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Abstract: Two mass-accommodation methods are proposed to describe the melting of paraffin wax
used as a phase-change material in a centrally heated annular region. The two methods are presented
as models where volume changes produced during the phase transition are incorporated through
total mass conservation. The mass of the phase-change material is imposed as a constant, which
brings an additional equation of motion. Volume changes in a cylindrical unit are pictured in two
different ways. On the one hand, volume changes in the radial direction are proposed through an
equation of motion where the outer radius of the cylindrical unit is promoted as a dynamical variable
of motion. On the other hand, volume changes along the axial symmetry axis of the cylindrical
unit are proposed through an equation of motion, where the excess volume of liquid constitutes the
dynamical variable. The energy–mass balance at the liquid–solid interface is obtained according
to each method of conceiving volume changes. The resulting energy–mass balance at the interface
constitutes an equation of motion for the radius of the region delimited by the liquid–solid interface.
Subtle differences are found between the equations of motion for the interface. The differences
are consistent with mass conservation and local mass balance at the interface. Stationary states for
volume changes and the radius of the region delimited by the liquid–solid interface are obtained
for each mass-accommodation method. We show that the relationship between these steady states
is proportional to the relationship between liquid and solid densities when the system is close to
the high melting regime. Experimental tests are performed in a vertical annular region occupied
by a paraffin wax. The boundary conditions used in the experimental tests produce a thin liquid
layer during a melting process. The experimental results are used to characterize the phase-change
material through the proposed models in this work. Finally, the thermodynamic properties of the
paraffin wax are estimated by minimizing the quadratic error between the temperature readings
within the phase-change material and the temperature field predicted by the proposed model.

Keywords: mass-accommodation methods; phase-change materials; cylindrical thermal energy-
storage unit

1. Introduction

The thermal energy density of systems based on latent heat-storage units can be
increased by using the latent heat of materials as an additional form of energy storage.
The energy density of thermal energy-storage (TES) units that are only based on sensible
heat is significantly lower than energy-density values achieved on latent heat thermal
energy-storage (LHTES) units. The subject of solar energy harvesting in concentrating
solar power plants for thermoelectric generation [1–3] and for domestic water heating
systems [4] has become an appealing subject in research studies that are focused on the
potential applications of these systems. The subject of heat storage presents one of several
alternative applications that are aimed at reducing fossil fuel consumption, which has been
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recently representing a concerning issue due to the worldwide increase in greenhouse gas
emissions. Experimental studies have been performed on several types of LHTES units
to enhance heat-transfer rates and heat-storage properties. The transfer rate of thermal
energy between a heat-transfer fluid (HTF) and the phase-change material (PCM) used to
store energy represents a crucial parameter in TES units. The intermittence of solar energy
produced by the solar irradiance oscillations during a 24 h period presents a challenging
problem on backup systems based on LHTES units, due to the low thermal conductivity of
PCMs used in these types of applications.

Domestic heat water applications based on PCMs have also been extensively studied.
Paraffin and salt hydrates have been widely used in these kinds of applications due to
their low cost and relatively high energy-storage capacity in narrow operating temperature
ranges [5]. Paraffin has been used as a PCM during melting and solidification experiments
in a tilted annular region, where liquid water acting as a HTF is flowing through an
inner cavity [5]. The outer surface of the wall was tilted to improve the rate of heat
transfer during a melting (charging) and solidification (discharge) process. Thermal energy-
storage systems that combine heat-exchange strategies through copper rods and graphite
particles to increase the heat-transfer rates in a cylindrical unit, have also been studied [6].
Additionally, 2D models have been used to analyse the thermal performance of truncated
conical systems and cylindrical heat-storage units with fins to enhance heat transfer rates [7].
The relationship between melting and solidification times and the temperature of the HTF
has been experimentally determined in a cylindrical unit, where paraffin was used as the
PCM [8]. The authors determined the thermal behaviour of the PCM through temperature
measurements inside the PCM. Charging times have also been experimentally obtained in
a shell-and-tube LHTES unit with different ratios of the tube–shell radius [9]. The authors
measured the time-dependent temperature field within the PCM, and determined the ratio
of the tube–shell radius with lower melting times and higher energy densities. Numerical
predictions have been validated through experimental estimations of the liquid–solid front
dynamics in cylindrical systems with electrical heating by a central rod [10]. The authors
determined the PCMs melting fractions and temperature variations for different electrical
power values. Melting and solidification experiments on three different paraffin types were
carried out in tilted cylindrical units to determine the effects of the HTF temperature and
flow rate, on the thermal performance of the PCM [11].

