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Abstract: Stretchable wireless power is in increasingly high demand in fields such as smart devices,
flexible robots, and electronic skins. Thermoelectric devices are able to convert heat into electricity
due to the Seebeck effect, making them promising candidates for wearable electronics. Therefore,
high-performance conductive polymer-based composites are urgently required for flexible wearable
thermoelectric devices for the utilization of low-grade thermal energy. In this review, mechanisms and
optimization strategies for polymer-based thermoelectric composites containing fillers of different
architectures will be introduced, and recent advances in the development of such thermoelectric
composites containing 0- to 3-dimensional filler components will be presented and outlooked.
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1. Introduction

As a global strategy, carbon neutrality poses numerous questions regarding the devel-
opment of clean energy, which has become the core of energy plans for most countries. As
a form of green renewable energy, thermoelectricity has emerged [1–4]. Thermoelectric (TE)
materials are able to interconvert between heat and electricity based on the Seebeck effect
and Peltier effect (Figure 1), which has been found for over 100 years [5]. TE devices possess
plenty of properties such as no noise, no vibration, no gaseous emission, widespread waste
heat sources, etc., and can be evaluated by the figure of merit ZT = S2σT/κ (1), which is
dimensionless, where S is Seebeck coefficient, σ is the electrical conductivity of materials,
T is absolute temperature, and κ is the thermal conductivity [6,7]. Although TE materials
are promising and have lots of advantages, predominant inorganic TE materials (such as
Sb2Te3, Bi2Te3, etc.) are extremely limited in their application for wearable, portable, and
implantable electronic devices and flexible robots due to the scarcity, toxicity, expensiveness,
and difficulty in processing [8–11]. Fortunately, composites which consist of conductive
polymers and fillers with different architectures, such as inorganic semiconductors or car-
bon nanoparticles, can balance properties with needs. They could not only approach the TE
performance of inorganic materials to a certain extent but also have excellent processability
similar to that of organic thermoelectric (OTE) materials [12]. Nowadays, the achievements
of TE devices depend on the development of OTE materials. A perfect device should be
constructed from high-performance TE materials [13]. Furthermore, a TE generator (TEG)
generally consists of p-type and n-type TE couples alternately, in which an electric relay
combines with a thermos relay in series. Though there are many research achievements in
p-type semiconductors, there is no significant progress in n-type materials, which impedes
the development of high-performance and air-stable TE modules.

In this review, conductive polymers and fillers with different architectures in TE
composites are elaborated on. The ZT value plays a pivotal role in evaluating TE materials’
performance, and it depends on the values of S, σ, and κ in Formula (1). An ideal TE
material needs a high Seebeck coefficient, high electrical conductivity, and low thermal
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conductivity simultaneously. However, it seems a paradox to trade-off between these
interdependent parameters and improving one may inevitably hamper the others. We
noticed that Petru et al. reviewed how nanoparticles influenced the thermal and electrical
conductivity of composites [14]. This work could guide how to balance the σ and κ in the
composites required. Constructing composite materials is one prospective solution to avoid
this dilemma; this can be conducted by adding TE fillers (such as inorganic semiconductors
or carbon nanoparticles) of high Seebeck coefficient and/or high electrical conductivity
into the low thermal conductivity polymers. This strategy is not just a simple commixture
of mixing every component, as the enhancement of TE performance needs extra carrier
pathways and an energy-filtering effect with introduced interfaces [15–17]. To decrease
the thermal conductivity of TE composites, different architecture fillers are employed in
corresponding polymer systems to influence lattice spacing dimensions. In other words,
those composite parameters would be contributed by their composition/morphology.
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Recently, plenty of research progress on TE polymer composite has been realized, and
these are optimal solutions to develop flexible TE devices. It is believed that material architec-
tures work on the interfaces of constituents in TE models with different applied actions; thus,
it is meaningful to summarize and prospect in this regard. As there have been few reviews on
this topic before, this mini-review proposes to present a new perspective on the construction
and application of polymer-based TE composites in addition to their latest advances. We
expect that this review could shed light on an in-depth understanding of the design and
development of novel conductive polymer-based high-performance TE composites.

