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Abstract: Isoliquiritigenin (ISL) is a flavonoid with a chalcone structure extracted from the natural
herb Glycyrrhiza glabra. Its anti-inflammatory, antibacterial, antioxidant, and anticancer activities have
been extensively studied. Moreover, ISL also possess hypolipidemic and atherosclerosis-reducing
effects. However, its cholesterol-lowering mechanisms have not been reported yet. Niemann Pick C1
Like 1 (NPC1L1) is a specific transporter of cholesterol uptake. In this study, we found for the first time
that ISL downregulates NPC1L1 expression and competitively inhibits cellular cholesterol uptake by
binding to NPC1L1 in a concentration-dependent manner in vitro. This study provides a theoretical
basis for further investigation of the molecular mechanisms of its cholesterol-lowering effect in vivo
and inspired emerging drug research for cholesterol-lowering purposes through NPC1L1 inhibition.

Keywords: Niemann-Pick C1-Like 1 (NPC1L1); inhibitors; isoliquiritigenin; cholesterol uptake;
cardiovascular disease

1. Introduction

Cholesterol, as an essential component of cells, gives their membranes strength and
flexibility. It is also associated with many metabolic pathways in the body, including the
production of steroid vitamin D, bile, and hormones [1]. It is well known that hypercholes-
terolemia is a recognized cause of cardiovascular morbidity and mortality worldwide, and
therefore cholesterol is considered one of the major factors in cardiovascular pathology [2].
Several other common comorbidities are associated with hypercholesterolemia, including
diabetes, fatty liver disease, Alzheimer’s disease, gallstones, and some cancers. Elevated
plasma cholesterol levels can lead to atherosclerosis and coronary artery disease [3], and
patients often have hypertension, obesity, and hyperglycemia. Plasma cholesterol level
is closely related to intestinal absorption, de novo biosynthesis, and cholesterol removal
from blood [4]. Therefore, the inhibition of intestinal absorption, cholesterol biosynthesis,
and the promotion of cholesterol excretion can all be therapeutic approaches to prevent
and treat hypercholesterolemia. Cholesterol absorption is a complex multi-step process, in
which cholesterol is firstly micellarized by bile acid in the intestinal cavity, then absorbed
by intestinal cells, and then assembled into lipoproteins, and finally transported to the
lymphatic and circulatory systems. Regulating cholesterol homeostasis is closely related
to the intestine and can reduce plasma cholesterol by approximately 36% by completely
inhibiting cholesterol absorption [5].