The interest in achieving higher energy densities has led to the usage of LHTES sys-
tems. Operating temperature ranges and materials are selected according to the type of
application. The thermodynamics of PCMs required to analyse LHTES devices demands
more sophisticated mathematical models and numerical methods to describe the dynamics
of the phase transition. Finite volume element methods have been used to describe the freez-
ing of supercooled liquid water [12]. The authors did not consider heat transfer through
natural convection and volume changes upon freezing of liquid water. Heat exchange
from natural convection has been taken into account during the phase-change process in
confined systems; however, density changes induced by pressure increments during the
freezing of liquid water are not considered by assuming incompressible phases [13,14].
The effects of natural convection have been considered for the prediction of the melting
fraction, which was experimentally estimated from temperature field measurements in
cylindrical units [10,15]. The authors, however, did not consider the volume changes of the
system during the phase transition, since equal densities in the liquid and solid phase were
assumed. Effects on the energy stored, charging times, and melting fractions produced
by considering volume changes during phase transitions at constant pressure have been
addressed on planar configurations [16–19]. The authors did not take into account the
effects of supercooling (superheating) and natural convection during the solidification
(melting) process, despite considering high temperature gradients. Mass-accommodation
methods have also been used in planar cavities where volume changes were incorporated
during the freezing of liquid water [13,14].
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Volume changes have been incorporated by imposing total mass as a constant of the
motion, where the length of the system was promoted as a dynamical variable. The equation
of motion for the system’s length guarantees that mass is not created or destroyed during
the phase-change process [16]. The consistency of the obtained solutions through the
additional equation of motion was verified through the behaviour of the PCM during
melting and solidification in adiabatic systems. Volume changes during phase transitions
in cylindrical configurations can also be taken into account through total mass conservation.
Other authors have introduced an additional equation of motion for the outer radius in
cylindrical and spherical geometries [20]. The motion of the external radius is governed
through an adiabatic boundary condition, which would create and destroy mass during
the phase change process. Two different mass-accommodation methods for cylindrical
configurations are proposed in this work. One of the proposed models introduces an
additional equation of motion for the outer radius of the cylindrical unit and incorporates
volume changes in the radial direction. A second mass-accommodation method takes
into account volume changes along the axial direction of the cylindrical unit. Melting
of solid produces an excess volume of liquid that may scatter throughout the top of the
storage unit, or it may be pictured as being frequently extracted from the system. Mass
conservation applied along the axial direction introduces an additional equation of motion
for the excess volume of liquid, according to the second method used to accommodate
mass in the system. Exact steady-state solutions for the external radius and for the radius
of the region delimited by the liquid–solid interface are obtained in each case. Additionally,
an experimental setup is designed to analyse the temperature field within paraffin wax
used as a PCM, and placed in a vertical annular region with a rigid outer wall. Finally,
the second method was applied to estimate the thermodynamic parameters of the paraffin
through a least-square minimization procedure.

2. Mass-Accommodation Methods

The system under consideration consists of an aluminium container of length L that
constitutes an annular region with internal radius r0 and external radius R. The region
is occupied by a PCM and heat is transferred in a direction perpendicular to the axial
symmetry axis z. Thermal energy is transported through a HTF that flows through a copper
tube of radius r0 along the symmetry axis z. The temperature at the inner wall (copper–
PCM interface) of the cylindrical unit is kept constant by the HTF, and it is homogeneously
distributed along the inner wall in contact with the PCM. The temperature at the outer
wall (aluminium–PCM interface) is approximately constant in time and homogeneously
distributed. The temperature TH at the copper–PCM interface is higher than the melting
temperature Tm of the PCM, and the temperature TC at the aluminium–PCM interface is
below Tm. Thermal energy is transferred radially outwards and during the charging process,
a portion of solid PCM is transformed into liquid. The homogeneous distribution of the
temperature at each boundary surface guarantees that heat transfer along the z direction is
negligible. The phase transition takes place at constant pressure and the temperature at the
liquid–solid interface is constant and equal to the liquid–solid saturation temperature at
thermodynamic equilibrium Tm. Therefore, superheating of solid phase during the melting
process is not considered.