2. Zero-Dimensional (0D) TE Materials
2.1. Zero-Dimensional (0D) Materials

Materials with three dimensions on the nanoscale or made up of them as basic units are
often referred to as 0D materials, such as nanoparticles, quantum dots, fullerene, etc. The
most significant difference between traditional semiconductor-based thermoelectric devices
and micro TEs is the structure size. The distance traveled by an excited hot electron before
it relaxes to thermal equilibrium under inelastic scattering is the relaxation length [1,18,19].
However, the relaxation length is usually only a few tens of nanometers at room tempera-
ture, much smaller than the size of conventional TE devices. In semiconductor TE devices,
we can assume that each point of the system is in local thermal equilibrium, which can
be described by Boltzmann transport theory [20,21]. When the size of micro and nano TE
devices is close to or even smaller than the electronic relaxation length, the system becomes
non-local, and Boltzmann’s theory is no longer applicable [22,23]. In addition, there will
be a variety of quantum effects, such as the quantum interference effect in the system,
which has greatly stimulated people’s great interest in using particle theory to study the
TE effect of nanomaterials. 0D materials, due to their small structural size, can efficiently
scatter phonons, thereby reducing lattice thermal conductivity and achieving higher ZT
values [24,25].
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2.1.1. Fullerene

Fullerenes are widely studied for potential applications ranging from sensors and pho-
tovoltaic cells to nanostructured devices with their spherical geometry and unique optical
and electronic properties. Recently, plenty of studies showed that C60 is a kind of robust
TE material which has negative thermopower [26–28]. Therefore, C60 placed great expecta-
tions on developing n-type organic materials. Chihaya et al. utilized a bilayer structure
composed of fullerene and Cs2CO3 to construct high-performance n-type TEs. The power
factor of n-type TE elements reached 20.5 µW m−1 K−2 at room temperature [29] (Figure 2).
Although fullerenes have already been applied to several devices, C60 cannot exhibit high
power factors due to its relatively uniform charge distribution. Fullerene derivatives, such
as endohedral metallofullerenes (EMFs) with highly homogeneous charge distribution, can
introduce a high value of the Seebeck coefficient. For instance, EMFs (Figure 3a) have a
higher Seebeck coefficient than C60, with both positive and negative signs of the Seebeck
coefficient, implying bi-thermoelectric materials. The high-performance thermoelectricity
of EMF roots in orientations corresponds to a high value [30]. To accommodate more
fields, fullerene derivatives (some fullerene derivatives in Figure 3b) are required with
new properties, such as strong polarity, electron-donating, and water solubility. The oc-
currence of soluble methanofullerene derivative (PCBM) is a breakthrough for low-cost
solution processing of fullerene derivatives in electronics [31,32]. Wei et al. first doped
PCBM with N-DMBI, an n-type dopant, in a solution-processable method, and electrical
conductivity was significantly increased up to ca. 0.19 S m−1 in 2010 [33]. Furthermore,
fulleropyrrolidinium ions (FPI) and FPI-doped PCBM were produced to form film via a
simple solution process by Li and co-workers, and its conductivity achieved 3.2 S m−1. The
doping mechanism elucidated that electron transfer between the iodide on FPI and fullerene
core could reach effective n-doping and high conductivity [34]. Although fullerene and
its derivatives possess limited TE properties compared to other materials, they still have
abundant potential to further improve their performance through molecular engineering.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 19 
 

 

the system becomes non-local, and Boltzmann’s theory is no longer applicable [22,23]. In 
addition, there will be a variety of quantum effects, such as the quantum interference ef-
fect in the system, which has greatly stimulated people’s great interest in using particle 
theory to study the TE effect of nanomaterials. 0D materials, due to their small structural 
size, can efficiently scatter phonons, thereby reducing lattice thermal conductivity and 
achieving higher ZT values [24,25]. 

