64 0 14.83 88.71 55.55 0 27.83 77.43 50.35 0 0 92.35

According to Table 2, SVM had the strongest performance in the classification of
INEN walnuts once it reaches 100%. However, its classification of IMEN walnuts was less
effective. However, KNN and DT had pronounced effects on this variety of walnut. With
the back surface hyperspectral data of 30-day walnut samples as the input, the accuracy
of the DT classifier for IMEN walnuts reached 38.33%. The main reason for this result is
that there were relatively few samples in this category and the training and verification
set were randomly divided. It is relatively difficult to distinguish the characteristics of this
variety of walnut, which may be divided into the training set. This also indicates that the
KNN and DT classifiers are expected to recognize this kind of walnut. DT was found to be
better for the identification of moldy walnuts based on full-band spectral data, and SVM
was better for the classification of intact walnuts. Given that the classification accuracy of
moldy walnuts was less than 90%, further analysis of the spectral data was needed.

2.2. Spectral Data Preprocessing

The accuracy of the classification model established based on the original spectral
data was not high. There were also many noise signals in the spectrum, which could
interfere with the analysis process and directly affect the model accuracy. It was necessary
to preprocess the original hyperspectral data to further explore its rules. In this study, SG
convolution smoothing (SG), first-order differential (FD), second-order differential (SD),
multiple scattering correction (MSC), standard normal transformation (SNV), SG-MSC,
SG-FD, and SG-MSC-FD were compared to the original spectral data [29].

To compare the advantages and disadvantages of these pretreatment methods, three
identification methods of each type of preprocessing data model were used to establish the
classification of walnuts with mildew. However, only the back side hyperspectral walnut
data on days 0 and 30, with a total of 232 (120 + 112) measurements, were used as the input,
and the classification results are shown in Figure 1.

As shown in Figure 1, the OA of the hyperspectral data modeling based on KNN and
the SVM algorithm improved compared with that of the original data after preprocessing.
However, the OA and CA of the DT algorithm modeling both decreased. The SVM
algorithm still could not identify IMEN walnuts. SG, SD, SG-MSC, and SG-FD showed
similar modeling effects, with an average accuracy of 80.5%, and FD, MSC, SG-MSC-FD,
and SNV achieved 82%. The FD and SNV preprocessing methods had balanced OA among
the three modeling algorithms. Therefore, the subsequent research on hyperspectral band
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extraction and the establishment of the walnut classification model are based on FD and
SNV preprocessing hyperspectral data.
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2.3. Extraction of Feature Bands

Full-wavelength hyperspectral imaging generates a considerable amount of data,
so it leads to extensive analysis to directly use them for the calculation. There is also
a lot of noise and redundant information in the full-wavelength data. This interferes
with the information contained in the spectrum of walnut samples, which affects the
judgment accuracy. Therefore, selecting the most effective spectral information in the entire
band can improve the classification accuracy and simplify the calculation. In this study,
the supervised feature band selection method was used to compare hyperspectral data
preprocessed by FD and SNV with the successive projections algorithm (SPA), correlation
coefficient (CC), and PCA.

2.3.1. Successive Projections Algorithm (SPA)

In view of these research findings, the samples’ back surface hyperspectral data
preprocessing on days 0,15, and 30 and characteristic wavelengths were extracted as input
variables to perform the modeling operations. OA and CA were also taken as evaluation
indices. Given that the sample number of the category for INEM walnuts was too small,
there was no analytical value, and the results are shown in Figure 2.