The temperature dependence of the thermodynamic variables is not considered. Buoy-
ancy effects in the liquid phase are not incorporated since the temperature dependence
of the liquid density is not being considered in this work. On the one hand, thermal
expansion of liquid produced by temperature gradients, along with the orientation of a
homogeneously heated surface relative to the gravitational field, can give rise to natural
convection induced through buoyancy phenomena within the liquid [21]. On the other
hand, it has been found experimentally that temperature changes in the liquid and solid
phases are dominated by conduction when small liquid fractions are formed in annular
regions where the heated surface is concentric to the outer surface and oriented along the
axial direction [10]. The experimental results obtained in this work are used to determine
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the thermodynamic properties of paraffin wax at low melting fractions and when the
system is in the conductive regime. Volume changes produced during the melting process
due to the density difference between liquid and solid were incorporated by using two
kinds of mass-accommodation methods.

2.1. Mass Accommodation through Radial Changes

The energy–mass balance equation at the liquid–solid interface depends on the method
considered to incorporate volume changes. During melting or solidification, the system can
expand or shrink in the radial direction and volume changes can be incorporated through
total mass conservation. Through this method, one of the boundaries becomes a dynamic
variable of motion as previously described in rectangular systems [16,22] and in confined
PCMs [13,14], where incompressible phases were assumed. The energy–mass balance at
the interface during a melting process in a cylindrical unit can be obtained by estimating
the mass of liquid generated between t and t + ∆t as follows:

∆M`

∆t
=

M`(t + ∆t)−M`(t)
∆t

, (1)

where the mass of liquid at any instant in time t is:

M`(t) = π ρ`
(
r(t)2 − r2

0
)

L, (2)

where ρ` is the density of the liquid phase and r(t) is the radius of the boundary constituted
by the liquid–solid interface at time t. The net amount of thermal energy absorbed by the
solid at time t during a melting process can be obtained through the time derivative of the
previous equation, as follows:

2 π L∆hmρ`r(t)
d r(t)

dt
= φ(r(t), t), (3)

where ∆hm is the enthalpy of formation or latent heat of fusion and φ(r(t), t) is the net
thermal flux through the liquid–solid interface, given by:

φ(r(t), t) = 2 π L r(t)

(
− k`

∂ T`(r, t)
∂ r

∣∣∣∣
r=r(t)

+ ks
∂ Ts(r, t)

∂ r

∣∣∣∣
r=r(t)

)
, (4)

where k`(ks) is the thermal conductivity of the liquid(solid) phase and T`(r, t)(Ts(r, t)) is
the temperature distribution in the liquid(solid) phase. Combining the last two equations,
the energy–mass balance at r(t) is given by

ρ` ∆hm
d r(t)

dt
= −k`

∂ T`(r, t)
∂ r

∣∣∣∣
r=r(t)

+ ks
∂ Ts(r, t)

∂ r

∣∣∣∣
r=r(t)

. (5)

Additionally, the phase-change process can be described by estimating the mass of
melted solid between t and t + ∆t, where ∆Ms = Ms(t)− Ms(t + ∆t). Using the mass
of solid phase located between r(t) and R(t), an equivalent energy–mass balance at the
interface can be obtained through the time derivative of Ms(t) as follows:

2 π ρs L ∆hm

(
R(t)

d R(t)
dt
− r(t)

d r(t)
dt

)
= φ(r(t), t), (6)

where R(t) is the outer radius that becomes a variable of the motion to preserve mass
during the melting process. Substituting the net thermal flux at the interface given by
Equation (2), an equivalent energy–mass balance at the interface can be found as follows
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ρs ∆hm

(
R(t)
r(t)

d R(t)
dt
− d r(t)

dt

)
= −k`

∂ T`(r, t)
∂ r

∣∣∣∣
r=r(t)

+ ks
∂ Ts(r, t)

∂ r

∣∣∣∣
r=r(t)

. (7)

Equations (5) or (7) must be coupled to the differential equation obtained by imposing
total mass as a constant of the motion. The outer radius R(t) becomes a dynamical variable
to incorporate volume changes during the melting process. Imposing mass conservation
through the time derivative of total mass, the additional equation of motion for R(t) is
given by

ρ` r(t)
d r(t)

dt
+ ρs

(
R(t)

d R(t)
dt
− r(t)

d r(t)
dt

)
= 0. (8)

The time evolution of r(t) and R(t) may be described through Equations (5) and (8),
or equivalently, Equations (7) and (8), where the temperature distribution at each phase is
found through the local energy balance given by:

ρi Ci
∂ Ti(r, t)

∂ t
=

ki
r

∂

∂ r

(
r

∂ Ti(r, t)
∂ r

)
, (9)

where Ci is the specific heat capacity of phase i. Additionally, it is straightforward to show
that Equations (5) or (7), can also be applied when the system is subjected to boundary
conditions that produce solidification of liquid phase [16].

