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Abstract: The chemical hardness concept and its realization within the conceptual density functional
theory is approached with innovative perspectives, such as the electronegativity and hardness
equalization of atoms in molecules connected with the softness kernel, in order to examine the
structure–reactivity equalization ansatz between the electronic sharing index and the charge transfer
either in the additive or geometrical mean picture of bonding. On the other hand, the maximum
hardness principle presents a relation with the chemical stability of the hardness concept. In light of
the inverse relation between hardness and polarizability, the minimum polarizability principle has
been proposed. Additionally, this review includes important applications of the chemical hardness
concept to solid-state chemistry. The mentioned applications support the validity of the electronic
structure principles regarding chemical hardness and polarizability in solid-state chemistry.

Keywords: chemical hardness; chemical reactivity principles; conceptual density functional theory;
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1. Introduction

Since the reformulation of the electronegativity (χ) concept within density functional
theory (DFT) [1], it has acquired a central place in chemical reactivity due to its special
relationship with the chemical potential (µ = −χ) on the one hand and by its functional
definition of the so-called local electronegativity on the other hand, viewed as the functional
variation of the density functional energy of a system E[ρ] with respect to the electronic
density in a given potential environment [2]:

χ(r) = −
(

δ E[ρ]
δρ(r)

)
V(r)

(1)

Then, at the global level, electronegativity is written as

χ =
∫

χ(r) f (r)dr= −
∫ ( δ E[ρ]

δρ(r)

)
V(r)

(
∂ρ(r)
∂N

)
V(r)

dr

= −
∫ ( δ E[ρ]

δρ(r)

)
V(r)

(
∂ρ(r)
∂N

)
V(r)

dr= −
(

∂E
∂N

)
V(r)

(2)

while recognizing the involvement of the basic DFT local-to-global assumption relating the
electronic density conversion to the total number of electrons [3],∫

ρ(r)dr = N (3)
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and the frontier reactivity site driving the Fukui function [4,5](
∂ρ(r)
∂N

)
V(r)

= f (r) (4)

There is therefore evidence that electronegativity, although having an essential global
effect (see Equation (2), contains the local causes related to the electronic density variations
Equation (1). These equivalent two sides of the electronegativity concept allow its major
involvement in modeling chemical reactivity in general, as well as trigger it [6]. Equally,
the consecrated electronegativity companion known as chemical harness may also be
formulated through the hierarchical bilocal to local to global series [7–10]:

η =
s

η(r, r′) f (r) f (r′)drdr′

= 1
2
s (

δ2E[ρ]
δρ(r)δρ(r′)

)
V(r)

(
∂ρ(r)
∂N

)
V(r)

(
∂ρ(r′)

∂N

)
V(r)

drdr′

=
∫

η(r) f (r)dr = − 1
2

∫ ( δχ
δρ(r)

)
V(r)

(
∂ρ(r)
∂N

)
V(r)

dr

= − 1
2

(
∂χ
∂N

)
V(r)

= 1
2

(
∂2E
∂N2

)
V(r)

(5)

with the help of a chemical hardness kernel [11]

η
(
r, r′
)
=

1
2

(
δ2E[ρ]

δρ(r)δρ(r′)

)
V(r)

(6)

and the associated local chemical hardness [12]:

η(r) = −1
2

(
δχ

δρ(r)

)
V(r)

(7)

However, the above procedure may be applied to develop a reactive energy depen-
dency on the chemical indices of electronegativity and chemical hardness through the
second-order expansion in terms of electronic density variation, namely

E[ρ + δρ] ∼= E[ρ] +
∫ ∫ ( δ E[ρ]

δ ρ(r)

)
V(r)

(
∂ρ(r)
∂N

)
V(r)

dNdr

+ 1
2
s s (

δ2 E[ρ]
δ ρ(r)δ ρ(r′)

)
V

(
∂ρ(r)
∂N

)
V(r)

(
∂ρ(r′)

∂N

)
V(r′)

dNdNdrdr′

= E[ρ] +
[∫ ( δ E[ρ]

δ ρ(r)

)
V(r)

f (r)dr
]
× ∆N

+ 1
2

[s (
δ2 E[ρ]

δ ρ(r)δ ρ(r’)

)
V

f (r) f (r′)drdr′
]
× (∆N)2

= E[ρ]− χ∆N + 1
2 η(∆N)2

(8)

Then, one is interested in minimizing the energy throughout all parabolic classes that
link those states. This minimizing procedure can be undertaken immediately in two distinct
ways: by simultaneously minimizing the energetic values of the states |N − h〉 and |N + h〉
or by only acting on the energy in the “point” |N〉 of the energetic shape, as in cases I and
II in Figure 1, respectively [13,14].



