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Abstract: Baijiu is a unique and traditional distilled liquor in China. Flavor plays a crucial rule
in baijiu. Up to now, the research on the flavor of baijiu has progressed from the identification
of volatile compounds to the research on key aroma compounds, but the release mechanism of
these characteristic compounds is still unclear. Meanwhile, volatile compounds account for only
a tiny fraction, whereas ethanol and water account for more than 98% of the content in baijiu. By
summarizing the ethanol–water hydrogen bond structure in different alcoholic beverages, it was
found that flavor compounds can affect the association strength of the ethanol–water hydrogen bond,
and ethanol–water can also affect the interface distribution of flavor compounds. Therefore, the
research on ethanol–water microstructure in baijiu is helpful to realize the simple visualization of
adulteration detection, aging determination and flavor release mechanism analysis of baijiu, and
further uncover the mystery of baijiu.
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1. Introduction

Baijiu is a unique and traditional distilled liquor in China with a history of more than
2000 years [1]. In 2021, the output of baijiu was 7.1563 billion liters (data from the China
Alcoholic Drinks Association). The popularity of baijiu in China makes it the world’s
most consumed spirit, and it has gained popularity overseas as well [2]. Meanwhile, the
baijiu industry has developed into the main economic pillar in China’s brewing industry.
According to the statistics of the China Alcoholic Drinks Association (Figure 1), the Baijiu
industry achieved 69.87% of sales revenue and 88.47% of profits with a production capacity
of 13.72% in 2020. The sales revenue of beer was only 25.17% of that of baijiu; huangjiu
only 2.31% of that of baijiu; and wine, only 1.71% of that of baijiu. For a long time, baijiu
has been an indispensable drink in celebrations, banquets, and daily life in China, and is
widely regarded as China’s national liquor, and endowed with an important position in the
Chinese food industry [3].

Baijiu is one of the main six distilled spirits (baijiu, vodka, whiskey, brandy, rum
and gin) in the world. Compared with other distilled spirits (brandy and whiskey), the
fermentation of baijiu is a complex process involving saccharification and spontaneous
fermentation simultaneously. Furthermore, baijiu is fermented and distilled under solid-
state conditions [4]. The baijiu production process (as shown in Figure 2) mainly includes
the following procedures: (i) raw materials (whole grains or powdered grains) are uniformly
mixed; (ii) mixed grains are then fermented in a fermentation pit; (iii) fermented grains are
distilled in Zen tanks to obtain the base baijiu (the alcohol content is usually above 50% vol.);
(iv) base baijiu is then stored and aged in a pottery or stainless-steel vessel for several years;
(v) finally, stored baijiu is blended to obtain products of different grades (alcohol content
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38 to 65% vol.) [1]. The stored baijiu has usually been stored for 1~3 years. For instance,
the storage period for the soy sauce aroma type of baijiu is more than 3 years, while that
for light aroma type baijiu is about one year [1]. The diversity of brewing raw materials,
brewing equipment, production technology, and geographical environment (temperature,
humidity and altitude, etc.) determines the differences in the baijiu produced in different
regions of the country. According to the aroma characteristics, baijiu can be classified into
12 categories [5,6], including the light, soy sauce, strong, sesame, rice, chixiang, texiang,
complex, herb-like, laobaigan, fengxiang, and fuyu aroma types (as shown in Figure 3).
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The flavor and taste highly influence the quality and acceptance of baijiu. Research
has indicated the essential role of volatile compounds, including esters, alcohols, acids,
aldehydes, ketones, nitrogen-containing and sulfur-containing compounds, etc., in the
flavor of baijiu [1]. The volatile compounds account for only a tiny fraction, while ethanol
and water take up more than 98% of the content of baijiu [7].

2. Research Advances on Flavor Chemistry of Baijiu

Flavor is an important indicator that determines the quality and consumer acceptance
of baijiu. With the improvement in people’s living standards, their pursuit of baijiu has
also increasing gradually, attracting more and more academic attention to the flavor of
baijiu. Research on baijiu began in 1960, since the introduction of gas chromatography, and
the main goal of baijiu flavor research was to identify the volatile compounds [4]. So far,
more than 2020 volatile compounds, including esters, alcohols, acids, aldehydes, ketones,
sulfur-containing compounds and nitrogen-containing compounds have been identified in
baijiu [3]. However, in the above studies, not all the detected compounds have aroma or
characteristic aroma, and their influence on the flavor of baijiu remains unknown. Since
the research idea of “molecular sensory science” [8,9] was put forward, with the help of
the research idea of flavor chemistry and sensory analysis as the benchmark, the second
research focus has been placed on the key aroma compounds that affect the characteristic
flavor of baijiu. With the development of gas chromatography–olfactometry, quantitative
methods and flavor contribution studies, key aroma compounds are characterized in many
different aroma-types baijius [10–15].

