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Abstract: Multicomponent reactions (MCRs) have been used to prepare polymers with appealing
functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new
scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction
stepping further from simple coupling tools; for example, the functions of the Biginelli product
3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new
functional polymers. In this mini-review, we mainly summarize the recent progress of using the
Biginelli reaction to identify polymers for biomedical applications. These polymers have been
documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide
a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer
science. Finally, we present our perspectives for the further development of the Biginelli reaction in
polymer chemistry.
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1. Introduction

Multicomponent reactions (MCRs) use three or more reactants to generate one single
complex product in a one-pot manner. Thanks to pioneering studies, many MCRs have
been used for polymer preparation. These MCRs includes the Passerini [1–7], Ugi [8–17],
Biginelli [18–26], Hantzsch [27–31], and Kabachnik-Fields reactions [32–36], as well as
alkyne-based MCRs [37–39] and metal-catalyzed MCRs [40–43]. Nowadays, MCRs have
been widely acknowledged as handy tools for generating polymers with intriguing main-
chain and side-chain structures.

Functions are the core of polymer research; synthesis strategies aiming to create new
polymer structures may spark the appearance of new functional polymers. Recently, some
polymers developed through MCRs have been applied in environmental science, materials
science, and biomedical science [7,16,17,26,28,29,31,34,44–50]. In these studies, the use of
MCRs to introduce various functional groups was demonstrated to be a major pathway to
developing multi-functional polymers. Besides their use as efficient coupling tools, MCRs
themselves generate functional structures, which open new opportunities to develop new
functional polymers.

Among MCRs, the Biginelli reaction is one of the most famous, which was first
reported by Italian chemist Pietro Biginelli in 1891 [51]. It is a tri-component reaction
involving an aldehyde, a β-keto ester, and a (thio)urea to produce a 3,4-dihydropyrimidin-
2(1H)-(thi)ones (DHPM(T)) heterocycle (Figure 1, down). The first step of the Biginelli
reaction is the condensation between an aldehyde and a (thio)urea; then, the product
reacts with a β-keto ester to furnish an additive product, which lastly cyclizes to form
DHPM(T) under acid conditions. The Biginelli reaction offers robustness, easily accessible
substrates, and mild conditions, with water as the only byproduct. Meanwhile, DHPM(T)
derivatives have been documented as potential calcium antagonists, mitotic inhibitors,
bacterial inhibitors, and antioxidants [52–54]. Therefore, the Biginelli reaction has been

Molecules 2022, 27, 7886. https://doi.org/10.3390/molecules27227886 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27227886
https://doi.org/10.3390/molecules27227886
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27227886
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27227886?type=check_update&version=1


Molecules 2022, 27, 7886 2 of 16

highly valued by chemists to effectively construct heterocycles and identify new drugs
since its emergence.
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tional polymers; some unique properties and functions of Biginelli-type polymers have 
also been identified based on the synthesis methods (Figure 1) [21,22,25,26,56–69]. In this 
mini-review, we summarize the recent applications of the Biginelli reaction in developing 
functional polymers that can be used in the biomedical area as antioxidants, anticancer 
agents, and bioimaging probes. In addition, we also provide a brief introduction to other 
emerging applications of the Biginelli reaction in materials and polymer science. Finally, 
we present our perspectives on the future of the Biginelli reaction in polymer chemistry. 

 
Figure 1. The Biginelli reaction in polymer chemistry. 
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Oxidative stress occurs when excess reactive oxygen/nitrogen species (ROS/NOS) ex-

ist in the biological system [70]. These species attack biomacromolecules such as DNA, 
RNA, and proteins, thereby causing severe health issues. Oxidative stress has been recog-
nized as being related to Alzheimer’s disease [71], cardiovascular disease [72], cancer [73], 
diabetes [74], and other diseases [75–77]. Antioxidants have been used to prevent or treat 
these diseases by regulating the uncontrolled redox system [78,79]. Compared to organic 
small molecule antioxidants that have limited clinical effects for the treatment of oxidative 
stress [80,81], polymeric antioxidants have enhanced in vivo stability, good water solubil-
ity, and increased bioavailability [82–87]. However, the direct introduction of small mol-
ecule antioxidants into polymers may cause a sharp loss of antioxidant capacity, resulting 
in an insufficient method for generating polymeric antioxidants. Thus, the development 

Figure 1. The Biginelli reaction in polymer chemistry.