Molecules 2022, 27, 8825 3 of 15

Molecules 2022, 27, 8825 3 of 16 
 

 

( )2

2
1][ NNE Δ+Δ−= ηχρ  

Then, one is interested in minimizing the energy throughout all parabolic classes that 
link those states. This minimizing procedure can be undertaken immediately in two dis-
tinct ways: by simultaneously minimizing the energetic values of the states N h−  and 

N h+ or by only acting on the energy in the “point” N  of the energetic shape, as in 
cases I and II in Figure 1, respectively [13,14]. 

 
Figure 1. The two cases of the total energy minimization by distinctly acting on the parabolic ener-
getic shape connecting the electronic states N h− , N , and N h+ ; see the text for details. 

Firstly, in both analyzed cases in Figure 1, the electronegativity approaches its mini-
mum on the right ground density ρ, around the electronic state N  

][][:)(,)( ρχρχ ≥III  (9)

whereas the chemical hardness records correspond with case II; otherwise, the minimiza-
tion of energy tends to deform the parabolic energetic shape into a linear one, thus pre-
scribing the maximum hardness optimization for the achievement of the right ground 
state, i.e., the maximum hardness principle for the equilibrium of the many electronic sys-
tems in their ground states [15]. 

In particular, although various electronic regions (basins) bind within a stable mole-
cule, they minimize their electronegativity difference by equalizing their associated chem-
ical potentials so that the variation principle (9) is rewritten as the limit (10) [16–20]: 

0min →→Δχ  (10)

Conversely, chemical reactivity is promoted by non-zero, big χΔ , and is qualita-
tively expressed by the principle of frontier reactivity: out of two different sites with a 
generally similar disposition for reacting with a given reagent, the reagent prefers the one 
on the reagent’s approach that is associated with the maximum response of the system’s 
electronegativity [21,22].  

In this context, the present paper explores the possible connections between the local 
behavior of atomic basins through the electronic density and associated quantities and the 
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Figure 1. The two cases of the total energy minimization by distinctly acting on the parabolic energetic
shape connecting the electronic states |N − h〉, |N〉 , and |N + h〉 ; see the text for details.

Firstly, in both analyzed cases in Figure 1, the electronegativity approaches its mini-
mum on the right ground density ρ, around the electronic state |N〉

(I) , (I I) : χ [ρ] ≥ χ [ρ] (9)

whereas the chemical hardness records correspond with case II; otherwise, the minimization
of energy tends to deform the parabolic energetic shape into a linear one, thus prescribing
the maximum hardness optimization for the achievement of the right ground state, i.e., the
maximum hardness principle for the equilibrium of the many electronic systems in their
ground states [15].

In particular, although various electronic regions (basins) bind within a stable molecule,
they minimize their electronegativity difference by equalizing their associated chemical
potentials so that the variation principle (9) is rewritten as the limit (10) [16–20]:

∆χ→ min→ 0 (10)

Conversely, chemical reactivity is promoted by non-zero, big ∆χ, and is qualitatively
expressed by the principle of frontier reactivity: out of two different sites with a gener-
ally similar disposition for reacting with a given reagent, the reagent prefers the one on
the reagent’s approach that is associated with the maximum response of the system’s
electronegativity [21,22].

In this context, the present paper explores the possible connections between the local
behavior of atomic basins through the electronic density and associated quantities and
the observed electronegativity effect on bonding as a global measure of reactivity that
preludes bonding.