Given that volatile compounds alone are not enough for the overall flavor construc-
tion, further research focuses on the interaction of key compounds, and even volatile and
non-volatile compounds. Zhu et al. [16] found that ethyl caproate, 2-methyl-3-furanthiol,
3-mercaptoacetate and 2-isopropyl-3-methoxypyrazine can all significantly lower the thresh-
old of the aroma recombination model, mainly due to the synergistic effect of the four
compounds with other volatile compounds in the baijiu sample. Yan et al. [17] studied the
soy sauce aroma type of baijiu using the threshold method, and found that dimethyl sulfide,
dimethyl disulfide and dimethyl trisulfide can effectively enhance the fruity flavor of baijiu.
Wang et al. [18] claimed that, compared with the recombination model containing only
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aroma-active compounds, the odor of the recombination model involving the aroma-active
compounds and the nonvolatile organic acids was more similar to that of the original
baijiu sample.

There is a complex system in baijiu, composed of volatile compounds, nonvolatile
compounds, ethanol, and water. Meanwhile, the interaction effect between different com-
ponents is also complicated. The mixing of ethanol and water produces complex changes in
macroscopic properties, which is closely related to the hydrogen bond association between
ethanol and water to form new cluster molecules. In this case, in addition to the interac-
tion of key compounds, coupled with the volatile and non-volatile compounds, there are
also interactions between compounds and ethanol–water. However, only a few pieces of
research have been carried out on the interaction between compounds with ethanol and
water. Inspired by the microstructure of whiskies, tequilas and other beverages [19–23],
studying the interaction between compounds and the hydrogen bond of ethanol–water and
microscopic images is conducive to further investigating the flavor of baijiu and uncovering
the mystery of baijiu.

3. Hydrogen Bonding Structure of Ethanol and Water in Solution Chemistry

The hydrogen atom (H) is covalently bonded to atom X (F, O, N, etc.) with a smaller
radius and greater electronegativity. If covalently bonded to the atom Y with a greater
electronegativity (or the same as X), hydrogen can be used as the medium between X and Y
to produce a particular intramolecular or intermolecular interaction in the form of X-H—Y,
i.e., the hydrogen bond [24]. The hydrogen bond is slightly stronger than van der Waals
forces, but weaker than the ionic or covalent bonds. The mixing of ethanol and water pro-
duces complex changes in macroscopic properties, which is closely related to the hydrogen
bond association between ethanol and water to form new cluster molecules. Regarding
the research on the molecular structure of water, ethanol and their aqueous solutions, a
series of approaches including nuclear magnetic resonance spectroscopy (NMR), Raman
spectroscopy, infrared spectroscopy, microwave, X-ray diffraction, neutron diffraction, ab
initio algorithm, molecular dynamics (MD) simulation, etc., were all thereby adopted to
study the structure of hydrogen bonds.

NMR is a time-efficient, reproducible and non-destructive powerful tool, and does not
require laborious sample preparation [25]. The intermolecular hydrogen bond combina-
tion is described by 1H-NMR in detail, and reflects the conditions of the three hydrogen
bond interactions, i.e., ethanol–water, ethanol–ethanol, and water–water. Fluorescence
spectroscopy is a fast, sensitive and non-destructive analysis technique that provides infor-
mation about fluorescent molecules [26,27]. The probes of dynamic light scattering (DLS)
and small-angle X-ray scattering (SAXS) can cover a wide size range of structures, with
DLS 10 to 1000 nm and SAXS sub-nm to 100 nm. The size and concentration of meso-
scopic systems can also be determined by DLS and SAXS [28]. Atomic Force Microscopy
(AFM) functions based on the interaction between the probe and the sample, and can
recognize three-dimensional imaging with nanometer resolution, especially in the vertical
direction [29]. MD simulation is a computer simulation method that investigates the physi-
cal movements of atoms and molecules, using the interaction potential between atoms or
the force field of molecular mechanics and making it possible to track and understand the
structure and dynamics during the training of individual atoms [30].