2.2. Mass Accommodation through Axial Growth

The second method that can be used to incorporate volume changes during a melting
process consists of estimating the excess volume of liquid that grows beyond the top surface
and when the outer surface at r = R is constant in time. The height of the liquid column
increases beyond the top surface during a melting process, given that for most PCMs the
liquid density is lower than the density of the solid phase. Mass accommodation must
incorporate the height of the liquid column ∆z(t) as a dynamical variable instead of the
outer radius R, as shown in Figure 1. The variable ∆z(t), is related to the excess volume of
liquid, as illustrated in Figure 1.

Figure 1. Schematic representation of liquid volume growth in the axial direction. The height of the
column that represents the excess liquid at any time t is ∆z(t). The volume of this liquid at some time
t is ∆V`(t) =

(
r(t)2 − r2

0
)(

L + ∆z(t)) and represents the liquid that will scatter throughout the top
surface of the cylinder or the volume of liquid that must be removed from the cylindrical unit.

The current method promotes ∆z(t) instead of the outer radius R as the dynamical
variable of motion. The energy–mass balance at the liquid–solid interface will show subtle
changes in comparison with Equation (5) when considering volume displacements along
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the axial symmetry axis z. In this scenario, the mass of liquid M`(t) at some time t has a
slightly more complicated form than M`(t) shown through Equation (1), and is given by:

M`(t) = π ρ`
(
r(t)2 − r2

0
)(

L + ∆z(t)), (10)

where ∆z(t) represents the height of the excess volume of liquid, as illustrated in Figure 1.
Alternatively, the expression for Ms(t) adopts a more simpler form since the outer radius R
is constant; then, Ms(t) in this case is given by

Ms(t) = π ρs L
(

R2 − r(t)2). (11)

The last equation only incorporates r(t) as a dynamical variable. In this case, the energy–
mass balance at the interface adopts a simpler form by considering the amount of solid trans-
formed into liquid, instead of using the mass of liquid given by Equation (10). The mass of
melted solid can be found as

∆Ms

∆t
=

Ms(t)−Ms(t + ∆t)
∆t

. (12)

The rate of melted solid is therefore, equal to −d Ms(t)/dt in the limit when ∆t→ 0.
The rate of thermal energy absorbed at the liquid–solid interface can be obtained as:

2 π L∆hmρs r(t)
d r(t)

dt
= φ(r(t), t), (13)

where φ(r(t), t) is the net thermal flux at the interface given by Equation (4). The energy–
mass balance equation is obtained by substituting the expression for φ(r(t), t) as follows:

ρs ∆hm
d r(t)

dt
= −k`

∂ T`(r, t)
∂ r

∣∣∣∣
r=r(t)

+ ks
∂ Ts(r, t)

∂ r

∣∣∣∣
r=r(t)

. (14)

which is almost identical to Equation (5); however, the solid density ρs must be used instead
of ρ` when considering volume changes along the axial direction. The density that must
appear in the energy-mass balance equation at the interface results from the manner in
which volume changes are being incorporated and is consistent with mass conservation.

The excess volume of liquid, which is related to the variable ∆z(t), can be esti-
mated by imposing total mass conservation through the time derivative of the total mass
M(t) = M`(t) + Ms(t), as follows:

r(t)
d r(t)

dt
δz(t) +

1
2
(
r(t)2 − r2

0
)dδz(t)

dt
− r(t)

d r(t)
dt

(
ρs

ρ`
− 1
)
= 0, (15)

where δz(t) = ∆z(t)/L represents the proportion of excess liquid and the volume of this
liquid can be estimated as ∆V`(t) = π L δz(t)

(
r(t)2 − r2

0
)
. Equations (14) and (15) can be

solved for the dynamic variables r(t) and δz(t). On the one hand, if the excess volume
of liquid is being frequently removed, local heat balance at each phase may be applied
through Equation (9), neglecting the effects of heat transfer produced by the liquid scattered
through the top surface. On the other hand, if δz(t)� 1 during the entire charging process,
heat transferred by the scattered liquid is negligible.