2. Chemical Hardness-Softness Driving Chemical Bonding
2.1. The Electonic Sharing Ansatz

Modeling the chemical bonding by atoms in the molecule paradigm has spanned
almost 100 years of cornerstone approaches, starting from the “cubic atom” of Lewis [23]
and continuing with Langmuir’s pre-quantum approach [24]; the seminal works of Thom-
son [25]; Heitler and London’s foundations of molecular orbital theory [26]; Hückel [27];
Pauling [28]; Roothann’s atomic orbitals’ linear combinations in the molecule [29], the cele-
brated Pariser–Parr–Pople semiempirical approach to π-systems [30–32], the formalization
of the Hartree–Fock method in the context of density matrices [33–35], and eventually the
density functional theory [36–38].
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It is particularly rewarding that all notions developed so far are currently incorporated
into what became the conceptual density functional theory [39,40], with considerably
enriched possibilities for analytical and computational developments while considerably
expanding the range of applications from small molecules to nano- and bio-electronic
systems [41–45]

However, the special inter-electron interaction, either under exchange or correlation
formulations, has attracted much attention for properly describing many electronic ef-
fects [46–48]. In particular, when learning from the phenomenological bonding picture
of atoms in molecules provided in Bader’s theory [49–51], one should go further by char-
acterizing the amount of electronic sharing between two atoms (A,B) in the molecule or
bonding AB using the so-called electronic covariance D(A,B) between the electron atomic
populations of A and B [52,53]:

D(A, B) = 2
∫
A

∫
B

ρXC
(
r, r′
)
dr′dr (11)

written with the help of the exchange–correlation density

ρXC
(
r, r′
)
= ρ(r)ρ

(
r′
)
− ρ2

(
r, r′
)

(12)

with the remarkable property it integrates into the total number of electrons of each
isolated system ∫

A

∫
A

ρXC
(
r, r′
)
dr′dr = NA (13)

because of the second-order density matrix ρ2(r, r′) it integrates in a specific
Löwdin manner: ∫

A

∫
A

ρ2
(
r, r′
)
dr′dr = NA(NA − 1) (14)

whereas the simple density is integrated as usual into DFT (see Equation (3) above).
Although the quantity (11) was not designed to have the predictive power for assessing

how the electron sharing can change upon external perturbation, it may be related to
the charge transfer of electrons between the two binding regions A and B compared to
Equation (13), which refers to isolated regions. This may advance the delocalization of the
electronic ansatz

1
2

D(A, B) ≡ ∆NAB (15)

that gives an exchange–correlation representation for the electronic transfer when triggering
the bonding formation. It may be also seen as the reactive version (or a variation) of the
structural counterpart of Equation (3).

Such a connection between the local exchange–correlation and globally recorded effects
in bonding may be confirmed when further chemical reactivity indices are expressed in terms
of the exchange–correlation density, therefore involving the electronic covariance quantity
above (Equation (6)). This is the case for the recently proposed softness kernel [8,54]:

s(r, r’) = −
(

∂ρXC(r, r′)
∂χ

)
V(r)

(16)

which is integrated to produce the global softness of a given region [55]:

s
s(r, r′)drdr′ = −

∫ (
∂

∂χ

∫
ρXC(r, r′)dr′

)
V(r)

dr

= −
∫ ( ∂ρ(r)

∂χ

)
V(r)

dr =
∫

s(r)dr = S
(17)
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or the corresponding softness covariance S(A,B) when integration into two atomic regions
is performed:

∫
A

∫
B

s
(
r, r′
)
drdr′ = −

 ∂

∂χ

∫
A

∫
B

ρXC
(
r, r′
)
drdr′


V(r)

= −1
2

(
∂D(A, B)

∂χAB

)
V(r)

(18)

Now, by comparing the isolated and binding (covariance) forms of the actual softness
kernel integration in Equations (17) and (18), it appears that the latter should be represented
by the former, i.e.,

− 1
2

(
∂D(A, B)

∂χAB

)
A
≡ SB (19)

in the same hierarchical manner that Equations (13) and (3) advance Equation (15) via
Equation (11). In other words, if one assumes Equation (15) to be true, the relation
(19) should also be fulfilled since it represents the same conceptual ordering that con-
nects the reactive charge-transfer causes (on the right) with the electronic delocalization
effects in the formed bond (on the left). If true, such a connection will lead to the con-
tinuous description of bonding, from the reactivity (isolated indices) to the bond (shared
effects). The first conceptual test of such an ansatz is in the next exposure referring to the
electronegativity equalization of atoms in molecules treated in various bonding contexts.