Hydrogen bonds of ethanol and water were studied earlier in solution chemistry and
had aroused increasing concern. Compared with the corresponding pure components,
ethanol–water mixtures often present different properties compared with the corresponding
pure components. The structure and diffusion properties matter considerably in theoretical
research and technical application. The hydrogen bond structure of ethanol–water is
usually characterized by instrumental studies and molecular dynamics simulations, as
shown in Figure 4.
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Figure 4. The hydrogen bond structure characterization of ethanol–water.Reprinted with permission
from Ref. [31]. Copyright 2010, American Chemical Society; Reprinted with permission from Ref. [32].
Copyright 2017, The Author(s).

There are three interaction terms of hydrogen bonds, i.e., ethanol–ethanol, ethanol–
water, and water–water during the ethanol–water solutions. Ratajska-Gadomska showed
that the Raman spectrum of O-H stretching vibration in aqueous ethanol solution reflects
the number of hydrogen bonds among solute–solute, solute–solvent and solvent–solvent
molecules determined by the ethanol concentration [33]. The strength of the H-bonding
was evaluated using the intensity ratio of the OH stretch bands at 3200 and 3420 cm−1

for Raman spectra and 3240 and 3360 cm−1 for IR spectra. According to the 1H NMR
experiments, hydro–alcoholic solutions exhibit extreme behaviors at 25%, 46% and 83%
vol. The application of near-infrared spectroscopy confirms the presence of four important
compounds (“individual” ethanol and water structures, and two defined water–ethanol
complexes 1:1 and 1:3) [34]. H-bonding strength in the water–ethanol mixed solution is the
largest in an ethanol concentration of 15–20% w/w [35]. Li et al. [36] found that with the
increase of ethanol concentration, the symmetric and asymmetric OH stretching vibrational
mode (3286 and 3434 cm−1) of water shifts to a lower frequency, and the weak shoulder
at 3615 cm−1 disappears. The results show that ethanol strengthens hydrogen bonds in
water. As for the ethanol–water correlation, the strong interaction between ethanol and
water increases the ethanol–water structure with ethanol concentration [37]. Gong found
that mixing alcohol and water can soften and extend the H-O bond and O: H non-bond of
the water–HB network [38].

The mid-infrared spectrum of the ethanol–water solution was analyzed using the
multivariate curve resolution-alternating least square method (MCR-ALS), which explains
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the structural basis of the NMR spectrum pattern change. The results show that the
difference in the NMR spectrum is attributed to the ethanol–ethanol clusters [39]. Two-
dimensional correlation analysis reveals that in the concentration of 10–40%, ethanol
first interacts with water molecules, but the self-association between ethanol molecules
is preferred in the concentration of 40 to 100%, which weakens the interaction between
water and ethanol, and disintegrates water and ethanol clusters [40]. The concentration
dependences of the self-diffusion coefficients of ethanol and water molecules in ethanol
water solutions were obtained by NMR with the pulsed magnetic field gradient [41].
According to the time-resolved spectrum, the possible bonding constant n of the molecular
cluster is calculated to be two, and the molecular cluster is concluded as a hydrogen bond
chain structure formed by an ethanol molecule and two water molecules [42].

Asenbaum et al. [43] studied the structural changes in ethanol–water mixtures by
ultrasonics, brillouin scattering and MD simulation, and found the major structural re-
arrangements within the composition range of 0.15 < xEtOH < 0.20 for the liquid system
(xEtOHC2H5OH + (1 − xEtOH)H2O) under ambient temperatures and pressures. In addition,
a corresponding change in the structure–vibration dynamics of the water and ethanol
domains forms the bicontinuous mixture in 0.15 < xEtOH < 0.65. Chain-like hydrogen-bond
clusters of water are observed at larger ethanol concentrations. The composition analysis of
FT-IR and Raman spectroscopy presents a kind of water-rich hydrate of E.(5.3 ± 0.1)H2O
in both vodka and water–ethanol solutions [31]. The fluorescence spectrum has shown that
the main cluster is (H2O)m(EtOH) in the low concentration range of 10–45%, which corre-
sponds to the peak at 373 nm, while in the 80–100% concentration range the main cluster is
(H2O)(EtOH)n, corresponding to the emission peak at 308 nm. Meanwhile, the most stable
(H2O)m(EtOH)n cluster, corresponding to the peak at 330 nm, not only predominately
accounts for the concentration range of 50–75%, but also presents in all mixtures during a
long incubation time [44]. Huang et al. [45] researched the structural stability of the binary
and ternary complexes by density functional theory, and found that the structural stability
is in the decreasing order of ethanol/water–acid > ethanol/water–alcohol > ethanol/water–
ester, and ethanol–water–acid > ethanol–water–alcohol > ethanol–water–ester, respectively.