2.1.1. Fullerene 
Fullerenes are widely studied for potential applications ranging from sensors and 

photovoltaic cells to nanostructured devices with their spherical geometry and unique 
optical and electronic properties. Recently, plenty of studies showed that C60 is a kind of 
robust TE material which has negative thermopower [26–28]. Therefore, C60 placed great 
expectations on developing n-type organic materials. Chihaya et al. utilized a bilayer 
structure composed of fullerene and Cs2CO3 to construct high-performance n-type TEs. 
The power factor of n-type TE elements reached 20.5 μW m−1 K−2 at room temperature [29] 
(Figure 2). Although fullerenes have already been applied to several devices, C60 cannot 
exhibit high power factors due to its relatively uniform charge distribution. Fullerene de-
rivatives, such as endohedral metallofullerenes (EMFs) with highly homogeneous charge 
distribution, can introduce a high value of the Seebeck coefficient. For instance, EMFs 
(Figure 3a) have a higher Seebeck coefficient than C60, with both positive and negative 
signs of the Seebeck coefficient, implying bi-thermoelectric materials. The high-perfor-
mance thermoelectricity of EMF roots in orientations corresponds to a high value [30]. To 
accommodate more fields, fullerene derivatives (some fullerene derivatives in Figure 3b) 
are required with new properties, such as strong polarity, electron-donating, and water sol-
ubility. The occurrence of soluble methanofullerene derivative (PCBM) is a breakthrough 
for low-cost solution processing of fullerene derivatives in electronics [31,32]. Wei et al. first 
doped PCBM with N-DMBI, an n-type dopant, in a solution-processable method, and elec-
trical conductivity was significantly increased up to ca. 0.19 S m−1 in 2010 [33]. Furthermore, 
fulleropyrrolidinium ions (FPI) and FPI-doped PCBM were produced to form film via a 
simple solution process by Li and co-workers, and its conductivity achieved 3.2 S m−1. The 
doping mechanism elucidated that electron transfer between the iodide on FPI and fullerene 
core could reach effective n-doping and high conductivity [34]. Although fullerene and its 
derivatives possess limited TE properties compared to other materials, they still have abun-
dant potential to further improve their performance through molecular engineering. 

 
Figure 2. Schemes of C60/CS2CO3 bilayer samples. (a) Schematic view of the device of HMDS-
modified substrates. (b–e) Sheet conductance, Seebeck coefficient, electrical conductivity, and power
factor measured at T = 298 K of HMDS-modified substrates. (f) Schematic view of device of Dph-
BDT layer. (g–j) Sheet conductance, Seebeck coefficient, electrical conductivity, and power factor
of the device measured at T = 298 K of Dph-BDT. Adapted from ref. [29] with permission from
AIP Publishing.
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2.1.2. Quantum Dots

Quantum dots (QDs) have many things in common with real atoms, also knowns as
‘artificial atoms’, which were used to synthesize a novel lower dimension structure in the
1980s, and their properties can be adjusted more easily than atoms with requirements [36].
After more than 30 years of development since their discovery, with the in-depth research
of quantum dots and the continuous improvement of preparation technology, quantum
dots have been widely used in biology, electronic devices, and other fields [37–39].

A significant application of QDs is the quantum dot TE engine. A new type of TE
conversion device, the nano heat engine can break through the original constraints of
traditional energy conversion devices and then change people’s habitual thinking mode
of energy conversion, which expands a new space for energy conversion technology [40].
Liu et al. designed a QD heat engine (Figure 4a) to trigger a different voltage and a
thermal bias. They proposed the relationship between parameters and the thermodynamic
performance of the nano-TE devices. Additionally, the underlying mechanism of conversion
performance of the nanoscale thermoelectric energy harvester was determined, which
breaks the Wiedemann–Franz law without Coulomb interaction and induces spin-up and
spin-down transport channels and the prohibition of double occupancy of electrons in the
dot with Coulomb interaction [41]. Adam et al. studied heat-driven transport in serial
double QD devices and disentangled the phonon-assisted transport effect and conventional
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thermoelectric transport effect, proving that phonon-assisted transport is sensitive to excited
states [42]. These theoretical studies are not directly applied in this paper, but they might
guide future research on high-performance TE devices.
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Although most research on QD TE focuses on physical calculation, there are not
many studies on composites. Unlike a quantum heat engine, QDs applied in composites
interact with conductivity polymers or other materials, which always attain on the surface
of polymers or others [43]. QDs provide added charge transport pathways across the
insulating domains of the matrix and facilitate lattice hopping transport (Figure 5a). Due
to the filtering effect, QDs are embedded and cold holes are filtered out, simultaneously
improving carrier mobility and increasing S and σ. Moreover, based on this, Kilwon et al.
also observed the reduction of κ in PEDOT:PSS/CQD composites (Figure 5b) [44]. Doping
QD with other matrices is a fresh perspective for organic TEs and a strategy to enhance
power factor with inevitably existing non-conducting domains in organic materials.
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3. One-Dimensional (1D) TE Materials
3.1. One-Dimensional (1D) Materials