In Figure 2a, the modeling effect of extracting characteristic bands by SPA after the
spectral data had been preprocessed by SNV was more effective. The OA of the three
modeling methods was higher than 80%. Figure 2b represents the CA of the IMEM walnuts.
Figure 2c shows that the overall modeling effect of the classification of IMEN walnuts was
relatively poor and that the classification accuracy was less than 20%. Figure 2d shows that
the CA of the classification of INEN walnuts through SVM can reach 100%, but also shows
that the three modeling methods can misjudge mildewed walnuts as being normal walnuts.
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2.3.2. Correlation Coefficient (CC)

The correlation coefficient was undertaken using the same process, except CC was the
method used to extract characteristic wavelengths. The results are shown in Figure 3.
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In Figure 3a, the OA of the spectral data preprocessed by SNV and feature bands
extracted by CC reached up to 86.5%. Figure 3b represents the CA of the IMEM walnuts
and demonstrates that the decision tree modeling method is effective in distinguishing
mildewed walnuts. However, in Figure 3c, the DT performance for IMEN walnuts was
10%, indicating that the two spectral pretreatment methods and feature band extraction
are not conducive to this classification. In Figure 3d, the classification accuracy for INEN
walnuts could also reach 100% after SVM.

2.3.3. PCA

PCA can effectively screen spectral features with high contribution rates and showed
that the contribution rates of the principal components in the first ten dimensions reached
100%. Therefore, the feature bands for the first ten dimensions were selected for subsequent
modeling operations. The modeling method was the same, and the classification is shown
in Figure 4.
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Figure 4a shows that the OA of the spectral data obtained on day 15 by the SNV-
PCA-SVM combined modeling method reached 93%. Figure 4b shows that the accuracy
of the classification of IMEM walnuts reached 87.29% under the combined modeling of
SNV-PCA-SVM. However, this combination performed poorly in the discrimination of the
CA of IMEN walnuts, as seen in Figure 4c. In Figure 4d, the discrimination accuracy for
INEN walnuts is 100%.

2.4. Analysis of Results

According to the results, the accuracy for IMEN walnuts was 38.33% when a DT
base was built onto the original spectrum data, and it was reduced when the spectrum
was modeled by SNV-PCA-SVM. It is difficult to distinguish IMEN walnuts from INEN
walnuts only using the back surface, and almost all IMEN walnuts were misjudged as
INEN walnuts. Therefore, the method requires the identification of IMEN walnuts from
INEN walnuts as a second process.
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Three classification models were built based on a mix of the two original spectral
datasets from 20 IMEN walnuts and 156 INEN walnuts. The training set and verification
set were randomly assigned in a 4:1 ratio, with each classifier operating 10 times. The
classification accuracy is shown in Figure 5.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. OA (a) and CA (b–d) modeled based on PCA. 

Figure 4a shows that the OA of the spectral data obtained on day 15 by the SNV-
PCA-SVM combined modeling method reached 93%. Figure 4b shows that the accuracy 
of the classification of IMEM walnuts reached 87.29% under the combined modeling of 
SNV-PCA-SVM. However, this combination performed poorly in the discrimination of 
the CA of IMEN walnuts, as seen in Figure 4c. In Figure 4d, the discrimination accuracy 
for INEN walnuts is 100%. 

2.4. Analysis of Results 
According to the results, the accuracy for IMEN walnuts was 38.33% when a DT base 

was built onto the original spectrum data, and it was reduced when the spectrum was 
modeled by SNV-PCA-SVM. It is difficult to distinguish IMEN walnuts from INEN wal-
nuts only using the back surface, and almost all IMEN walnuts were misjudged as INEN 
walnuts. Therefore, the method requires the identification of IMEN walnuts from INEN 
walnuts as a second process. 

Three classification models were built based on a mix of the two original spectral 
datasets from 20 IMEN walnuts and 156 INEN walnuts. The training set and verification 
set were randomly assigned in a 4:1 ratio, with each classifier operating 10 times. The 
classification accuracy is shown in Figure 5. 

 
Figure 5. CA of IMEN walnuts. Figure 5. CA of IMEN walnuts.

Figure 5 shows that the accuracy for IMEN walnuts was 78.6% when DT was built
based on the original bottom surface spectral data. Considering the penetration of the
spectrum and the bottom features of the walnut, the mould first attached to the surfaces
of the walnuts when they were shelled (without cracking) and then spread inside from
the hole in the bottom at the junction of the walnut and peduncle. Given that there is
little literature on mildew in walnuts, it is likely that this is also the reason why “Wenwan”
walnuts have seal wax at the base.