4. Hydrogen Bonding Structure of Ethanol and Water in Alcoholic Beverages

In terms of the brewing science, the research on hydrogen bond properties of ethanol–
water has not received as much attention as solution chemistry. The present research aims
to provide guidance for future research on the hydrogen bond structure of ethanol and
water in baijiu by reviewing the hydrogen bond structure of ethanol and water in baijiu
and other beverages.

4.1. Baijiu

Gu, E. et al. [46] researched the three-dimensional fluorescence spectra and absorption
of Hai zhilan, Tian zhilan and Meng zhilan using a UV-240 ultra-violet spectrophotometer
and an Sp-2558 multifunctional spectrometer. The results of three-dimensional fluorescence
spectroscopy show that each baijiu emits three strong fluorescence lines at 310, 420, and
610 nm, respectively. Under the ultraviolet excitation at 245 nm, the fluorescence peaks
reflect the aging process and different contents of baijiu. Qiao, H. et al. [47] investigated the
ethanol–water association behavior and total hydrogen bond properties of Fenjiu using
fluorescence and viscosity measurement. The results show that the ethanol–water hydrogen
bond strength and total hydrogen bond strength of aged Fenjiu are heavily dependent on
the total ester lost and the sodium ion obtained in the ceramic container, not only on the
aging time. Gao, B. [48] found that temperature is the main factor affecting the strength of
hydrogen bonds of ethanol–water in Fenjiu. Furthermore, given that ethanol is released
and exposed to the medium with the ethanol–water system disintegrating, and causes a
spicy irritation, the taste of 60% of baijiu decreases rapidly with the increase of the storage
temperature. Huang et al. [45] found that organic acids with ethanol or water could form
ethanol/water–acid and ethanol–water–acid ring hydrogen bond structures in baijiu. This
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may be the reason that baijiu showed an increase in acids and a decrease in esters during
baijiu aging.

4.2. Whiskey

To date, there have been thousands of compounds. Whiskey is produced by the
fermentation of grain sources, distillation of alcohol, and its maturation, and its production
involves several key stages. Malt whiskey is made from malted barley, while grain whiskey
is made from malted barley and other grains [49]. Many whiskies, especially those brewed
on the Scottish island of Islay, convey a typical smoky flavor, which is from smoking the
malt over a peat fire. Whiskey usually goes through a long-term maturation process in
wooden barrels or casks, and the reduction in the pungent taste after maturing may have a
close association with water and ethanol molecules [50].

Nose, A. et al. [51] investigated the hydrogen bond structure of ethanol–water in
whiskey (including 32 malt whiskies, aged for 0–23 years) by 1H NMR on the OH chemical
shift of water and ethanol, and found that, in addition to the aging time, the hydrogen bond
strength of aging whiskey is also related to the acidity and phenolic compounds in oak
barrels. Karlsson, B.C.G. et al. [32] explained that diluting whiskey with water affects its
taste, and found that guaiacol is related to ethanol–water in whiskey. To clarify the relation-
ship between the liquid structure of whiskey and flavor maturity, Morishima, K. et al. [28]
measured the mesoscopic structure using dynamic light scattering and small-angle X-ray
scattering. The results show that the small cluster component is the key to obtaining
flavored whiskey, while the concentration of large cluster components is related to the
alcohol irritation of whiskey, having nothing to do with the maturity time.

4.3. Vodka

Vodka is a tasteless and colorless alcoholic beverage fermented and distilled from
grains, potatoes, beets, grapes or cassava [52]. In vodka production, the alcohol obtained
from the fermentation and distillation processes undergoes further processing, such as
charcoal or carbon filters. Then, rectified spirit and desalted water in correct ratios are
mixed, and additional filtration is performed before bottling to obtain the final product [53].