The Biginelli reaction was introduced into polymer chemistry in 2009 [18], but it was
not widely studied until 2013 [19]. In the early stage (2013–2016), researchers mainly
focused on using the Biginelli reaction to develop polymer synthesis methodologies
(Figure 1) [19–21,23,27,55]. Due to the deep understanding of this reaction in polymer
chemistry, the bioactivities of DHPM(T) have been gradually exploited for developing new
functional polymers; some unique properties and functions of Biginelli-type polymers have
also been identified based on the synthesis methods (Figure 1) [21,22,25,26,56–69]. In this
mini-review, we summarize the recent applications of the Biginelli reaction in developing
functional polymers that can be used in the biomedical area as antioxidants, anticancer
agents, and bioimaging probes. In addition, we also provide a brief introduction to other
emerging applications of the Biginelli reaction in materials and polymer science. Finally,
we present our perspectives on the future of the Biginelli reaction in polymer chemistry.

2. Bioactive Polymers

Oxidative stress occurs when excess reactive oxygen/nitrogen species (ROS/NOS)
exist in the biological system [70]. These species attack biomacromolecules such as DNA,
RNA, and proteins, thereby causing severe health issues. Oxidative stress has been recog-
nized as being related to Alzheimer’s disease [71], cardiovascular disease [72], cancer [73],
diabetes [74], and other diseases [75–77]. Antioxidants have been used to prevent or treat
these diseases by regulating the uncontrolled redox system [78,79]. Compared to organic
small molecule antioxidants that have limited clinical effects for the treatment of oxidative
stress [80,81], polymeric antioxidants have enhanced in vivo stability, good water solubility,
and increased bioavailability [82–87]. However, the direct introduction of small molecule
antioxidants into polymers may cause a sharp loss of antioxidant capacity, resulting in
an insufficient method for generating polymeric antioxidants. Thus, the development of
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new methodologies to efficiently produce polymeric antioxidants is important for both
fundamental research and practical use.

DHPM(T) derivatives have been documented as radical scavengers since 2006 [88].
Moreover, owing to the modular nature of the Biginelli reaction, other antioxidant moi-
eties can be facilely included to improve the antioxidation of the product. Therefore, the
Biginelli reaction is a potential tool for exploring polymeric antioxidants. In 2017, Tao
et al. developed a new strategy to obtain antioxidant polymers by introducing thiourea
moieties and/or phenol moieties into polymers [25]. By combining ultra-fast reversible
addition–fragmentation chain-transfer (RAFT) polymerization and the Biginelli reaction,
they developed a high-throughput (HTP) strategy for preparing a library of 60 polymers
containing different DHPM(T) moieties in the side chains (Figure 2a).
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effectively control oxidative stress and protect biological systems from UVR damage [89]. 
Inspired by their previous work, in 2018, Tao et al. reported new antioxidant polymers 
developed by the Biginelli reaction that can protect cells from UVR [26]. They prepared 
25 monomers using essential oil extracts, (thio)urea derivatives, and commercially avail-
able β-keto ester (2-acetoacetoxy)ethyl methacrylate (AEMA) in a mini-HTP manner; a 
library of 25 Biginelli-type polymers were facilely prepared through free radical polymer-
ization (Figure 3a). The radical-scavenging ability of the polymers was evaluated; three 
monomers of polymers with the fastest DPPH-quenching rates were selected and copoly-
merized with poly(ethylene glycol) methyl ether methacrylate (PEGMA) to develop po-
tential water-soluble UVR protectors.  