Overall, our studies focused on walnut mold regularity and a preliminary exploration
of the non-destructive detection of moldy walnuts based on hyperspectral imaging technol-
ogy and establish the SNV-PCA-SVM model to classify moldy walnuts with an accuracy of
87.29% for IMEM walnuts using the back surface. Then, the DT was established based on
the bottom surface original spectrum, with a CA of 78.6% for IMEN walnuts in the second
process. Our study serves as a proof of concept that the non-destructive detection of moldy
walnuts by obtaining hyperspectral imaging on the different surfaces of walnuts is feasible.

Although there are important discoveries revealed by this study, there are also limita-
tions. First, the sizes of the four categories of walnuts should be larger. However, because it
was difficult to obtain IMEN walnuts with their shells unbroken in nature, the cultivation of
moldy walnuts in the present study must be carried out before the hyperspectral imaging
data acquisition. Therefore, it is also important to study the regularity of mold growth in
walnuts for further research in order to obtain more IMEN walnut samples. Second, the
algorithm needs to be optimized in the future to improve the accuracy.

3. Materials and Methods
3.1. Materials

“Lüling” walnuts were harvested in September 2020 from the Walnut Demonstration
Base of Hebei Lüling Fruit Co., Ltd. The walnuts were peeled, dried naturally, and stored
in cold storage (2–5 ◦C) for three months. Among them, 120 walnuts with large sizes,
smooth shell surfaces, and good quality of appearance were randomly selected as test
materials. These walnuts were then divided into three groups, and each nut was marked.
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For the walnuts to grow mildew in the naturally humid environment, they were treated
with different levels of water content.

3.2. Hyperspectral Data Acquisition

Hyperspectral data of the walnut samples were obtained using a hyperspectral imag-
ing system (Beijing Anzhou Technology Co., Ltd., Beijing, China). The system comprised an
SOC710VP portable hyperspectral imaging spectrometer, a halogen light source, a storage
platform, and a computer. Its spectral range was 370–1042 nm, and the spectral resolu-
tion was 4.6875 nm, with 128 spectral bands and 696 × 520 pixels. There was a built-in
panning scrubbing device in the system. The scanning speed and integration time were
automatically matched without manual adjustment, which meant that this system could
avoid image distortion.

During walnut mildew growth, the hyperspectral data of the six surfaces (front, back,
top, bottom, lateral1, and lateral2) were obtained for each walnut sample on days 0, 15, and
30. During the experiment, each walnut was placed directly below the spectrometer lens,
and data on the six sides were collected facing up. After comparison, the exposure time
was set at 6.5 ms, and the hyperspectral images obtained from the sample with the 35 cm
lens were the clearest. To avoid the influence of external light sources, the hyperspectral
imaging system was surrounded with a black shading cloth. This was undertaken to ensure
that the test environment was not disturbed by other light, as shown in Figure 6.
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To eliminate uneven distribution of the intensity of the light source in each band and
the influence of the noise generated by the dark current in the camera on the spectral data,
the original images were black and white corrected. The acquisition of the hyperspectral
images and the black and white correction process were completed using the acquisition
software supporting the instrument, and the correction formula was as follows:

I =
IO − ID
ID − IW

(1)

where I is the corrected spectral image file, I0 is the raw spectral image file, ID is the black
image file, and IW is the white image file.

After all the hyperspectral images of the walnuts had been collected on day 30, 120 wal-
nuts were opened to observe their internal conditions. The results were input as variables
for the subsequent building of the discriminant model.