For TE devices, 1D nanostructures, such as superlattices, nanotubes, nanowires, etc.,
have demonstrated that could reinforce the TE composite’s performance [45–47]. Boundary
scattering is enhanced, and κ could be reduced because 1D materials at the nanoscale are
less than the mean free path of phonons. Meanwhile, σ could be raised due to retained and
improved carrier transport in the 1D direction. For this reason, 1D structures are seen as
the most promising materials in organic TE composites [48,49]. In this section, the recent
progress of 1D materials will be presented.

3.1.1. One-Dimensional Conductive Polymers and Related Composites

The quality of conductive polymers, as a matrix of TEs, largely determines the perfor-
mance of their composites. One-dimensional conductive polymers possess relatively high
conductivity, environmental stability, better dispersity, a short diffusion path, etc., which is
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hot research when applied to sensors, painting, and flexible devices [50,51]. This part will
be unfolded based on different conductive polymers.

Poly(3,4-ethylenedioxythiophene) (PEDOT) and its composites, such as PEDOT:PSS,
are among the best high-performance TE polymers, which exhibit higher electrical con-
ductivity than other conductive polymers reported in the literature. Interestingly enough,
PEDOT tends to display different TE performances with diverse nanostructures, generally
following this order: nanofibers > nanotubes > nanorods > nanoparticles > bulks. As dis-
closed in Figure 6, 1D conductive polymers have a more orderly molecular chain, better
crystallization, and higher carrier mobility [50,52–55]. Although 1D TE PEDOT has at-
tracted interest from researchers, most of the fabricated PEDOT can only be called quasi-1D
material because their scales are over 100 nm. However, the nanoscale always depends on
synthetic methods, including hard template methods, soft template methods, interfacial
polymerization, solution polymerization, and electrical polymerization. The size of conduc-
tive polymers fabricated by hard template methods usually is limited by models [56]. In
soft template methods, the sizes are dominated by surfactant concentration and the cate-
gories of an inorganic acid. It is a fine way to synthesize a large proportion of conductive
polymers. For instance, 1D polyaniline (PANI), one of the most popular nano-conductive
polymers, can be synthesized by monomers combined with polyelectrolytes’ chains which
have groups for forming hydrogen bonds and/or opposite charges, such as DNA, PAA,
and P(VM-co-MA). In contrast to the frequently reported formation of 1D PANI, seldomly
seen is the preparation of 1D PEDOT and its derivatives, which is caused by its dense
growth to a compact morphology [57,58]. Therefore, it is necessary to develop methods for
preparing excellent PEDOT and other conductive polymers for TE composites. Currently,
the main way of making PEDOT fibers is wet-spinning. Doping concentrated sulfuric acid
or DMSO, DMF, etc. Organic solvents would assist the transformation of aqueous PEDOT
into high solid content. Further optimizing spinning conditions, coagulation baths, and
post-treatment of PEDOT fibers are necessary to achieve high TE performance [59,60]. Chen
et al. reported the preparation of PEDOT:PSS fibers with the highest electrical conductivity
of 1013 ± 32 S cm−1, a simple and flexible TE generator fabricated using such fibers has
stable output performance under environmental conditions [61].
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As another widely used approach, electrochemical polymerization carries out oxida-
tion and reduction reactions simultaneously on the anode and cathode, respectively. The
polymerization processes can be controlled precisely by potential, solvent, ion, monomer
structure, and so on. Moreover, the polymers obtained by electrochemical synthesis are not
necessary to separate and purify due to the overall process without surfactants and/or oxi-
dants. Furthermore, the composite’s doping level, morphology, and thickness of polymer
film could also be turned into electrochemical processes. Therefore, numerous multi-
functional 1D polymer matrix composites were fabricated by electropolymerization and
templates. PANI and polypyrrole (PPy) composites can also achieve the same high TE
performance as PEDOT composites with electrochemical polymerization. Additionally,
PANI-based composites can be synthesized by electrochemical polymerization and electro-
chemical deposition. Recently we prepared PANI-based TE composites with a maximal
PF of 236.4 ± 5.9 µW m−1 K−2 through dynamic three-phase interfacial electropolymeriza-
tion of aniline in addition to the introduction of dimethyl sulfoxide (DMSO) and physical
mixing with the single-walled nanotubes (SWCNTs) [62]. On the other hand, composites
are able to be formed directly during the electropolymerization process. Huang et al. syn-
thesized graphene/polyaniline composite film, which exhibited high conductivity with a
one-step electrochemical process. Here, PANI architectures depend on graphene’s morphol-
ogy; hence, customization of the PANI architecture would be realized by electrochemical
polymerization [63].