Figure 2. The high-throughput synthesis and screening of Biginelli-type polymers. (a) High-
throughput synthesis of 60 polymers; (b) high-throughput screening of the radical-scavenging ability
of the polymers. Polymer solution samples in a 96-well plate (100 µL, 5 mg/mL in CH3CN/H2O
(1/1)) with CH3CN/H2O (1/1) solvent as the control, with the subsequent addition of the DPPH
radical (10 µL, 20 mg/mL in CH3CN/H2O (1/1)); (c) UV absorbance of polymer solutions (100 µL,
5 mg/mL in CH3CN/H2O (1/1)) at 495 nm after adding DPPH radical. Reprinted with permission
from ref. [25]. Copyright © 2017 Royal Society of Chemistry. All rights reserved.

A 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-quenching experiment was con-
ducted to test the radical-scavenging ability of the polymers. The ability of polymers to fade
the purple color of DPPH reflected their antioxidant capacity (Figure 2b). The visual results
and the quantitative data obtained by measuring the UV absorbance at 495 nm (Figure 2c)
demonstrated that the polymers containing thiourea moieties (A(X)B(Y)C(2)) or/and phe-
nol moieties (A(X)B(1)C(Z), A(X)B(3)C(Z) and A(X)B(4)C(Z)) efficiently quenched the
DPPH radical. This study initially revealed the potential of the Biginelli reaction to develop
antioxidant polymers.

Ultraviolet radiation (UVR) is a source of oxidative stress; radical scavengers may
effectively control oxidative stress and protect biological systems from UVR damage [89].
Inspired by their previous work, in 2018, Tao et al. reported new antioxidant polymers
developed by the Biginelli reaction that can protect cells from UVR [26]. They prepared
25 monomers using essential oil extracts, (thio)urea derivatives, and commercially available
β-keto ester (2-acetoacetoxy)ethyl methacrylate (AEMA) in a mini-HTP manner; a library
of 25 Biginelli-type polymers were facilely prepared through free radical polymerization
(Figure 3a). The radical-scavenging ability of the polymers was evaluated; three monomers
of polymers with the fastest DPPH-quenching rates were selected and copolymerized with
poly(ethylene glycol) methyl ether methacrylate (PEGMA) to develop potential water-
soluble UVR protectors.
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Figure 3. The mini-HTP synthesis of Biginelli polymers and their cell protection along with SOD
against UVR: (a) HTP methods used to prepare libraries of 25 new monomers and homopolymers;
(b) fluorescein diacetate/propidium iodide (FDA/PI; green—alive; red—dead) double-staining of
L929 cells with UV radiation (15 min) in the presence of SOD (10 mg/mL, up) and copolymer
(10 mg/mL, down); scale bar = 100 µm. Reprinted with permission from ref. [26]. Copyright © 2018
American Chemical Society. All rights reserved.

The as-prepared polymers were screened according to different criteria to obtain a
single copolymer with low toxicity and that effectively protects cells from fatal UVR. The cy-
toprotective ability of the selected polymer was compared with superoxide dismutase (SOD)
against UVR (Figure 3b). L929 cells cultured with the selected copolymer (10 mg/mL) or
SOD (10 mg/mL) were exposed to a UV lamp (∼254 nm, 40 W). The Biginelli-type polymer
excellently protected the cells after 15 min of UVR (300 ± 20 µW/cm2), while the SOD
hardly protected the cells (Figure 3b). The mechanistic study revealed that the polymeric
antioxidant may play an important role in preventing the DNA damage caused by UVR.
These results demonstrate the utility of using the Biginelli reaction to develop polymeric UV
protectors with practical use value. As the first facile preparation of a monomer/polymer
library via the HTP-MCR strategy, this work also offers a new pathway for developing
bioactive polymers.