Niemann Pick C1 Like 1 (NPC1L1), a recently identified protein associated with
cholesterol uptake, has been identified as a specific transporter of cholesterol uptake. It
is highly expressed in the small intestine and liver [6]. Cholesterol uptake in the small
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intestine and liver was closely associated with NPC1L1 (Figure 1A) [7]. Studies have
shown that NPC1L1 knockdown mice significantly reduced cholesterol absorption, which
indicated that NPC1L has a vital role in promoting intestinal cholesterol absorption [8,9].
NPC1L1 facilitates cholesterol transport by lattice-protein-dependent endocytosis. NPC1L1
is first surrounded by lattice-protein-encased vesicles, then transported into the cytoplasm
and ultimately into the recycled endosome. In the cutosol, cholesterol dissociated from
NPLC1L1 and translocated to the endoplasmic reticulum. Meanwhile, NPC1L1 returned
to the cytoplasmic membrane [10] (Figure 1B). When cholesterol uptake is reduced by
inhibiting NPC1L1, the uptake of fat-soluble nutrients (such as triglycerides, bile acids, or
fat-soluble vitamins) is not affected [11]. Therefore, NPC1L1 is a potential and promising
target to lower blood cholesterol levels. According to our preliminary research on NPC1L1
inhibitors, very few NPC1L1 inhibitors have been reported. Currently, only ezetimibe
(EZ) is approved by the FDA as an NPC1L1 inhibitor for clinical cholesterol-lowering
therapy [12,13]. Therefore, the development of novel NPC1L1 inhibitors is vital for the
treatment of diseases such as hypercholesterolemia.
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Figure 1. (A) Schematic diagram of the mechanism of NPC1L1 in small intestine and liver cholesterol
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Natural medicines are increasingly being used to prevent and treat human diseases.
Not only all drugs used in traditional medicine worldwide of natural origin, but many
more are produced by structural modification and modification of natural products as lead
compounds [14–16]. Natural products, characterized by their structural and biological
activity diversity, provide a direct route to the development of new drugs or drug lead
compounds, as well as providing inspiration for chemical synthesis and structural. Opti-
mizing natural products as a source of drug precursor molecules and their development
process can facilitate drug development to benefit human health. Surveys showed that
between 1981 and 2014, more than 59% of the new drugs approved by the US FDA, directly
or indirectly, came from natural products [17]. Isoliquiritigenin (ISL) is extracted from
the herb Glycyrrhiza glabra and is a flavonoid with a chalcone structure with the molec-
ular formula C15H12O4 [18]. It has been reported that ISL has various pharmacological
properties, not only antioxidant, antibacterial, anti-inflammatory, and anticancer activities,
but also plays a role in liver protection, heart protection, and immune regulation [19–22].
Previous studies have shown that ISL inhibits adipose tissue inflammation and liver injury
caused by a high-fat diet by effectively inhibiting the activation of the nucleotide-binding
domain, the leucine-rich repeat sequence family, and the pyridine-containing domain of the
3-inflammasome [19]. ISL also inhibits hepatic steatosis by reducing fat accumulation and
inhibiting adipogenic genes in mice fed a high-fat diet [23]. Furthermore, ISL inhibits lipid
accumulation and insulin signaling by activating tyrosine phosphatase 1B [24]. In addi-
tion, ISL can improve plasma lipid levels and attenuates atherosclerosis in Apolipoprotein
E-deficient mice [25]. Importantly, ISL has also been reported to have hypolipidemic and
atherosclerotic effects [25–28]. However, the target and mechanism of its lipid-lowering



Molecules 2022, 27, 7494 3 of 11

(cholesterol-lowering) effects are unclear. In this study, we found that ISL can reduce
cellular uptake of cholesterol by inhibiting NPC1L1. We initially explored its mechanism of
action through BIAcore assay and molecular docking assay, which can provide a theoretical
basis for the screening and development of novel NPC1L1 inhibitors.

2. Materials and Methods
2.1. Materials and Reagents

ISL, EZ (purity > 95%), and (R)-Mevalonic acid lithium salt were purchased from
Sigma, New York, NY, USA. Niemann-Pick C1-like 1, β-actin, β-tubulin (antibodies
were purchased from ABclonal, Wuhan, China), fetal bovine serum, Dulbecco’s modi-
fied Eagle’s medium (DMEM) and cell lysis buffer (10×), secondary antibody horseradish
peroxidase-conjugated anti-rabbit (L3012), ultra-enhanced chemiluminescence detection
reagent, Filipin bacteriocin, and BCA protein average/concentration detection kit were all
purchased from Meilun Biotechnology (Dalian, China). Sodium taurocholate hydrate and
lovastatin were purchased from Maclean’s, NBD-labeled cholesterol (from J&K scientific,
Beijing, China).

2.2. Cell Culture

Cells were cultured in DMEM containing high glucose with stable L-glutamine, 10%
fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. Cells were cultured
in a humidified incubator at 37 ◦C, 95% air, and 5% CO2. The medium was changed every
other day, and cells were passaged at 1:2 after reaching 70% to 80% cell confluency.

2.3. Cell Viability Assay

Cell viability was determined by the CCK-8 cell proliferation assay using WST-8
cleavage. Briefly, 100 µL of HepG2 cells/Caco-2 cells (about 3000 cells per well) were
inoculated into 96-well plates for 24 h. Then after treatment with/without 100 Mm ISL
for 24 h, the cells in each well were reacted with 10% CCK-8 for 1 h. Optical density (OD)
values were then detected at 450 nm using a microplate reader.

2.4. Western Blot Analysis
2.4.1. Extraction and Preparation of Total Cellular Proteins

The attached cells were digested with trypsin after being washed twice with PBS at
4 ◦C. Then, collected cell suspensions were put into EP tubes. Centrifuging with 1000 rpm,
5 min and removed supernatant, then resuspended with PBS, repeated centrifugation, and
removed supernatant. The precipitate was added with 50–100 µL of cell lysate and lysed on
ice for 30 min (or overnight at −20 ◦C). Then, centrifuge at 1000 rpm and 4 ◦C for 10 min.
The supernatant was transferred to a new EP tube and set aside. The protein concentration
in the cell lysate was determined using the BCA Protein Assay Kit (Pierce Biotechnology
Inc., Rockford, IL, USA).