PPy not only possesses good conductivity but is also an outstanding photothermal
agent, which has a wider heat resource than other conductive polymers. Thus PPy-based
composites have enormous potential to generate intelligent devices [64]. However, only a
few PPy-based composites combine photothermal with TE properties to fabricate multi-
function devices. Lin et al. prepared a flexible photothermoelectric strip which contains
coated fabric made up of PPy and PEDOT:Tos with Ag particles (Figure 7), outputting from
294.13 to 536.47 µV with the highest power density up to 13.76 nW m−2 [65].
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3.1.2. Carbon Nanotubes (CNTs) and Related TE Materials

Carbon nanotubes, including single-walled carbon nanotubes (SWCNTs) with a diam-
eter of 1–2 nm formed by curling a layer of graphene and multi-walled carbon nanotubes
(MWCNTs) with a diameter range of several to hundreds of nanometers formed by curling
multilayers of graphene, possess high conductivity, stretchability, and tenacity, demon-
strating great potential as flexible TE materials confirmed by theoretical prediction and
experimental results (Figure 8) [66,67]. Because of the unique structure of CNTs, they have
obvious advantages in using charge transfer doping to adjust the charge carrier density,
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as well as excellent electrical and mechanical properties and large specific surface area,
thus providing new ideas and directions for the development and preparation of high-
performance flexible TE materials and devices [46,68,69]. In past decades, CNTs have
evolved into the mainstream fillers in TE composites following these reasons: (1) high
electrical conductivity to enhance TE efficiency; (2) large specific surface areas to form
highly efficient interface; (3) ability to coat polymers on their surface to reduce thermal
conductivity; (4) carbon-based TE composites with flexibility, environmental friendliness,
biocompatibility, and low-cost [8,70–72]. However, the TE properties of CNTs-based com-
posites depend on the CNT’s quality, so SWCNTs, which have all the properties that are
better than those of multi-walled carbon nanotubes, are widely used to prepare TE de-
vices [73]. Recently, Chen et al. developed an S-shape TE generator with flexible and
foldable composite films. Electrical conductivity of PEDOT:PSS/SWCNT composites was
improved from 1063 ± 80 to 1562 ± 170 S cm−1 after being post-treated by ionic liquid of
bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). The 30 wt % SWCNTs composites
had the Seebeck coefficient of 21.9 µV K−1. SWCNTs play a pivotal role in the TEG fabri-
cated using such materials in which strong interfacial interactions between components
change the conformation of PEDOT chains [8].
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High-performance organic TEGs require p-type and n-type elements to form a circuit
in series. However, the development of n-type organic TE materials is relatively backward.
Although the mobility of n-type organic semiconductors is reasonable, their intrinsic carrier
concentration is mostly low, and their electron affinity is low, which is difficult to meet the
requirements of TE conversion. In addition, the lack of high-performance materials also
retards the progress of related theoretical research in this field. Therefore, to promote the
development of the organic thermoelectric field, it is urgent to strengthen the development
of high-performance n-type organic TE materials. For this plight, CNTs seem to be a
great solution; however, CNTs and their composites are usually p-type in the ambient
conditions without chemical treatment, n-type CNTs and composites doped with redox
dopants are easily oxidized in the air, and the Seebeck coefficient becomes positive again
gradually [76–78]. Against all odds, some progress was achieved through the unremitting
efforts of researchers. Kawai et al. converted p-type SWCNTs to n-type SWCNTs in a creative
way which utilized simple salts as dopants. SWCNTs treated with crown ethers complex salts
and onium salts could present n-type TE performance, which showed air- and heat-stability
at 150 ◦C (Figure 9a). As shown in Figure 9b, the Seebeck coefficient of 23 typical n-type
inducers doping with SWCNTs varied with different salts and crowns, and this method
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is applicable in nanocarbon such as MWCNTs and graphene [79]. Although previous
researchers have realized many achievements, there are still great efforts to be made.
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4. Two-Dimensional (2D) TE Materials
4.1. Two-Dimensional Materials and Their TE Composites