To prompt the in-depth research of antioxidant polymers, in 2019, Tao et al. reported
a ferrocene-containing antioxidant polymer prepared via the Biginelli reaction used to
treat in vivo oxidative stress damage [58]. Ferrocene is a well-known reductant and free
radical scavenger [90,91]. Owing to their low toxicity and versatile biological activities,
ferrocene derivatives have been widely used as antimalarial and anticancer drugs [92,93].
The ferrocene group has been identified as capable of apparently enhancing the antioxidant
ability of DHPMT derivatives [94]. In this study, Tao et al. used ferrocenecarboxaldehyde,
thiourea, and AEMA as the substrates of the Biginelli reaction to obtain a DHPMT–ferrocene
monomer, which was copolymerized with PEGMA to facilely produce a water-soluble
polymer (P0, Figure 4a). This DHPMT–ferrocene polymer had better radical-scavenging
ability than the polymers containing only ferrocene or DHPMT groups.

P0 was then evaluated in comparison to clinical drugs. Compared with small molecule
antioxidants such as glutathione, P0 exhibited lower toxicity and offered much better protec-
tion to cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress (Figure 4b).
Moreover, in an in vivo experiment using mice as model animals, P0 was superior to
silymarin, an active pharmaceutical ingredient in clinically prescribed medicines in the
treatment of CCl4-induced acute liver damage (Figure 4c). Firstly, this research combines
ferrocene and DHPMT groups into one polymer to achieve synergism for antioxidation,
showing the value of the Biginelli reaction in developing new functional polymers for
biomedical applications. Furthermore, this study may also inspire the application of
organometal chemistry and MCRs to functional polymer synthesis.
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that this newly-developed hydrogel may be a potential implant material and demonstrate 
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synthesis of P0; (b) FDA/PI double-staining of L929 cells in t-BHP + glutathione (200 µM, up) and
t-BHP + P0 (200 µM, down); scale bar = 100 µm; (c) Histological images of liver sections from
healthy control group (top left), no additional treatment group (top right), CCl4/P0 group (600 µL,
20 mg/mL, intravenous tail injection, bottom left), and CCl4/Silymarin group (200 µL, 20 mg/mL,
intraperitoneal injection, bottom right); black arrows for vacuoles and yellow arrows for inflamed
cells, and scale bar = 20 µm. Reprinted with permission from ref. [58]. Copyright © 2019 American
Chemical Society. All rights reserved.

The antioxidant property of DHPMT moiety has also been incorporated in multi-
functional biomaterials. In 2020, Tao et al. developed an antioxidant self-healing hydrogel
via the Biginelli reaction (Figure 5a) [63]. They prepared a monomer containing both
phenylboronic acid (PBA) and DHPMT groups, which was copolymerized with PEGMA to
produce a PBA–DHPMT polymer. The resulting polymer quickly cross-linked poly(vinyl
alcohol) (PVA) to form a hydrogel under mild conditions (pH = 7.4, 25 ◦C). Since the borate
ester bonds between PBA and the diol groups in PVA are dynamic, the resulting hydrogel
was self-healable. Besides antioxidant and self-healing properties, this hydrogel showed
low cytotoxicity and was successfully used as a 3D cell culture matrix (Figure 5b). Moreover,
it demonstrated excellent bio-safety in a living mouse model. These results suggest that
this newly-developed hydrogel may be a potential implant material and demonstrate the
advantages of the Biginelli reaction in exploiting multi-functional biomaterials.