2.2. Additive Equalization of Atoms in Molecules

Here we will treat the so-called Parr–Pearson–Nalewajski additive model of atoms
in molecules [56,57]. Let us consider the formation of a diatomic molecule AB or a bond
with constant atomic nuclear charges at the equilibrium separating distance RAB. For
an infinitesimal transfer of electronic charges between the isolated atoms (A, B) to achieve
their atoms in molecules states (〈A〉, 〈B〉)

N〈A〉 = NA − dN〈A〉 (20)

N〈B〉 = NB − dN〈B〉 (21)

the variation in the total energy
E = E〈A〉 + E〈B〉 (22)

can be written as

dE =
(

∂E
∂ N〈A〉

)
N〈B〉, RAB

(N〈A〉 − NA)−
(

∂E
∂ N〈B〉

)
N〈A〉, RAB

(N〈B〉 − NB)

+
(

∂E
∂RAB

)
N〈A〉, N〈B〉

dRAB

(23)

Since in the fundamental equilibrium state{
dE = 0
∂E

∂RAB
= 0 (24)

Equation (22) is simplified to(
∂E〈A〉
∂N〈A〉

)
N〈B〉, RAB

=

(
∂E〈B〉
∂N〈B〉

)
N〈A〉, RAB

(25)
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which recovers in an analytical form the principle (10) of the equalization of the atoms in
molecules’ electronegativities. Next, by unfolding this principle one first yields

χ〈A〉 = χA − 2ηA∆N = χ〈B〉 = χB + 2ηB∆N = χAB (26)

which provides the finite amount of the transferred charge:

∆N =
χA − χB

2(ηA + ηB)
(27)

and the associated equalized electronegativity of atoms in molecules,

χAB = χ〈A〉 = χ〈B〉 =
χAηB + χBηA

2(ηA + ηB)
(28)

Consequently, with the help of parabolic energy, Equation (8) adapted to the present
atoms in molecules viewed as a perturbed state respecting that of the isolated atoms, the
bonding “working” energy successively becomes

∆E = (E〈A〉 − EA) + (E〈B〉 − EB)= (−χA + ηA∆N + χB + ηB∆N)∆N

= − 1
4
(χA−χB)

2

(ηA+ηB)

(29a)

Now, it is clear that the electronegativity difference is crucial for binding promotion
and bonding formation, as well as in terms of the exchanged number of electrons for the
total energy released.

At this point, one may check that the ansatz (15) under the present form

1
2

D(A, B) =
χA − χB

2(ηA + ηB)
(29b)

leads with a softness-type Equation (19):

− 1
2

(
∂D(A,B)

∂χAB

)
A
= −

(
1
2

∂D(A,B)
∂χA

)(
∂χA

∂χAB

)
= − 1

2(ηA+ηB)
2(ηA+ηB)

ηB
= − 1

ηB
≡ −2SB

(30a)

− 1
2

(
∂D(A, B)

∂χAB

)
B
= +

1
ηA
≡ +2SA (30b)

Therefore, the change in the electron sharing between A and B upon the modification
of the chemical potential in A depends on the softness of B. Since the chemical potential
is conceptually equivalent to the electronegativity, we reach the intuitive condition that
the change in electronegativity in A will bring a change in the electron sharing between
A and B, which is proportional to the softness of B. The present example highlights the
significance of the new softness kernel (16).

2.3. Geometrical Equalization of Atoms in Molecules

Alternatively, one may consider the so-called geometrical mean of the modeling stage
of atoms in molecules, namely through the relationships [58]

χAB = χ〈A〉 = χ〈A〉(NA + ∆N) (31a)

χAB = χ〈B〉 = χ〈B〉(NB − ∆N) (31b)

Together, Equations (31a) and (31b) can equivalently be written as

χ2
AB = χ〈A〉χ〈B〉= χ〈A〉(NA + ∆N)χ〈B〉(NB − ∆N) (32)
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For energy conservation reasons, a similar relationship has to take place in terms of
the isolated atoms:

χ2
AB = χAχB (33)

By equating the right-hand sides of the results of the last two equations, the geometrical
general form for the dependence of the atomic electronegativity in molecules is