2.4.2. Protein Blot Analysis

Equal amounts of protein (10–20 µg) were electrophoresed on SDS-PAGE gels (8%) and
were then transferred to polyvinylidene fluoride (PVDF) membranes. Membranes were cut
according to the position of the target and internal reference proteins and then incubated
with a specific primary antibody (1:1000) overnight at 4 ◦C with anti-NPC1L1 antibody
and anti-internal reference protein antibody (1:5000). PVDF membranes were washed three
times with TBST followed by incubation with horseradish peroxidase-coupled secondary
antibody (1:50,000) for 2 h. Finally, specific NPC1L1 bands (145 kD) and internal reference
protein bands were identified with enhanced chemiluminescence advanced reagents.

2.5. Molecular Docking Methods

This experiment was conducted as described previously [29]. This experiment was
conducted as previously described. Briefly, docking simulations were carried out utiliz-



Molecules 2022, 27, 7494 4 of 11

ing the SYBYL-X 2.0 software. All the ligand molecules were drawn with the standard
parameters of SYBYL-X. The Gasteiger-Huckel charges of protein receptors were prepared
by standard methods using Tripos force field for 1000 steps to minimize the geometric
conformation energy. The H-bonds were shown using a dotted line. Pymol was used to
observe the interaction between the ligands and the protein receptors.

2.6. NBD-Cholesterol Uptake Assays

Some refinement of the previously reported method [30]. Cholesterol uptake by
HepG2 cells and Caco-2 cells was assayed. Briefly, cells were seeded in 96-well plates
(about 3000 cells/well). After culturing in a complete DMEM medium for 24 h, the cells
were washed twice with PBS at 4 ◦C. Cells were cultured for 24 h by adding an equal
amount of serum-free DMEM medium containing 1% penicillin/streptomycin and 1%
non-essential amino acids. The samples were then washed twice with PBS at 4 ◦C before
adding different concentrations of samples in solubilized DMSO (12.5 µM–100 µM; diluted
in DMEM containing 0.5 mM taurine sodium). After co-incubation with drugs for 4 h,
DMEM containing 0.5 mM taurine sodium and 25 µM NBD-cholesterol was added and
incubated for another 1 h. After washing twice with PBS at 4 ◦C, the fluorescence values
were measured at excitation wavelength 485 nm and emission wavelength 535 nm. EZ was
used as a positive control in this study.

2.7. Filipin Bacteriocin Staining

Filipin (dissolved in DMSO to make 25 mg/mL) was diluted in PBS/10% FBS to a
final concentration of 0.05 mg/mL and used as a working solution. Cells were cultured
in confocal culture chambers at different drug concentrations. After being washed three
times with PBS, drug-treated HepG2 cells were added to 4% formaldehyde and fixed at
room temperature for 10 min. The staining was then incubated with Filipin for two hours.
Then, cells were washed with PBS at 4 ◦C three times. Images were captured using a Nikon
confocal microscope (Nikon Instruments, Tokyo, Japan).

2.8. Molecular Kinetic Analysis

Kinetic analysis was performed with NBD-cholesterol, as described above. Different
concentrations of drugs (200, 100, 10 µM) were measured with different concentrations of
NBD-cholesterol as substrate (50, 25, 6.25, 3.125, 1.5625, 0.78125 µM). Fluorescence values
were detected at excitation wavelength 485 nm and emission wavelength 535 nm. Then,
we made a Lineweaver-Burk double reciprocal chart to determine the type of inhibition.