The use of 2D materials is increasingly prevalent, particularly as a cornerstone in the
construction of complex composite materials, due to their ultrathin thickness, large specific
surface area, many active sites, short charge transfer distance to the surface, etc. A layered
microstructural backbone can be constructed by the assembly of these 2D building blocks.
The highly uniform and ordered channels formed could penetrate the whole backbone,
which reinforces the TE conversion capacity in the vertical direction [80–82].

These typical 2D materials include graphene, black phosphorus (BP), transition metal
dichalcogenides (TMDCs), MXenes, etc., which exist in different allotropes with preeminent
electronic and optical properties. In a 2D structure, the Seebeck coefficient could be
enhanced by the sharp features in the density of states (DOS) and intrinsic discontinuities,
owing to quantum confinement. Moreover, the band gap of 2D materials is tunable, which
could be achieved by transforming the number of layers, components of materials, and so
on [83–85]. The following subsection will introduce several common 2D materials used in
organic TE composites.

4.1.1. Graphene

Recently, graphene has become increasingly popular in various fields due to its excel-
lent electrical, mechanical, optical, and thermal properties. Two-dimensional graphene,
one of the most conductive materials, is widely used for conductive polymer composites,
which could enhance the conductivity of composites. [86–88] Regarding its application
in TE materials, studies on graphene are usually divided into two categories. One is
to investigate the thermal and electrical transport properties of graphene, especially the
influence of graphene’s special edge carbon chain structure on phonon scattering and
thermal conductivity regulation inside the material so as to optimize the TE properties of
graphene [56,89–91]. However, research in this regard is a mostly theoretical calculation,
and the actual application of graphene itself as a TE material is still a long way off [92–95].
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Another kind is graphene composites with other materials in a proper way to form optimal
TE materials [96,97]. Two-dimensional graphene’s lamellar structure and large specific
surface area provide favorable conditions for the formation of nanocomposites with other
TE materials. Meanwhile, the ultra-high carrier mobility of graphene is expected to improve
the electrical properties of composite materials, while the low-dimensional nanostructure of
graphene and its special boundary atom composition are conducive to enhancing phonon
scattering and reducing the lattice thermal conductivity of composite materials to achieve
collaborative regulation of material TE transport performance [98–100]. The following
studies focus on the combination of graphene with conductive polymer for the formation
of performance-optimized bulk or thin film TE composites.

Cai et al. fabricated polyaniline/graphene nanosheets (PANI/GNs) TE composite as
pellets and films. Electrical conductivity and the Seebeck coefficient rose synchronously
with an increased amount of graphene. Increasing carrier mobility seems to be a method
with immense potential to make efficient composites in TE devices [101]. Although the
power factor of the composite reported above cannot satisfy practical needs, it laid the
foundation for future graphene composites. Chen et al. creatively designed a composite in
which PEDOT:PSS was inserted into 2D graphene oxide (rGO/rPEDOT:PSS) layers. The
rGO/rPEDOT:PSS exhibit high TE performance with excellent TE stability and mechanical
flexibility for self-powered wearable devices. This wearable TE device could accurately
recognize hand movements, including “Point”, “Pinch”, and “Grip” patterns, with a clever
device design and optimization algorithm. The enhanced TE performance of composites is
attributed to the sp2 carbon carrier channels in rGO, PEDOT:PSS carrier type, and regulated
concentration [81].