χ〈〉 = χ exp[−γ ∆N]= χ exp[−γ (N〈〉 − N)] (34)

with

∆N =

{
+∆N... f orA
−∆N... f orB

(35)

being γ an exponential scaling parameter, with the working expression

γ =
2η〈〉
χ〈〉

(36)

since

2η〈〉 = −
∂χ〈〉
∂N〈〉

= γχ exp[−γ ∆N] = γχ〈〉 (37)

Under these conditions, by applying the equalization principle to the atomic elec-
tronegativities in molecules,

χ〈A〉 = χ〈B〉 (38)

the charge transferred within the binding process of the AB molecule is found:

∆N = − 1
2γ

ln
(

χB
χA

)
(39)

For completeness, the corresponding released energy will be calculated now as

−∆E =
NA+∆N∫
NA=Z∗A

χ〈A〉dN〈〉 +
NB−∆N∫
NB=Z∗B

χ〈B〉dN〈〉

= χA
1
γ [1− exp(−γ ∆N)] + χB

1
γ [1− exp(+γ ∆N)]

∼= −(χB − χA)∆N − 1
2 (χA + χB)γ (∆N)2

(40)

As can be seen, the geometrical mean in Equation (39) is richer than the additive model
in Equation (27) for the atoms in molecules’ charging transfer since it also contains the
equilibrium information through the parameter of Equation (36). Consequently, it can be
assumed for the electronic sharing index of atoms in molecules through Equation (15)

1
2

D(A, B) ≡ ∆N =
1

2γ
ln
(

χA
χB

)
(41)

leading with the successive softness-type relationships

− 1
2

[
D(A,B)

∂χ〈〉

]
A
= − 1

2

[
∂D(A,B)

∂χA

](
∂χA
∂χ〈〉

)
= − 1

2γχA exp[−γ ∆N]
= − 1

2γχ〈〉
= − 1

4η〈〉
= − 1

2 S〈〉

(42a)

and, in a similar way,

− 1
2

[
D(A, B)

∂χ〈〉

]
B

= +
1
2

S〈〉 (42b)
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being however a quarter of the numerical electronic sharing indices specific to the additive
model of atoms in molecules compared with Equations (30a) and (30b), therefore modeling
weaker bonds. Moreover, the geometrical mean model prescribes that the sharing index
behaves like the bonding softness at the atoms-in-molecules level, unlike the additive
model that ends with the softnesses of isolated atoms; it is, therefore, more adapted to the
binding reality being consistent with the molecular realm either in its structure (sharing)
index or its reactivity counterpart (i.e., chemical softness).

3. Applications of Chemical Hardness in Solid-State Chemistry

Chemical hardness is reported as the resistance against the polarization of the electron
cloud of atoms, ions, and molecules [59]. Following the hard and soft acid-base (HSAB)
principle, Pearson proposed the maximum hardness principle (MHP). According to the
MHP [60], “There seems to be a rule of nature that molecules arrange themselves so
as to be as hard as possible.” It can be deduced from this explanation that chemical
hardness is an indicator of chemical stability. Many studies published have proved that hard
chemical systems are more stable than soft ones. Another electronic structure rule based
on developments in conceptual density functional theory is the minimum polarizability
principle (MPP) of Chattaraj [61]. The MPP implies the minimization of polarizability in
stable states and conformations.

On the other hand, lattice energy (U) is one of the most popular parameters in solid-
state chemistry. This parameter is defined as the energy required to decompose the gaseous
ions in the solids. Many famous equations derived for the prediction of the lattice energies
of organic and inorganic ionic systems are available, especially in inorganic chemistry
textbooks. Some of these equations are the Born–Lande, Born–Mayer, and Kapustinskii
equations. Among these equations, only the Kapustinskii equation can also be used for
the prediction of lattice energies of inorganic ionic crystals of unknown lattice types. This
equation derived by Kapustinskii is given as [62]

U =
A|νz+z−|
〈r〉

(
1− ρ

〈r〉

)
(43)

Here, z+ and z− are the charges on the cation and anion of the crystal, respectively.
ν is the number of ions in the formula unit of the considered ionic crystal. ρ is reported as
a compressibility constant with a numerical value of ρ = 0.0345 nm. <r> represents the sum
of the ionic or thermochemical radii of the ions in the crystal.