2.9. SPR

SPR experiments were performed using Cytia T200 (CM5 chip was from Wancheng,
Cytia, Newark, DE, USA). The NPC1L1 protein was coupled to the CM5 chip surface using
the Amine Coupling Kit with the following procedure. First, the CM5 chip was installed
and primed according to the standard instrument procedure, followed by mixing NHS
and EDC in a 1:1 ratio and running the mixture with a total volume of 200 µL, a flow rate
of 10 µL/min, and a time of 600 s. Then the NPC1L1 protein was diluted to 20 µg/mL in
sodium acetate solution at pH = 4.6 and run with a total volume of 800 µL of the protein
solution and a flow rate of 10 µL/min for 3000 s. Finally, the ethanolamine solution was
run with a total volume of 200 µL and a flow rate of 10 µL/min for 420 s. Then, the
CM5 chips were primed using a PBS-P solution containing 1% DMSO. ISL was diluted to
different concentrations using PBS-P buffer containing DMSO and ensuring that the final
concentration of DMSO was 1%. Different concentrations of ISL were run with a flow rate
of 30 µL/min, a binding time of 60 s, and a dissociation time of 120 s. The final results were
analyzed by the Biacore.T200.Evaluation software and Z software.
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2.10. Statistical Analysis

All experiments were repeated 2–4 times, and at least three experimental samples were
processed for use in each experiment. The statistical results for each replicated experiment
were essentially the same. Experimental data were analyzed using the GraphPad Prism
(v.6.01) software. Statistical significance between samples was determined by one-way
ANOVA (Tukey’s test). p-values < 0.05 were considered statistically significant.

3. Results
3.1. SPR Results Show an Interaction between ISL and NPC1L1

Since NPC1L1 is a transporter protein with no catalytic activity, the inhibitory effect of
ISL against NPC1L1 could not be evaluated by conventional colorimetric methods. Thus,
the binding of ISL to NPC1L1 was analyzed by surface plasmon resonance (SPR). SPR is a
method that can characterize the interaction between target proteins and molecules and has
been widely used in drug discovery. According to the response value and SPR trace results
in Figure 2, EZ interacts with NPC1L1, and the response value increases with increasing
ISL concentration, i.e., the interaction with NPC1L1 is stronger, which is consistent with the
previously reported results [29]. ISL also exhibits the same interaction as EZ; the response
values increase with increasing concentration, and the interaction is stronger. Therefore,
based on the results shown by SPR, the inhibitory effect of ISL can be further evaluated.
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Figure 2. SPR assay of the interaction of ISL with NPC1L1. (A) Binding sensing map showing the
interaction of EZ with immobilized NPC1L1. (B) Binding sensing map showing the interaction of ISL
with immobilized NPC1L1. (Inhibitor concentrations were 0, 12.5, 25, 50, 75 and 100 µM).

3.2. Results of Protein Immunoblot Analysis Defining the Cell Model

To screen appropriate cell lines for further experiments, we performed protein im-
munoassays to determine NPC1L1 levels in six cell types: cervical cancer cell line (Hela),
colon cancer cell line (Caco-2), human osteosarcoma cells (U-2OS), human pancreatic cancer
cells (SW1990), human breast cancer cell line (MCF-7), and liver cancer cell line (HepG2).
The resultant bands were also analyzed for intergroup protein levels. The results showed
high expression of NPC1L1 in HepG2 and Caco-2 and low expression in U-2OS (Figure 3).
HepG2 and Caco-2 cells had the widest protein bands, and U2OS had the narrowest protein
bands (Figure S1). Meanwhile, optical densitometry of the protein blots showed the same
results. Previous studies have reported NPC1L1 was highly expressed in the small intestine
and liver [6]. Our results were consistent with the previously reported results [31]. We then
used HepG2 and Caco-2 cells as cellular models to explore the role of ISL on NPC1L1.
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3.3. ISL Inhibited Uptake of Cholesterol in HepG2/Caco-2 Cells

NPC1L1 activity was investigated in HepG2/Caco2 cells. Cholesterol uptake in the
intestine is mediated by NPC1L1, whose function can be inhibited explicitly by EZ [8,12]
in a concentration-dependent manner [32]. After pretreatment of cells with ISL for 24 h,
we found that cholesterol uptake in HepG2/Caco-2 cells increased with a decrease in ISL
concentration (Figure 4). EZ was used as a positive control drug during this period, and
100 µM of EZ reduced cholesterol uptake by approximately 55% in HepG2 cells and by
approximately 70% in Caco-2 cells.
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Figure 4. Inhibitory effect of ISL on cholesterol uptake in HepG2/Caco-2 cells. Cells were pretreated
with different concentrations of ISL for 4 h and then incubated with radioactive micellar cholesterol for
1 h. In the absence of ISL, cholesterol uptake was normalized to 100%. Results are the mean ± SEM
of three determinations in three independent experiments. (A) Inhibitory effect of ISL on cholesterol
uptake in HepG2 cells. (B) Inhibitory effect of ISL on cholesterol uptake in Caco-2 cells. * p < 0.05,
** p < 0.001, *** p < 0.0001.