The PBA–DHPMT-containing polymer has also been exploited as a multi-functional
bio-platform. Bacterial keratitis (BK) is a rapidly progressive and highly aggressive in-
fectious corneal disease [95–97]. The inflammatory process generates ROS, which may
further deteriorate the wound and impede wound tissue regeneration [98]. Thus, ROS
scavenging is important in the treatment of BK. In 2022, as a new combined strategy to treat
BK, Lin et al. used a PBA–DHPMT-containing glycopolymer to simultaneously kill bacteria,
heal wounds, and scavenge ROS [69]. They prepared an amphipathic polymer through
the random copolymerization of the PBA–DHPMT monomer and 2-lactobionamidoethyl
methacrylate (Figure 6, up).
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right © 2022 Royal Society of Chemistry. All rights reserved.
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The resulting polymer self-assembled to form well-defined nanoparticles in the aque-
ous solution; the nanoparticles can conjugate with the bacteria and aggregate them into
clusters due to the borate ester bonds formed by PBA groups and diols on the bacterial
cell wall. Lin et al. further encapsulated levofloxacin (LEV, an antimicrobial drug) and
chondroitin sulfate (CS, an anti-inflammatory drug) into the nanoparticles to realize the
synergistic treatment of BK (Figure 6, up). The drug-carried nanoparticles were almost
nontoxic to mammalian cells and can be effectively internalized by human corneal ep-
ithelial cells, indicating their ability to penetrate the cornea. With S. aureus as a model
pathogen, the IC50 of the drug-carried nanoparticles was 17.5 µg/mL, which was half
the value of the LEV (35 µg/mL). In the following in vivo experiment, the drug-carried
nanoparticles showed the best efficacy on the BK model rats compared to LEV and CS.
Due to the synergistic effects of the bactericidal activity of LEV, the wound-healing effect
of CS, and the antioxidant capacity of DHPMT, the drug-carried nanoparticles can signifi-
cantly decrease the intensity of inflammatory factors and relieve the extent of lesions in
BK (Figure 6, down). This study demonstrates the competency of the Biginelli reaction in
developing multi-functional polymeric bio-platforms.

Besides antioxidation, DHPMT derivatives have been studied as potential antitumor
molecules due to their mitosis inhibition activities [99–101]. For example, Monastrol, which
can be facilely prepared from m-hydroxy benzaldehyde through the Biginelli reaction,
specifically perturbs the Eg5 kinesin required for spindle bipolarity [99]. However, the
poor water solubility and instability of organic small molecules in the bio-system lead to
their poor bioavailability [102]. To overcome these problems, in 2020, Tao et al. used the
Biginelli reaction to develop anticancer polymers based on DHPMT structures [61]. They
prepared four different monomers containing DHPMT moieties, and then copolymerized
these monomers with PEGMA to obtain water-soluble polymers, namely, P1–P4 (Figure 7a).
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Figure 7. DHPMT-type anticancer polymers produced via the Biginelli reaction. (a) The molecular
structures of DHPMT-type polymers P1–P4; (b) FDA/PI images of L929 (up) and SMMC-7721 (down)
cells incubated with/without P4 (5 mg/mL), 24 h; (c) confocal images of L929 (up) and SMMC-7721
(down) cells incubated with/without P4 (5 mg/mL) using FITC-labeled antibody/Hoechst 33342 for
cell staining (green: microtube; blue: chromatin). Reprinted with permission from ref. [61]. Copyright
© 2022 American Chemical Society. All rights reserved.

The results of molecular dynamics simulations revealed that these polymers may have
inhibitory abilities similar to Monastrol. Tao et al. further studied the anticancer mechanism
of these polymers at a cellular level (Figure 7b,c). The normal cells (with the L929 cell
as the model) and cancer cells (with the SMMC-7721 cell as the model) were parallelly
cultured with the optimized polymer P4. P4 exhibited good cytosafety towards the L929
cells (Figure 7b, up), while the mitotic activity was much like that of the blank control
group in the culture medium only (Figure 7c, up). On the contrary, for the SMMC-7721
cancer cells, P4 showed an inhibitory effect without killing them (Figure 7b, down). The
chromatins of SMMC-7721 did not move to the poles but were evenly radially distributed
around the microtube protein, suggesting the specific inhibitory ability of P4 towards the
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mitosis of cancer cells (Figure 7c, down). This study opens a new avenue for developing
anticancer polymers and verifies the great potential of the Biginelli reaction for identifying
new biomedical polymers.