In 2015, Kaya and Kaya [63] derived a new equation to compute the hardness of
molecules in light of the hardness equalization principle. According to the hardness equal-
ization principle of Datta, the hardnesses of atoms during molecule formation become
equalized like their electronegativities. It is important to note that some important criti-
cisms of the hardness equalization principle were made by Prof Laszlo von Szentpaly [64].
The molecular hardness (ηM) equation derived by Kaya and Kaya is given as

ηM =

[
(2

N

∑
i=1

bi/ai) + qM

]
/

[
N

∑
i=1

1/ai

]
(44)

In the given equation, N represents the number of atoms in the molecule. qM is the
charge of the molecule. In particular, this equation can be used for both neutral and charged
molecular systems. ai and bi are the parameters depending on the ground-state ionization
energy (I) and electron affinity (A) of any atom i in the molecule and these parameters are
calculated as

ai =
Ii + Ai

2
(45)

bi =
Ii − Ai

2
(46)
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The inverse relation between hardness and polarizability was highlighted by Ghanty and
Ghosh [65]. The authors noted the proportionality between the cube root of the polarizability
(α) and the softness (multiplicative inverse of the hardness). Using the inverse relation between
hardness and polarizability, Chattaraj and Sengupta proposed the minimum polarizability
principle (MPP), stating that “in the stable states, polarizability is minimized”. A long time
before the introduction of the MPP, Prof. Jenkins and Prof. Glasser introduced the volume-
based thermodynamics approach (VBTA) as a result of many quality papers published in
the literature [66]. Although the authors (Prof. Jenkins and Prof. Glasser) who introduced
the volume-based thermodynamics approach did not mention it in their published papers,
the success of VBTA in solid-state chemistry is easily explained through the MPP and MHP.
The VBT approach calculates important properties, such as the lattice energy, standard absolute
entropy, surface tension, and heat capacity of organic and inorganic systems, using only their
molar volumes [67]. The proportionality between the molar volume and the polarizability has
been given via the Lorentz–Lorenz equation.

One of the most important studies on the use of the concept of molar volume in solid-
state chemistry was introduced by Bartlett in the 1980s [68]. Limited solid-state calculations
are possible with the help of the Bartlett relation given by Equation (47). These limited
solid-state chemistry calculations based on the use of molar volume in the Bartlett relation
were replaced by very popular equations thanks to the volume-based thermodynamics
approach of Jenkins and Glasser [69]. It is important to note that the Bartlett relation
showing the relation between the lattice enthalpy (∆HL) and molecular volume (Vm) has
been presented for simple MX (1:1) salts.

∆HL(kJ/mol) =
232.8
Vm1/3 + 110 (47)

The lattice-energy equation derived in the scope of the VBT approach is

U(kJ/mol) = 2I
[

α
1

Vm1/3 + β

]
(48)

where α and β are the constants based on the stoichiometry of the inorganic ionic crystal.
I stands for the ionic strength and it is calculated for a crystal as

I = 1/2∑ nizi
2 (49)

where ni is the number of ions and zi is the charge of the ion.
Investigating the link between chemical hardness (η) and lattice energy, a few years

ago, Kaya and Kaya [70] derived a new lattice-energy equation based on the chemical
hardness concept. This equation is presented as

U, kJ/mol = 2I
[

a
ηM

Vm1/3 + b
]

(50)

where a and b are stoichiometry-dependent constants. ηM is the molecular hardness.
Another electronic structure principle proposed for the prediction of the exothermic and
endothermic nature of chemical reactions is the minimum electrophilicity principle. This
principle, which was proposed by Chattaraj, Chamorro, and Fuentealba [71], states that
in an exothermic reaction, the sum of the electrophilicity indexes of products should be
smaller than that of the reactants. In a recent paper, Szentpaly and Kaya [72] reanalyzed
the validity and limitations of the minimum electrophilicity principle via some solid-state
double-exchange reactions. In the same paper, the authors introduced the maximum
composite hardness rule. According to this rule, the exothermic and endothermic nature of
solid-state double-exchange reactions can be predicted from the following relations