Hu, N. et al. [31] studied the difference in hydrogen bond strength between vodka us-
ing 1H NMR, FT-IR, and Raman spectroscopy. The component analysis of FT-IR and Raman
data presents a water-rich hydrate of E.(5.3 ± 0.1)H2O in both vodka and water-ethanol
solutions. The study demonstrates the correlation of the hydrate structure E.(5.3 ± 0.1)H2O
and its content with the perception of vodka.

4.4. Japanese Sake

Japanese sake is made from rice and water through a unique process, involving two
kinds of microorganisms, fungus and yeast. Rice is the primary raw material for sake
brewing, and the characteristic of the rice is one of the critical factors that determine the
quality of the final product. In sake brewing, steamed rice has two types of application:
i.e., to be added directly to sake mash, and to make koji. The taste and aroma of sake are
related to many components [54].

Nose, A. et al. [51] demonstrated that the strength of Japanese sake’s ethanol–water
hydrogen bond is associated with the total concentration of organic acids and amino acids
that cause low-field chemical shifts. The results also show that compounds originating
from the raw material, rice, or other products affect the hydrogen-bonding structure in
Japanese sake. In shochu, the presence of a small amount of organic acid can strengthen
the hydrogen bond structure of water–ethanol and promote the proton exchange between
water–ethanol molecules at the same time. In fruit cocktails, the hydrogen bonding of
water–ethanol is strengthened by organic acids and (poly)phenols from fruit juices [55].
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4.5. Fermented Alcoholic Beverages

Fermented alcoholic beverages refer to beverages produced by fermentation or partial
fermentation, with grains, fruits, and milk as the primary raw materials. Huangjiu, a
traditional Chinese fermented alcoholic beverage, is also an ethanol and water solution
featuring a unique flavor and taste, acknowledged as one of the most popular alcoholic
beverages in China with an annual consumption of millions of liters [56].

Cao, J. et al. [57] investigated the structure of ethanol–water, defined the strength of
hydrogen bonding by 1H-NMR and viscosity measurement and studied the relationship
between hydrogen bond strength and flavor in Chinese rice wine. The results provide an
essential theoretical basis for the molecular mechanism and quality control of increased
viscosity during rice wine aging. Chiappisi, L. et al. [58] probed the microstructure of
limoncello using small-angle neutron scattering, and revealed the existence of 100 nm
droplets spontaneously formed in a large composition and temperature range. The results
are not limited to limoncello but can also be extended to rapidly evolving formulas based
on water-insoluble oils, water, and alcohols.

5. Interactions between Flavor Compounds and Hydrogen Bonding of Ethanol and
Water in Beverages

Flavor plays a key role in beverages. Due to the differences in brewing raw mate-
rials, production technology and storage conditions, etc., different alcoholic beverages
such as baijiu, whiskey, brandy and wine, etc., have their own unique flavor, and the
compounds in these beverages are also different. For example, ethyl hexanoate (pineapple,
29–59,594), ethyl octanoate (fruity, OAV, 782–9443), ethyl butanoate (fruity, 22–9051), ethyl
acetate (fruity, 12–81), 3-methylbutanol (green, 2–3), acetic acid (vinegar, 2–7), hexanoic
acid (sweaty, 7–291), phenylacetaldehyde (floral, 5–24), etc., were significant flavor com-
pounds in baijiu due to their high OAV value (OAV > 1). Hexanol (floral, OAV 41,000),
E) -β-damascenone (floral, honey, 1800) and ethyl (S)-2-methylbutanoate (sweet, 1700),
etc., were significant flavor compounds in brandy. Ethyl (S)-2-methylbutanoate (sweet,
138), 3-methylbutanal (malt, 122), etc., were significant flavor compounds in whiskey. (E)-
β-damascenone (floral, honey, OAV 1100), ethyl butanoate (fruity, 442), ethyl hexanoate
(pineapple, 145), etc., were significant flavor compounds in rum [59]. Considerable re-
search has indicated the effect of some compounds originating from raw materials, rice,
or products produced by the microorganisms during the fermentation of ethanol on the
hydrogen bond structure of Japanese sake [50]. Studies have also confirmed the efficiency
of the chemical components in alcoholic beverages (such as whiskey, Japanese sake, shochu)
in strengthening the hydrogen bond structure [60]. Compounds (such as ethyl acetate,
acetaldehyde, methanol and fusel oils, etc.) can impact the molecular water restructuring
by MD simulation and equilibrium radial distribution function (RDF) analysis of simulated
aqueous ethanol solution [61]. OW–OW’s peak height increases linearly with the number
of carbon atoms in the compound until the number of carbon atoms exceeds four. When
the number of carbon atoms is greater than ethanol molecule (C > 2), the peak heights of
OE–OW and OE–OE increase correspondingly.