As an efficient and robust coupling tool, the Biginelli reaction has also been used
to develop biocompatible polymers with aggregation-induced emission (AIE) properties,
which can be applied for bioimaging. In 2018, by combining RAFT polymerization and the
Biginelli reaction, Zhang et al. prepared new cross-linked AIE nanoparticles for cell imag-
ing (Figure 8a) [57]. They copolymerized PEGMA and AEMA by RAFT polymerization.
An AIE-active dye 4′,4′′-(1,2-diphenylethene-1,2-diyl)bis([1,10-biphenyl]-4-carbaldehyde)
(CHO-TPE-CHO) and urea were then used to cross-link the polymer through the Biginelli
reaction. The resulting amphipathic polymer had a relatively low critical micelle concentra-
tion (0.016 mg/mL). The polymer self-assembled in the aqueous solution to form spherical
nanoparticles with high dispersity and strong green fluorescence at 510 nm (excitation
wavelength = 379 nm).
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Figure 8. Cross-linked-aggregation-induced emission (AIE) probe for cell imaging via the Biginelli
reaction. (a) The molecular structure and properties of the AIE probe poly(PEGMA-co-AEMA-TPE);
(b) confocal images of L929 cells incubated with poly(PEGMA-co-AEMA-TPE) (30 µg/mL) for 3 h
(top: the fluorescent image of L929 cells under a 405 nm laser; middle: the bright field image; bottom:
the merged image). Reprinted with permission from ref. [57]. Copyright © 2018 Elsevier Inc. All
rights reserved.

In the following cell experiment, the fluorescent nanoparticles exhibited good biocom-
patibility and localized in the cytoplasm and nucleus, indicating that the nanoparticles
could be potential biological-imaging reagents (Figure 8b). This study demonstrates that
the Biginelli reaction is useful for the synthesis of polymeric bio-probes.

For another example, in 2021, Zhou et al. reported a thermal-responsive dual-modal
supramolecular probe for fluorescence imaging and magnetic resonance imaging (MRI) via
the Biginelli reaction [68]. A tri-block polymer was prepared by the copolymerization of
propargyl methacrylate, N-isopropylacrylamide (NIPAM), and AEMA; a two-step orthogo-
nal post-polymerization modification (PPM) was conducted through the azide-alkyne click
reaction and the Biginelli reaction to introduce β-cyclodextrin and triphenylethenylbenzene
(TPE) groups in the side chains, respectively. Through the supramolecular interaction
between β-cyclodextrin and the adamantane group, Zhou et al. then bound a Gd-based
1H MRI contrast agent to obtain the final polymeric probe (PP, Figure 9a). The PP was
amphipathic and formed aggregates at a low concentration (0.15 mg/mL). The polymer
aggregates were thermally responsive due to the thermally sensitive poly(NIPAM) segment.
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Figure 9. Dual-modal polymeric probe (PP) for fluorescence cell imaging and 1H magnetic resonance
imaging (MRI). (a) The molecular structure of PP; (b) fluorescence images of HeLa cells stained
with PP solution (50 µg/mL). (c) The T1-weight MRI of mouse kidneys with Magnevist and PP
(150 µL, equivalent 0.5 mmol/L Gd3+, and intravenous injection) as contrast agents. Reprinted with
permission from ref. [68]. Copyright © 2021 Wiley-VCH GmbH. All rights reserved.