3.3. Analysis of Hyperspectral Data

Each walnut hyperspectral image was cropped into 168 mm (W) × 184 mm (H) in
ENVI5.1 (ITT Visual Information Solutions Boulder, CO, USA), and the wavelength range
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was intercepted to 400–1000 nm to avoid noise interference. Then, the region of interest
(ROI) was extracted and established to form a mask image. The hyperspectral images
collected for each sample on days 0, 15, and 30 were stitched together in chronological
order according to pixels to form a combined image, and PCA was then performed. From
the results, the contribution rate of the first three principal components exceeded 99.90%,
and the analysis results from the other surfaces were found to be similar.

Figure 7a shows the original image of the back surface (day 0–day 15–day 30) of a
single walnut, and the PC1–PC3 score plots are illustrated in Figure 7b. PC1 predominantly
reflects common characteristics such as the gray value of the entire walnut. PC2 is mainly
manifested by differences in the color of walnut skin. The color of the walnut shell is light
yellow on day 0 then becomes darker, and the absorbance is enhanced on days 15 and 30
due to changes in the water content. PC3 predominantly shows the texture of the walnut
surface and the potential presence of foreign bodies. If there is mildew growing on the
surface of a walnut, the mildew and the normal walnut can be distinguished by performing
a PCA on the image. However, many walnuts have had mildew growing internally with
no pronounced changes on the outside of the nut. The sample in Figure 7 was extracted
and determined using a DNA sequence contrast. Two pathogenic bacteria were isolated,
namely Aspergillus niger and Aspergillus aflex, as shown in Figure 7c.
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Given that the walnuts have a clear boundary with the background at the 533 nm
band in the original image, the entire walnut region at this band was regarded as an ROI to
extract the spectral data in MATLAB R2012a (MathWorks, R2012a, U.S.). The process flow
is shown in Figure 8. The reflected spectra from all pixels on the walnut at each band were
extracted, and the results are shown in Figure 9.
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As shown in Figure 9a, after extracting the entire walnut as the region of interest,
the spectral trends of walnuts on day 0 and day 30 after mildew treatment were found to
be the same. The main difference was that the reflectivity below 700 nm of the majority
of spectra acquired on day 30 was lower than in the data acquired on day 0. This was
predominantly due to the color change of the shell from mold growth. However, the
reflectivity at 700–1000 nm of some samples was higher at day 30 than in normal walnuts.
This band belongs to the near-infrared. The average spectral trend for all normal (0 day)
walnuts with six surfaces is shown in Figure 9c. The average reflectance of the top and
bottom walnut surfaces was lower than the other four surfaces. This was caused by the
size of the area of interest. The spectral reflectance of individual walnut samples on day
0, 15, and 30 varied substantially. However, the determination of the presence of mildew
inside the walnut shell required further modeling and analysis. According to the degree
of dispersion and the reflectance trend analysis for the spectral data of all mildew and
normal walnuts with six surfaces, the back and bottom surfaces were selected for the
subsequent pretreatment and modeling analysis. Because the high and low ends of the
original spectrum had a lot of random noise, only 115 bands of reflected spectral data in
the 400–1000 nm range were intercepted in this study [21].
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4. Conclusions

Hyperspectral imaging technology was used to explore non-destructive mildew testing
methods in walnuts. The spectral data characteristics of six surfaces of walnut samples
with a total of 2160 (120 × 6 × 3) measurements before and after mildew were obtained.
Through the mildew experiment with walnuts with shells, four results could be produced
due to the environment and environmental conditions during mildew growth, namely
IMEM, INEM, IMEN, INEN.

Through a combination of spectral and image information, when the spectra were
modeled using SNV-PCA-SVM, the overall classification accuracy could was 93%, in which
the CA of INEN walnuts was 100%. The CA of IMEM walnuts was 87.29%, indicating
that this pretreatment method can effectively remove complex information in the entire
spectral band and pick out IMEM walnuts. Subsequently, a second test was performed to
distinguish between IMEN and INEN walnuts. When the DT was established based on the
original bottom spectrum, the CA of IMEN walnuts was 78.6%. The results demonstrate that
walnuts with mildew can be identified using this technology, which provides a theoretical
basis for the design of machines.
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