In the ethanol concentration of 20% v/v, the OH peaks of water and ethanol are
merged into a single peak in the 1H NMR spectrum. Acids (H+ and HA: undissociated
acids) and bases (OH– and A–: conjugate-base anions from weak acids) can strengthen the
structure of the water–ethanol hydrogen bond [60]. The conclusion drawn by Cao et al. [57]
is consistent with the results by Nose, A. In addition, citric acid, malic acid, benzaldehyde,
ethyl lactate, isoamyl alcohol, 2-phenylethyl and ethyl acetate are also considered factors
affecting the strength of hydrogen bond from strong to weak.

The effect factors are shown in Table 1. Sugars, most acids, alcohols, esters and phenols
can cause OH proton chemical shifts to move to low fields, thereby increasing the hydrogen
bond association between ethanol and water. However, aldehydes can cause OH proton
chemical shifts to move to high fields, and thus decrease the strength of the hydrogen bond
association between ethanol and water. Additionally, MgCl2 and MgSO4 can increase while
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other salts decrease the strength of the hydrogen bond association between ethanol and
water. In addition, some compounds such as maltose, glucose, ethyl acetate, ethyl lactate
and NaCl, etc., have almost the same concentration ranges but the strength is completely
or partly opposite; the difference may be caused by the different ratio of ethanol/water or
the experimental apparatus random error caused by the different experimental conditions.
The effect of acetic acid, which has almost the same concentration range, on the strength
of hydrogen bond association was consistent at different ratios of ethanol/water of 18%
v/v, 20% v/v, 25% v/v and 60% v/v. With an increase in acetic acid concentration, the
hydrogen bond association strength of ethanol–water increases gradually. With an increase
in MgCl2 concentration, the hydrogen bond association strength of ethanol–water increases
gradually no matter the ratio of ethanol/water [47,55,62,63].

Table 1. Effect factors of hydrogen bonding strength in different ethanol–water systems (From
Refs. [47,50,51,55,57,62,63]).

Compounds Concentration
Ranges /mol/L

Hydrogen Bonding
Strength

Ethanol–Water
(v/v)/% Instruments Ref

Sugars maltose 1 × 10−5~1 increase 18% 1H-NMR [57]
0~1 decrease 20% 1H-NMR [51]

glucose 1 × 10−5~1 increase 18% 1H-NMR [57]
0~1 decrease 20% 1H-NMR [51]

γ-cyclodextrin 0~1 decrease 20% 1H-NMR [51]
D-sorbitol 0~1 no change 20% 1H-NMR [51]

Acids citric acid 1 × 10−5~1 increase 18% 1H-NMR [57]
0~4 20% 1H-NMR [63]

malic acid 1 × 10−5~1 increase 18% 1H-NMR [57]
0~4 20% 1H-NMR [63]

pyruvic acid 1 × 10−5~1 increase 18% 1H-NMR [57]
formic 0~1 increase 20% 1H-NMR [51]

acetic acid

1 × 10−5~1
increase

18% 1H-NMR [57]
0~4 20% 1H-NMR [63]

1 × 10−5~1 × 10−1 25% 1H-NMR [55]
1 × 10−7~1 × 10−1 60% 1H-NMR [63]

1 × 10−6~1 first increase and then
decrease 60% Fluorescence

spectroscopy [47]

oxalic acids 0~1 increase 20% 1H-NMR [51]
L-(+)-ascorbic acid 0~1 increase 20% 1H-NMR [51]