At present, the theoretical research on the application of graphene in TE materials is
mostly limited to monolayer or few-layer graphene, while the graphene used in experimen-
tal studies is mostly multilayer graphene or rGO, which is easily synthesized. In addition,
graphene nanoscrolls, an emerging material, are similar to carbon nanotubes in structure
but have a larger doping area than carbon nanotubes, which can introduce more charge
carriers, thus improving electrical performance [102,103]. However, there are few reports
on graphene nanoscrolls being used for thermoelectric composites for the time being, al-
though it is promising in thermoelectrics. Therefore, the influence mechanism of multilayer
structure graphene on electrical and phonon transport should be explored actively, and the
possibility of improving the performance of composite TE materials is elucidated from the
perspective of theoretical research. The novel monolayer graphene-based composite TE
material and its synthesis and preparation technology should be developed simultaneously.

4.1.2. Black Phosphorus (BP)

Monolayer or few-layer BP, so-called phosphorene, was separated from bulk BP in 2014
as a promising 2D material in electricity and optics. After graphene, the distinctive structure
and interesting anisotropic properties of BP, as another essential 2D material, triggered
theoretical and experimental research in many fields. BP crystals were first discovered
more than 100 years ago. It is the most stable among the allotropes of phosphorus (e.g.,
white, red, and violet phosphorus). BP crystals are wrinkled honeycomb layers that stack
together by weak van der Waals interactions (Figure 10), which make it possible to prepare
BP nanosheets by mechanical or ultrasonic exfoliation [104].
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However, most of the research on black phosphorus in the field of thermoelectricity
has focused on theoretical calculations. To a large extent, it is caused by the difficulties in
obtaining monolayer black phosphorus and air sensitivity. Fortunately, monolayer BP has
been obtained by some advanced methods of exfoliation, and appropriate dopants could
improve BP’s air stability [106–108]. In one of the few experimental reports, Song et al.
prepared PEDOT:PSS/BP composites and the TE properties of the films were considerably
enhanced after the addition of BP, and the power factor could be increased by 109%. As
the BP wt % increases, the mobility increases, and the carrier concentration decreases,
which leads to an increase in both the Seebeck coefficient and the conductivity [109]. BP
as a filler for TE composites is size-dependent, and the upper limit of the improvement of
TE properties of high-quality 2D nanosheets is still unknown owing to the limitation of
fabrication technology.

4.1.3. Transition Metal Carbides/Nitrides (MXene)

MXene is a new frontier nanomaterial for flexible and stretchable electronic device
fabrication due to its excellent electronic and metallic conductivity, rich surface functionality,
and superior electrochemical and optoelectronic properties. Moreover, its tunable chemical
surface makes MXene a surprising prospect for various applications. Mn+1XnTx is the
general structure formula of MXene, where n + 1 is the layers of early transition metals
M, X is carbon and/or nitrogen, and Tx stands for the functional groups on the surface of
MXene. It should be noted that most MXene is metallic, but some MXene with M as Ti, Hf,
Cr, Mo, Sr, Y, and W can exhibit semiconducting properties, so only these semiconducting
MXene have some TE properties. In addition, due to the special structure of MXene, they
are able to be made into n-type [93,110–112].

Conductive polymers (such as PEDOT, PANI, and PPy) doping with MXene to fab-
ricate TE composites is a new strategy. Ouyang et al. synthesized an n-type 2D MXene
(Ti3C2Tx), which can be blended into the p-type PEDOT:PSS. The Seebeck coefficient of
PEDOT:PSS could be enhanced from 23 up to 57.3 µV K−1, and the power factor could be
increased from 44.1 up to 155 µW m−1 K−2. The enhancement of the Seebeck coefficient is
attributed to the energy filtering of the charge carriers by the internal electric field generated
by the electron transfer from MXene to PEDOT:PSS. The internal electric field filters the
low-energy charge carriers, thus improving the Seebeck coefficient (Figure 11) [113]. In
particular, the method of preparation of MXene-based conductive polymer composites is
one of the reasons that affect the performance of the composites. Popular methods include
coating, vacuum-assisted filtration (VAF), in situ polymerization, and electrochemical de-
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position (ED). The choice needs to be determined depending on the characteristics of the
matrix and filler [114].
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5. Three-Dimensional (3D) TE Materials
5.1. Three-Dimensional Materials and Their TE Composites

Most of the low-dimensional materials mentioned above also have three-dimensional
precursors. Optimizing the structure of these 3D materials to achieve the performance of
low-dimensional materials is very attractive.