With AIE properties and good biocompatibility, the PP was successfully used as a
fluorescent thermometer for living cell imaging with bright green fluorescence (Figure 9b).
In terms of 1H MRI, the calculated relaxation rate of the PP (38.7 × 10−3 L/(mol·s)) is
approximately 6.67 times that of a common Gd-based MRI contrast agent Magnevist
(5.8 × 10−3 L/(mol·s)), suggesting a lower concentration of Gd3+ was required for the PP
to achieve the same contrast effect with Magnevist. Moreover, the PP exhibited relatively
low biotoxicity and a long circulation time as a polymeric contrast agent. The MRI of the
mouse kidneys was realized using the PP as a contrast agent with a comparable signal
intensity to Magnevist at an equivalent concentration of Gd3+ (0.5 mmol/L) (Figure 9c).
This study provides a new method for synthesizing multi-functional, dual-modal imaging
probes, which also reflects the ability of the Biginelli reaction to develop multi-functional
polymers for biomedical use.

3. Other Applications

Besides bioactive polymers, interesting functions stemming from the DHPM(T) group
have also been employed in materials science and polymer science.

The Biginelli reaction has been used to develop polymers with special physical prop-
erties. The introduction of rigid DHPM groups can effectively improve the glass transition
temperature (Tg) of polymers. In 2016, Meier et al. synthesized dialdehyde and di-β-keto
esters as monomers with bio-based renewable materials, and then conducted polyconden-
sation to prepare four different polymers (poly(DHPM)-1 to poly(DHPM)-4) through the
Biginelli reaction (Figure 10a) [22]. The investigation of the Tgs has led to the identification
of some polymers that possess a Tg as high as 203 ◦C (Figure 10b), suggesting that the
Biginelli reaction is a powerful tool for endowing polymers with new functions. Also in
2016, Tao et al. used the Biginelli reaction to develop an HTP polycondensation strategy [23].
A library of 64 polymers was facilely prepared with Tgs ranging from 50 ◦C to 159 ◦C.
They also drew Tg maps of these polymers to successfully predict the Tgs of unprepared
polymers. Furthermore, in 2020, by tuning the structure of the di-β-keto ester and urea
moieties, Meier et al. designed a series of poly(DHPM)s via Biginelli polycondensation
to study the structure–property relationship of polymers, where the Tgs of poly(DHPM)s
exhibited a gradient distribution from 160 ◦C to 308 ◦C [62]. Recently in 2021, Meier et al.
reported the PPM of a homopolymer with a long aliphatic side chain through the Biginelli
reaction [65]. They found that the Tgs of the polymers dramatically increased by up to
80 ◦C after PPM. These studies demonstrate that the Biginelli reaction is an effective tool
for synthesizing polymers with special thermal stability.
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Figure 10. High-glass transition temperature (Tg) renewable polymers produced via the Biginelli poly-
condensation. (a) The molecular structures of four different polymers (poly(DHPM)-1 to poly(DHPM)-
4); (b) the corresponding differential scanning calorimetry analysis of poly(DHPM)-1 to poly(DHPM)-
4. Reprinted with permission from ref. [22]. Copyright © 2016 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. All rights reserved.