(+)-catechin 0~1 increase 20% 1H-NMR [51]
caffeine 0~1 decrease 20% 1H-NMR [51]

vanillic acid 1 × 10−5~1 × 10−1 increase 25% 1H-NMR [55]

lactic acid 1 × 10−5~1 increase 18% 1H-NMR [57]
0~4 20% 1H-NMR [63]

succinic acid 0~4 increase 20% 1H-NMR [63]
tartaric acid 0~4 increase 20% 1H-NMR [63]

phosphoric acid 0~4 increase 20% 1H-NMR [63]
trifluoroacetic acid 0~4 increase 20% 1H-NMR [63]

methanesulfonic acid 0~4 increase 20% 1H-NMR [63]

pyrogallol 0~1 increase 20% 1H-NMR [63]
1 × 10−7~1 × 10−1 increase 60% 1H-NMR [63]

benzoic acid 0~1 increase 20% 1H-NMR [63]
1 × 10−7~1 × 10−1 increase 60% 1H-NMR [63]

gallic acid 0~1 increase 20% 1H-NMR [63]
1 × 10−7~1 × 10−1 increase 60% 1H-NMR [63]

tannic acid 0~1 increase 20% 1H-NMR [63]
chlorogenic acid 0~1 increase 20% 1H-NMR [63]

Alcohols phenylethyl alcohol 1 × 10−5~1 increase 18% 1H-NMR [57]

isoamyl alcohol 1 × 10−5~1 increase 18% 1H-NMR [57]

1 × 10−6~1 first decrease and
then increase 60% Fluorescence

spectroscopy [47]

Esters ethyl acetate 1 × 10−5~1 increase 18% 1H-NMR [57]

1 × 10−6~1 first increase and then
decrease 60% Fluorescence

spectroscopy [47]

ethyl lactate 1 × 10−5~1 increase 18% 1H-NMR [57]

1 × 10−6~1 first increase and then
decrease 60% Fluorescence

spectroscopy [47]

Aldehydes acetaldehyde 1 × 10−5~1 decrease 18% 1H-NMR [57]
0~1 decrease 60% 1H-NMR [51]
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Table 1. Cont.

Compounds Concentration
Ranges /mol/L

Hydrogen Bonding
Strength

Ethanol–Water
(v/v)/% Instruments Ref

4-methyl benzaldehyde 1 × 10−5~1 decrease 18% 1H-NMR [57]
benzaldehyde 0~1 increase 60% 1H-NMR [51]

p-hydroxybenzaldehyde 0~1 increase 60% 1H-NMR [51]

Phenols
phenol 0~1 increase 20% 1H-NMR [63]

epigallocatechin gallate 0~1 increase 20% 1H-NMR [63]
vanillin 1 × 10−5~1 × 10−1 increase 25% 1H-NMR [55]

Lactones D-(−)-pantolactone 0~1 first increase and then
decrease 60% 1H-NMR [51]

D-(−)-pantolactone 0~1 decrease 20% 1H-NMR [51]

γ-octanolactone 0~1 first increase and then
decrease 60% 1H-NMR [51]

Salts

MgCl2

0~1

increase

3% 1H-NMR [63]
0~0.6 15% 1H-NMR [62]
0~8 20% 1H-NMR [63]

1 × 10−5~1 40% 1H-NMR [62]
0~1 60% 1H-NMR [63]

KF 0~8 increase 20% 1H-NMR [63]
LiCl 0~8 decrease 20% 1H-NMR [63]

NaCl

0~1

decrease

3% 1H-NMR [63]
0~0.6 15% 1H-NMR [62]
0~8 20% 1H-NMR [63]

1 × 10−5~1 40% 1H-NMR [62]
0~1 60% 1H-NMR [63]

1 × 10−7~1 × 10−1 first increase and then
decrease 25% 1H-NMR [63]

1 × 10−6~1 increase 60% Fluorescence
spectroscopy [47]

NaHCO3
0~0.6 increase 15% 1H-NMR [62]

1 × 10−5~1 40% 1H-NMR [62]

Na2SO4
0~0.6 decrease 15% 1H-NMR [62]

1 × 10−5~1 first increase and then
decrease 40% 1H-NMR [62]

CaCl2
0~0.6

decrease
15% 1H-NMR [62]

0~8 20% 1H-NMR [63]
1 × 10−5~1 40% 1H-NMR [62]

KCl
0~0.6 decrease 15% 1H-NMR [62]
0~8 20% 1H-NMR [63]

1 × 10−5~1 first increase and then
decrease 40% 1H-NMR [62]