The phase transition can also be pictured by considering the rate of liquid mass
formed during the melting process. An equivalent energy-mass balance equation at the
interface can be found by considering the time derivative of the liquid mass M`(t) given
by Equation (10) and using Equation (4) as follows

ρ` ∆hm

[
dr(t)

dt
(
1 + δz(t)

)
+

1
2

(
1 +

(
r0

r(t)

)2
)

dδz(t)
dt

]
= −k`

∂ T`(r, t)
∂ r

∣∣∣∣
r=r(t)

+ ks
∂ Ts(r, t)

∂ r

∣∣∣∣
r=r(t)

. (16)
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Conceiving the phase change in this way, the dynamical variables r(t) and δz(t) are
coupled through Equation (16) and the time evolution of these variables must be obtained
through the simultaneous solution of Equations (15) and (16). The system of equations r(t)
and δz(t) and shown through Equations (15) and (16) is equivalent to the system given
by Equations (14) and (15). Numerical solutions are easier to implement by picturing the
phase-change process through Equations (14) and (15). In this situation, δz(t) is not present
in Equation (14). The problem can be solved only through Equation (14), independently
of the equation of motion for δz(t), as if liquid mass was being destroyed in the process.
Additionally, the amount of mass destroyed or that must be constantly removed can be
obtained from the solution to Equation (15) and the value of r(t).

2.3. Steady-State Regime

The steady-state solutions in both cases were used to verify the consistency of the
numerical solutions. The steady-state solutions were used to validate the numerical method
considered in this work. Although, the mathematical model where the outer radius R(t) is
promoted as a dynamical variable was not used for the analysis of the experimental results,
it was also solved in this section for comparison with the solutions obtained through the
second mass-accommodation method.

Asymptotic time limits can be found by using the steady-state solutions to the heat
equation in each phase when the system is subjected to isothermal boundary conditions.
The general solution to Equation (9) in the steady-state regime is the classical logarithmic
function given by:

T(ss)
i (r) = Ai ln (r) + Bi, (17)

where T(ss)
i represents the temperature profile at phase i in the steady state (ss), and Ai, Bi

are the corresponding constants of integration. The constants shown in the last equation
can be found through the boundary conditions at r = r0, r = rss and r = Rss, where rss and
Rss represent the steady-state values of the region delimited by the liquid–solid interface
and outer radius, respectively. The system is subjected to the homogeneous isothermal
boundary conditions given by:

T(r0, t) = TH ,

T(r(t), t) = Tm,

T(R(t), t) = TC. (18)

Applying the boundary conditions shown through Equation (18), the steady-state
solution for the temperature profiles in each phase can be obtained in a straightforward
manner, as follows:

T(ss)
` (r) = − ∆TH

ln
(

rss
r0

) ln
(

r
r0

)
+ TH ,

T(ss)
s (r) = − ∆TC

ln
(

Rss
rss

) ln
(

r
Rss

)
+ TC , (19)

where ∆TH = TH − Tm and ∆TC = Tm − TC. The value of rs can be obtained through the
solution of Equation (5) in the steady state, as follows:

ks
d T(ss)

s (r)
dr

∣∣∣∣
r=rss

= k`
d T(ss)

` (r)
dr

∣∣∣∣
r=rss

. (20)
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The temperature profiles in the steady state given by Equation (19) can be substituted
in the last equation to obtain an expression for rss in terms of Rss, which after some algebra
is found, as follows

rss = r0

(
Rss

r0

)γ

with γ =
k`∆TH

k`∆TH + ks∆TC
. (21)

Total mass conservation can be used to obtain an additional condition for rss and Rss.
Mass conservation in the steady state is given by:

ρ`
(
r2

ss − r2
0
)
+ ρs

(
R2

ss − r2
ss
)
= ρ`

(
r(0)2 − r2

0
)
+ ρs

(
R(0)2 − r(0)2), (22)

where r(0) is the initial radius of the region delimited by the liquid–solid interface and R(0)
represents the initial value of the outer radius. The right hand side of Equation (22) is the
initial mass per unit length of the cylindrical unit, which should be equal to its steady-state
value. Equations (21) and (22) constitute a system of nonlinear equations for rss and Rss.