3.4. Filipin Staining Results Showed That ISL Reduced Cellular Uptake of Cholesterol

To further determine the effect of ISL on the activity of NPC1L1, we used filipin bacte-
riocin staining and confocal to visualize the cholesterol uptake. Filipin is an antibiotic that
specifically binds free cholesterol. Changes in cellular cholesterol content were observed by
confocal microscopy at different times, thus verifying whether ISL has an inhibitory effect
on cellular cholesterol uptake. At the same time, U-2OS, which hardly expresses NPC1L1,
was used as a control group.

Referring to Liang Ge [10] and Andrew J et al. [33], cells were processed as shown in
Figure 5A. Firstly, the cells were cultured in cholesterol-depleting medium for 60 min to
deplete the cholesterol in the cells. The cholesterol-depleting medium formulation consisted
of DMEM with 5% LPDS, 50 mM mevalonate, 10 mM compactin, and 1.5% CDX. The cells
were then treated with cholesterol medium supplemented with the drug for another 60 min.
Cholesterol-replenishing medium contained DMEM supplemented with 5% LPDS, 50 mM
mevalonate, 10 mM compactin, and various concentrations of cholesterol/CDX. Cells were
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stained after fixation at different time points. 100 µM of ISL concentration was used, and
30 µM of EZ was used as a positive control. The results in Figure 5D show that EZ resulted
in reduced cholesterol uptake by the cells compared to the blank control, consistent with
previous studies reported [10]. Similarly, ISL also reduced cellular uptake of cholesterol.
However, there was no such trend in the positive control cells, and there was no difference
between the drug and control groups. Relative cholesterol content was also quantified by
quantification of intracellular fluorescence (Figure 5B,C). The results were consistent with
those indicated in Figure 5D.
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Figure 5. ISL inhibited cellular absorption of cholesterol by filipin bacteriocin staining. (A) The
procedure used to treat the cells. (B,C) Quantification of total cholesterol of cells in (D). Error bars
represent standard deviations. * p < 0.05, ** p < 0.001, *** p < 0.0001. (D) Cells were treated as shown
in (A). Images were captured with Nikon confocal microscope after fixing cells and staining with
filipin at different time points. Scale bar = 20 µm.

3.5. ISL Is a Competitive Inhibitor of NPC1L1

Preliminary results suggest that ISL consistently affects NPC1L1, which prompted us
to next investigate its kinetics of NPC1L1 inhibition. As shown in Figure 6B, Lineweaver-
Burk double inverse plots show ISL is a noncompetitive inhibitor of NPC1L1.
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3.6. Molecular Docking Revealed the Binding Pocket of NPC1L1 with ISL

The docking simulation showed that four residues of NPC1L1, including Ser52, Ser102,
His124, and Thr128, were involved in the interaction with ISL. The docking simulation
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showed that four residues of NPC1L1, including Ser52, Ser102, His124, and Thr128, were
involved in the interaction with ISL. His124 was a crucial residue in the cholesterol binding
pocket [34] (Figure 7). Thus, molecular docking results suggested that the ISL may be an
ideal NPC1L1 inhibitor.
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Figure 7. The result of Molecular Docking. (A) The cholesterol binding cavity (red) in the NTD.
(B) Binding modes of ISL to NPC1L1 (PDB: 6V3F). The inhibitor ISL was shown color by element
(carbon in cyan). The critical amino acid residues were shown color by element (carbon in yellow).