MgSO4
0~0.6 increase 15% 1H-NMR [62]

1 × 10−5~1 40% 1H-NMR [62]
RbCl 0~8 decrease 20% 1H-NMR [63]

CsCl 0~8 decrease 20% 1H-NMR [63]
NH4Cl 0~8 decrease 20% 1H-NMR [63]

LiBr 0~8 decrease 20% 1H-NMR [63]
NaBr 0~8 decrease 20% 1H-NMR [63]

LiI 0~8 decrease 20% 1H-NMR [63]
NaI 0~8 decrease 20% 1H-NMR [63]

NaOH 1 × 10−7~1 × 10−1 increase 60% 1H-NMR [63]
NaH2A 0~1.5 increase 20% 1H-NMR [50]
Na2HA 0~1.5 increase 20% 1H-NMR [50]
Na3A 0~1.5 decrease 20% 1H-NMR [50]

NaNO3 0~1 decrease 20% 1H-NMR [51]
NaHCO 0~1 no change 20% 1H-NMR [51]

sodium acetate 0~1 no change 20% 1H-NMR [51]
Amino acids glycine 0~1.5 increase 20% 1H-NMR [50]

DL-α-alanine 0~1.5 increase 20% 1H-NMR [50]
L(+)-arginine 0~1.5 increase 20% 1H-NMR [50]

L(+)-glutamine 0~1.5 increase 20% 1H-NMR [50]
L(-)-proline 0~1.5 increase 20% 1H-NMR [50]

L(+)-glutamate 0~1.5 increase 20% 1H-NMR [50]
Amines diethylamine 0~1.5 no change 20% 1H-NMR [50]

monoethanolamine 0~1.5 decrease 20% 1H-NMR [50]
propylamine 0~1.5 decrease 20% 1H-NMR [50]

Ickes, C.M. et al. [64] reviewed the effect of ethanol on the flavor perception of alco-
holic beverages, and found that the physical and chemical properties of ethanol–water
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mixtures matter considerably in understanding the complex effects of ethanol on the flavor
perception and release of alcoholic beverages. For example, the lower ethanol concentration
in wines had a higher fruity flavor, and increasing the ethanol concentration decreases the
worty flavor in beer. The degree of physiological inhibition of the aroma by ethanol is not
universal, and some compounds are more affected than others, indicating the existence
of a potential relationship between the inhibition of aroma by ethanol and the structure
of aromatic molecules [65]. Karlsson et al. [32] performed a series of spatial distribution
functions (SDFs) and found the probabilities of water and ethanol around the guaiacol in a
50 ns liquid–air interface simulation. The probability of the numerator is shown in Figure 5.
Both ethanol and water oxygen atoms are more inclined to the phenol ring of guaiacol. In
this position, the hydroxyl groups of water and ethanol can interact with any group through
hydrogen bonds. Such a hydrogen bonding pattern seems to significantly influence the
structure of the first solvation shell, as shown in Figure 5. Above and below the guaiacol
benzene ring is preferentially the methyl group of EtOH, revealing a stacking interaction
between the ethyl group of ethanol and the guaiacol benzene ring in all ethanol–ethanol
mixtures. In conclusion, flavor compounds can affect the association strength of ethanol–
water hydrogen bonds, and ethanol and water can also affect the interface distribution of
flavor compounds.
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6. Discussion

Baijiu is a complex system composed of more than 2000 volatile compounds, non-
volatile compounds, ethanol, water, etc. Flavor plays a crucial role in baijiu. Up to
now, research on the flavor of baijiu has progressed from the identification of volatile
compounds to the study of characteristic aroma compounds or even the interaction between
the characteristic compounds, but the release mechanism of these characteristic compounds
in baijiu is still unclear. Indeed, volatile compounds are necessarily important in the flavor
of baijiu, but account for only a tiny fraction, while ethanol and water take up more than
98% of the content of baijiu. Ethanol and water can also affect the interface distribution
of flavor compounds. However, the interaction between volatile compounds and ethanol–
water is rarely studied. Through the study of the ethanol–water hydrogen bond structure,
the interaction between ethanol–water and flavor compounds and the microstructure of
baijiu, it is helpful to realize the simple visualization of adulteration detection, aging
determination and flavor analysis of baijiu, and further uncover the mystery of baijiu.
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