∆η/V1/3 > 0 (exothermic) (51)
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∆η/V1/3 < 0 (endothermic) (52)

For a reaction, ∆η/Vm
1/3 is calculated as

∆η/V1/3 =
n

∑
i=1

(η/V1/3
product)i −

m

∑
j=1

(η/V1/3
reac tan t)j (53)

where m and n represent the number of reactants and the number of products, respectively.
Carlos Cardenas [73] reported that the Fukui potential can be considered a measure of

the chemical hardness of atoms. The Fukui potential (υ f(r)) is known as the electrostatic
potential due to a distribution of charge equal to the Fukui function, f(r). For the calculation
of the Fukui potential, the following equations are used [74]:

υ+f (r) =
∫ f+(r

′
)∣∣r− r′
∣∣dr

′
(54)

υ−f (r) =
∫ f−(r

′
)∣∣r− r′
∣∣dr

′
(55)

where, + and − stand for the gaining of electrons and the removal of electrons, respectively.
Because chemical hardness is strongly related to the stability of the chemical system,

the relation highlighted by Cardenas between the Fukui potential and chemical hardness
implies that the Fukui potential can also be used in solid-state chemistry calculations such
as chemical hardness.

In a recent paper, Kaya, Gomez, and Cardenas [75] derived a new formula based
on the Fukui potential for the prediction of lattice energies of inorganic ionic systems.
The mentioned formula is given as

U = g
(
v−(Rmetal)

mv+(Rnon−metal)
n)1/(m+n)

+ j (56)

In the given formula, g and j are the constants taking different numerical values for
different stoichiometries. m and n are the numbers of metals and non-metals in the structure.

4. Bond Force Constant and Chemical Hardness

The experimentally direct measuring of the bond force constant of molecules is not
possible. For this reason, in the literature, many theoretical methodologies have been
suggested to compute the bond force constants of molecules. One of the most well-known
models is Badger’s bond force constant equation, which is given below [76]:

k =
1.8× 105

(re − dij)
3 (57)

where k is the bond-stretching force constant in dyn cm−1 units. re represents the internu-
clear distance in Angstrom units and dij is a function of the position of the bonded atoms
in the periodic table.

Pearson [77], who introduced the chemical hardness concept, proposed the following
equation (Equation (58)) to compute the bond force constant of AB-type diatomic molecules.
Then, Nalewajski, noticing some deficiencies in the bond force constant equation of Pearson,
derived a new bond force constant equation (Equation (59)) [78]:

kAB = 2
ZAZB

R03
(58)

kAB = (ZA·δA)(ZB·δB)2nA+nB−2Re
3 (59)
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where ZA, and ZB, are the effective charges on the A and B atoms, respectively. R0 is
the equilibrium nuclear separation. Nalewajski proposed the zX = (ZX + δX)/2nX−1/2

equation to calculate the effective charge (zx) in terms of the location of atom X in the
periodic table. Here, ZX stands for the atomic number. For an atom X from groups IA-VA
of the periodic table, δX is equal to zero. δX for any X atom from groups VIA and VIIA is
calculated as δX = 5− υX. Re represents the bond length. nX and υX are the group and
period of atom X, respectively.

It is well known that bond force constants of molecules help us to comment on their
stability. From this explanation and the maximum hardness principle, it is not difficult
to relate the bond force constant to the chemical hardness concept. Firstly, Kaya and
coworkers [79] presented the following chemical hardness-based equation for the prediction
of the bond force constants of diatomic molecules:

kAB = c1
ηM

Re2 + c2 (60)

where kAB is the bond force constant in [N/m] units and ηM is the molecular hardness
in [eV] units. Re represents the bond length of the diatomic molecule. c1 and c2 are
constants with different numerical values for different molecule groups. Another molecular
hardness-based bond force constant equation is given as [80]

k = p
ηM

Vm1/3 + q (61)

In the given equation, Vm is the molar volume of the inorganic ionic compound. p and q are
constants and their numerical values for alkali halides are 11.278 and −60.541, respectively.