3.7. ISL Reduced the Expression of NPC1L1 in HepG2 Cells

The previous experiments demonstrated that ISL does have an inhibitory effect on
NPC1L1-mediated cholesterol uptake. Here, we further investigated whether ISL affected
the level of NPC1L1 in HepG2 cells. As shown in Figure 8, protein immunoblotting was
performed after pretreatment of cells with different concentrations of ISL (100, 10, 1 µM)
for 24 h. EZ-treated cells were used as a positive control. The results showed a decrease
in NPC1L1 protein levels in the cells after ISL action, which exhibited the same trend as
the positive control. It indicates that ISL significantly reduced NPC1L1 protein levels in a
dose-dependent manner (Figure S2).
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3.8. ISL Has Low Cytotoxicity against HepG2/Caco-2 Cells

Finally, we tested whether ISL is cytotoxic. The cellular activity was measured using
CCK8 assay, and the results showed that 100 µM of ISL had minimal effect on the cell
survival of HepG2 and Caco-2 cells. As shown in Figure 9, the survival rate was about 87%
for HepG2 cells and 93% for Caco-2 cells (Figure 9).
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Figure 9. (A) Diagram of ISL molecular structure. (B) Effect of 100 µM ISL on cell viability. 100 µM
ISL had a minimal effect on cell viability. The viability of HepG2 cells was approximately 87%, and
that of Caco-2 cells was approximately 93%. Experiments were performed in triplicate and expressed
as mean ± standard deviation.

4. Discussions

NPC1L1 is a crucial transporter protein for cholesterol uptake [8]. It was not until 2004
that NPC1L1 was shown to be an essential transporter protein mediating intestinal choles-
terol absorption. Subsequent studies confirmed that NPC1L1 is also the target of action of
the new lipid-lowering drug EZ, which is widely used in clinical practice. Natural products
have received more and more attention as a treatment for hypercholesterolemia. Previous
studies have shown that some natural products have cholesterol-lowering effects through
NPC1L1. For example, curcumin inhibited cholesterol uptake by reducing the protein and
mRNA expression levels of NPC1L1 in intestinal Caco-2 cells [32]. Hawk tea extract induced
transcription downstream of the LDL receptor, thereby inhibiting the uptake of free choles-
terol by NPC1L1 [35]. Fomiroid A interfered with the action of glucosinolates with NPC1L1
and dose-dependently blocked NPC1L1-mediated cholesterol uptake and formation [36].
Lignans and quercetin inhibited NPC1L1, causing the decrease in intestinal cholesterol
absorption [37]. ISL is a natural product derived from the natural herb Glycyrrhiza glabra. It
has been reported that ISL has lipid-regulating and atherosclerosis-reducing functions. ISL
blocked insulin-induced ROS production and inhibited lipid accumulation. ISL increased
SR-BI expression in hepatocytes and thus promoted selective hepatic uptake of cholesterol
to assist HDL catabolism. ISL controls obesity by regulating rate-limiting enzymes in the
fatty acid synthesis and oxidation pathways in the liver. ISL also inhibited NF-κB and
mitogen-activated protein kinase (MAPK) signaling pathways to slow the atherosclerotic
process [24–28,38]. The present study showed that ISL significantly inhibited cholesterol
uptake by HepG2 cells and Caco-2 cells. At a concentration of 100 µmol/L, the effect
of ISL was comparable to that of the same dose of cholesterol absorption inhibitor EZ, a
lipid-lowering drug, which was also visually demonstrated in the results of the Phillip
staining assay in this study. When the cells were treated with drugs, immunoblotting
results showed that the NPC1L1 protein was reduced by ISL. Thus, the results of this study
reveal a potential new biological effect of ISL and its lipid-lowering mechanism, i.e., the
lipid-lowering effect is achieved by inhibiting NPC1L1, thereby reducing the uptake of
exogenous cholesterol.

In conclusion, the results of this study indicate that ISL is a competitive inhibitor of
NPC1L1, which can significantly inhibit cellular uptake of cholesterol via NPC1L1 in a
dose-dependent manner. Meanwhile, ISL has negligible cellular toxicity and thus can be
further explored in vivo. The next further exploration of the molecular mechanism and
in vivo effects of ISL in regulating NPC1L1 can provide a theoretical basis for the screening
and development of novel NPC1L1 inhibitors. In addition, it is essential for the safe and
effective regulation of lipids and the prevention of atherosclerosis, giving us a research
basis for the prevention and treatment of cardiovascular diseases.
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