The Biginelli reaction is green, effective, and robust; it has been used as a reliable tool
for polymer modification. In 2019, Sui et al. reported using the Biginelli reaction to modify
cellulose [59]. They used cellulose acetoacetate (CAA) as the substrate and chose various
benzaldehyde derivatives to modify cellulose via the Biginelli reaction (Figure 11). The
functionalized polymers showed better thermal stability than CAA and good solubility in
the selected solvents; they also possessed various functional groups in their side chains. In
2020, through the Biginelli reaction, Meier et al. also realized the PPM of starch acetoacetate
with different renewable aldehydes (benzaldehyde, vanillin, and p-anisaldehyde) [60].
These studies demonstrate that the Biginelli reaction is an effective tool for endowing
natural polymers with new properties and functions.
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In addition, the Biginelli reaction can also efficiently modify polyureas (PUs). In 2021,
Deng et al. used the Biginelli reaction to modify PU, successfully upgrading a non-AIE-
active PU to polymers with AIE properties [67]. They used commercial dibutylamine
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and L-lysine ethyl diisocyanate to obtain the PU, and selected ethyl acetoacetate and
various aliphatic aldehydes to modify the PU via the Biginelli reaction (Figure 12a). The
modification reaction was efficient and smooth; the DMSO solutions of the resulting
polymer PDHPMs showed no fluorescence under natural light (Figure 12b) but were
fluorescent under UV = 365 nm (Figure 12c). Their fluorescence intensity was enhanced by
35-fold at 450 nm compared to the PU. Moreover, the fluorescence intensity of the solutions
of the daughter polymers increased with the proportion of the poor solvent (H2O) in the
mixed solvent (DMSO/H2O), indicating their AIE properties. This study reveals the ability
of the Biginelli reaction to exploit AIE polymers.
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Figure 12. AIE-active polymers (PDHPM) from a non-AIE-active polyurea (PU) produced via the
Biginelli reaction. (a) The synthesis of PU and PDHPMs; (b,c) PDHPM (R = propyl) in DMSO
solutions with different concentrations (from left to right (mg/mL): 0.05, 0.1, 0.25, 0.5, 1, 5, 10, and 20)
under (b) natural light and (c) UV = 365 nm. Reprinted with permission from ref. [67]. Copyright ©
2021 Wiley-VCH GmbH. All rights reserved.

Additionally, the Biginelli reaction has been used to modify carbon nanotubes to
facilely prepare carbon–polymer composites [55]. Biginelli-type polymeric adhesives have
been developed based on the strong interaction between DHPM groups and metal sur-
face [21,56]. These results all demonstrate that the Biginelli reaction is a powerful tool that
can be used to prepare materials with intriguing properties in interdisciplinary fields.

4. Perspectives and Conclusions

The Biginelli reaction in polymer chemistry still has a lot of space for further explo-
ration. In the future, polymer synthesis via the Biginelli reaction may focus on several
of the following directions. (1) Large-scale preparation. Aldehydes, β-keto esters, and
(thio)ureas are all common raw materials; thus, the Biginelli-type monomers and poly-
mers may be produced on a large scale, which requires an upgradation of the synthesis
methods. An aqueous-phase synthesis system and solvent-free synthesis system are worth
trying. (2) Combination with different polymerization methods. Besides free radical poly-
merization, RAFT polymerization, and ultra-fast RAFT polymerization, other methods
(atom-transfer radical polymerization (ATRP), ring-opening polymerization (ROP), sulfur-
free RAFT polymerization, etc.) may also be compatible with the Biginelli reaction in
order to generate polymers with new main-chain and side-chain structures. (3) The explo-
ration of new polymers on the basis of the reactivity of the DHPMT groups in polymers.
DHPMT groups have similar reactivity with thiourea; the substitution reactions between
DHPMT and halides have been used to develop new functional polymers [20,64]. Other
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reactions based on the reactive DHPMT groups should be studied and used to develop
new polymers.

In terms of functions, DHPM(T) derivatives are potential anti-bacterial, anti-viral,
antiparasitic, and anti-inflammatory drugs [53,54,103]; research on Biginelli-type polymers
relating to hygiene might be a promising direction alongside the growing attention to
public health during the COVID-19 pandemic. Meanwhile, recent studies revealed that
theoretical calculations are conducive to revealing the relationship between polymers’
structures and their functions [31,61,104]. Thus, using theoretical calculations during the
preparation of new Biginelli-type polymers may reduce the workload of synthesis and
guide the development of new functional polymers.

In this mini-review, we summarized the development of biomedical polymers through
the Biginelli reaction, including antioxidant polymers, anticancer polymers, bioimaging
agents, etc. Moreover, we also described some other applications of the Biginelli reaction
used to generate new functional polymers with intriguing properties (such as high Tgs,
AIE, etc.). Besides the pioneering synthesis methodology, these studies represent a deep
and comprehensive understanding of DHPM(T) structures for developing new polymers,
which may prompt a focus on the functions of MCR structures while developing polymers
produced via MCRs.
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