5. Conclusions

The “battle” for elucidating the nature of the (quantum) chemical bond [81–86] is
fundamental to establishing the future of newly directed chemical synthesis with prede-
fined properties and reactivity aiming at specific interactions (with cutting-edge use in
designing new compounds with an active role in health, food, and the environment at
large). The chemical bonding peculiarities are rooted in the interelectronic interaction
in the confined molecular space, which requires “limiting physics” since the chemical
bond essentially results in the attraction (and, in any case, in a relatively stable) of two
or many charges with the same sign (electrons), which otherwise should be repulsive
in “free motion physics”. The key to this apparent “chemical bonding paradox” lies in
the mixed action at both the energy and wave-function or density (not only conceptual)
levels on the one hand—since they introduce an arsenal including dynamical partition,
invariance, conservation, virial, exchange, kinetics, correlation, and other operator-energy re-
lated quantities—and the superposition, tunneling, interference, collapses, collectivization,
bosonization, superfluidization, and even entangling [87] on the electronic wave-function
or density behavior on the other hand [88,89]. This energy–wave-function/density mix
is quantum-mechanically established since they both act as eigenvalues and eigenfunc-
tions of the same Schrödinger or Hartree–Fock equations, with all related variants on one
side and the energy and electronic density coupling within density functional theory on
the other side. Therefore, the energy–wave-function/density mix is naturally provided
in the “one-shot/equally footing” output within the inner dynamics, as well as in the
eventually observable chemical characteristics of the electronic systems as with atoms in
molecules [81,86,88,89]. Indeed, density alone—even complemented by its Laplacean, for
instance—as in the “purist” Bader’s theory of bonding (critical) paths [82,85], does not
suffice for correctly predicting the observable energy-related chemical features or their
reactivity [83,84]. So, in order to have a comprehensible picture of (the causes of) observable
chemical phenomena, energy-related considerations should be called along electronic den-
sity shapes since they both are quantum mechanical quantities (describing the structural
rearrangements, pairings, accumulations, charge concentrations or depletions, or fragmen-
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tation realities) linked in the eigenequations of electronic–field interactions (including the
Pauli repulsion, electrostatic interaction, orbital/superposable interaction, exchange and
correlation, and even fermionic fields’ bosonization [90], etc.). Accordingly, the “observable”
forms of the related chemical reactivity indices, as are those rooted in electronegativity [91]
as the first-order energy–density relationship, while leaving open the question of the ob-
servability of the second order of the energy–density relationship—as it is the chemical
hardness [92]—are the main subjects of the present paper in various dynamical contexts.
This way, the intriguing issue of making the contact between the chemical structure and
chemical reactivity was approached using the electronic sharing (electronic covariance) in
bonds and the electronegativity of atoms in molecules, respectively. The main findings can
be summarized as follows:

• The chemical information contained within the basic density functional of the total
number of electrons in terms of simple electronic density may also be regarded at the
level of the exchange–correlation density, enriching the inter-electronic effects.

• As a consequence, the related electronic covariance in the bond may eventually be
equated with the charge transfer in bonding in what is considered the first-order level
of the structure–reactivity density functional connection.

• Assuming the previous structure–reactivity connection, the variation in the electronic
covariance respecting the equalized electronegativity of atoms in molecules behaves
like the softness of the partners in bonding and the entire bonded system for additive
and product (geometrical mean) models of atoms in molecules, respectively; it may
thus be viewed as the second-order level of the structure–reactivity connection.

• The maximum hardness and minimum polarizability principles have important appli-
cations in solid-state chemistry. These applications can be accepted as strong linkages
between solid-state chemistry and the conceptual density functional theory.

• The chemical hardness and Fukui potential provide important hints about the sta-
bilities of inorganic ionic systems and these descriptors can be easily used in the
calculation of the lattice energies of inorganic crystals.

• The chemical hardness and molar volume of inorganic ionic systems can be used in
the calculation of their bond force constants.

• The previously questionable observable characteristics of chemical hardness based
on the second quantification framework [92] are partly determined here as being
positive for the limiting cases of unitary electronic density on the frontier states,
i.e., for ionization energy/HOMO and affinity energy/LUMO, or on the valence and
conduction levels in the solid-state bands of chemical solids, respectively.

Further works are therefore encouraged and required for further exploration of the
implications of the present structure–reactivity relationship for predicting the chemical
stability, aromaticity, and computational design of compounds with pre-definite structural
or reactivity properties.
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