The TE performance of bulk materials is limited by the correlation between individual
parameters, for example, the difficulty of reducing thermal conductivity while maintaining
electrical conductivity [115]. However, these relationships can be decoupled, and their
performance can be significantly enhanced through the rational design of nanoscale struc-
tures. The general strategy is to add nanostructures, such as nanoarray, random pores, and
uniform patterning, to the bulk material to improve the TE properties, the reduction of
thermal conductivity resulting from phonon scattering and the enhancement of the Seebeck
coefficient arising from energy filtering. Unfortunately, these approaches have limitations
in their applications. The high performance exhibited by nanoarrays depends on the high
quality of 0D and 1D materials, and scaling up production is challenging. In contrast,
random porous structures are easier to obtain, but the morphology of these nanostructures
is uncontrollable and therefore has limited improvement in TE performance [116–118]. The
lithographic process is a method to achieve high porosity in a controlled manner, but it is
expensive and only suitable for preparing precision devices [119].

Metal-Organic Frameworks (MOFs)

MOF is a multi-porous coordination polymer composed of inorganic metal nodes
and organic linkers, which has become a promising multifunctional material due to its
high porosity and highly tunable composition/structure and has been investigated in
various applications such as gas storage, separation, and catalysis. The high porosity of
MOFs offers a new strategy to improve TE properties since the pores can strongly scatter
phonons, thus reducing thermal conductivity and increasing TE properties. Although
most MOFs are insulators, their electronic structure can be tuned so as to promote electron
flow. The ZT values of current MOF-based TE materials are not satisfactory, but the unique
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structure of MOF gives it enormous possibilities for optimization, especially for n-type
materials [72,120,121].

6. Summary and Outlook

Although composites consisting of conductive polymers and fillers of various archi-
tectures have made significant progress in TE applications, they still lag behind inorganic
TE materials which have a maximum ZT value of over 2. An efficient optimization strategy
is to make full use of the quantum effect to enhance the TE performance of the composite,
which can be realized via the selection of a suitable filler that matches the architecture of
conductive polymers [70,122].

In general, the low dimensionality of composite architecture can greatly improve TE
performance. This mini review summarizes and discusses the signs of progress made in
recent years in TE materials containing fillers of different dimensions. Concluding the
characteristics of the above materials, the following ideas are provided to shed light on
the development of novel high-performance TE composites based on conducting poly-
mers. 0D materials, such as fullerene and QDs, should be further taken into account to
modify surface groups as dopants to increase composites carrier mobility or/and phonon
scattering. Although 1D materials have proved to be the ideal TE material, continuing
optimization of their preparation methods and structure regulation is still on the way to
enable further improvement of their TE performance. For 2D materials, changing interlayer
actions is able to enhance TE performance. Three-dimensional materials play a key role
in the fabrication of precision devices using organic TE composites. Perfect matching
of 0D materials with 2D and even 3D matrices may be an effective way to improve the
TE performance of composites. The precise design and realization of the structure and
morphology of conductive polymers are believed to significantly influence interactions
among constituents of composites consisting of polymers and fillers with varying architec-
tures and dimensions, thus optimizing TE performance of the composites and TE devices
fabricated thereof. Theoretical studies such as DFT calculation are useful tools in solving
intricate interrelationships between materials structure and its TE performance to a certain
extent. As long away as it is, we believe the strenuous efforts of researchers in the fields of
materials, energy, and electronics will accelerate the progress in the commercialization of
conductive polymer-based TE composites and TE devices of different functions. We hope
this mini review is helpful to researchers in the application of TE materials by providing
further understanding of the essence of materials of different dimensions and the interplay
between their structure and TE properties in light of current advances in related fields.
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