The solution for rss that corresponds to the second mass-accommodation method can
be found through Equation (21), when the outer radius is constant and equal to its initial
value Rss = R(0). However, in this method, mass conservation is pictured as illustrated in
Figure 1 and Equation (22) must be changed in order to accommodate mass along the axial
direction, as follows:

ρ`
(
r2

ss − r2
0
)(

1 + δzss
)
+ ρs

(
R(0)2 − r2

ss
)
= ρ`

(
r(0)2 − r2

0
)
+ ρs

(
R(0)2 − r(0)2), (23)

The steady-state value for δzss can be obtained from Equation (23), by substituting the
solution of rss estimated from Equation (21) when Rss = R(0). The proportion of excess
liquid δzss in the steady state is then given by:

δzss =

(
ρs/ρ` − 1

)((
R(0)/r0

)2γ −
(
r(0)/r0

)2
)

(
R(0)/r0

)2γ − 1
, (24)

where γ is defined through Equation (21). Finally, the proportion of scattered liquid
mass ∆M(ss)

` compared to the total mass of liquid in the steady state M(ss)
` and defined as

δ(ss)m` = ∆M(ss)
` /M(ss)

` , is given by:

δ(ss)m` =
δzss

1 + δzss
, (25)

where δzss is given by Equation (24).
The consistency of the numerical solutions can be verified through comparison of the

asymptotic time values obtained from the finite difference method, with the steady-state
solutions given through Equations (21), (22), (24) and (25). Several numerical examples were
performed by probing different values of γ. The relation between the steady-state values
for rss according to each mass-accommodation method will be obtained for increasing
values of γ.

A special case can be found in the limit k` � ks. The steady-state value for rss becomes
equal to Rss when k` � ks, and all the solid mass is melted during the process. In this limit,
where γ→ 1 and high melting fractions are expected, the steady-state value for Rss can be
obtained from total mass conservation described through Equation (22) as follows

R2
ss =

(
1− ρs/ρ`

)
r(0)2 +

ρs

ρ`
R2(0). (26)
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Additionally, when the initial radius of the region delimited by the liquid–solid inter-
face r(0)� R(0), the steady-state value for Rss at high melting fractions is approximately
given by

Rss ≈
√

ρs

ρ`
R(0). (27)

Equation (27) predicts the maximum possible value for Rss = rss when k` � ks.
The outer radius of the second mass-accommodation method is constant, and in this limit
rss = R(0). The relation between the steady-state values of the radii rss according to each
mass-accommodation method in this limit is given by:

r(1)ss

r(2)ss

=

√
ρs

ρ`
, (28)

where r(1)ss
(
r(2)ss
)

is the radius of the region delimited by the liquid–solid interface according
to the first (second) method. Equation (28) predicts the maximum possible value for the
relation between r(1)ss and r(2)ss according to the mass-accommodation methods discussed in
this work. Additionally, this relation is also valid for the steady-state values of the outer
radius, since r(1)ss = Rss and r(2)ss = R(0) when k` � ks.

Equations (27) and (28) that correspond to high melting fractions are only valid when
the thermal expansion of the liquid phase is not considered or is negligible within the
temperature operating range of the cylindrical unit. Equations (27) and (28) were obtained
by considering liquid PCMs that lie in the conductive regime, since natural convection
induced through buoyancy effects is not considered in this work. Additionally, corrections
to volume changes that arise from the thermal expansion of the liquid and solid are
expected. Consequently, Equations (27) and (28) are only valid when γ � 1, where γ is
the dimensionless parameter defined through Equation (21), and some care must be taken
when applying these equations to PCMs with high values of α or thermal units with high
temperature gradients.

Numerical Examples

Figure 2 shows the behaviour in the steady-state regime of r(1)ss /r(2)ss and Rss/R(0) for
increasing values of k`. The thermodynamic properties of the PCM that belong to paraffin
wax are shown in Table 1 [23]. The internal radius of the cylindrical unit is r0 = 0.00635 m.
The initial values of the region delimited by the liquid–solid interface and outer radius are
r(0) = 0.01 m and R(0) = 0.108 m, respectively. Initial temperature profiles are constant
and equal to T`(r, 0) = 343.15 K in the liquid domain and Ts(r, 0) = 290.15 K in the solid
domain. Isothermal boundary conditions are applied to the system, where the copper–
PCM interface at r = r0 is constant and equal to TH = 343.15 K, and the outer surface
at the aluminium–PCM interface r = R(t) is kept at a constant temperature value of
TC = 290.15 K.

Table 1. Thermodynamic properties and liquid–solid saturation values of paraffin wax according to
the authors of Ref. [23].

Tm ∆hm k`(ks) C`(Cs) ρ`(ρs)

K (kJ/kg) (W/m ·K) (kJ/kg ·K) (kg/m3)

317 266.0 0.24 (0.24) 2.95 (2.51) 760 (818)

The implicit finite difference method (FDM) [24] with a second-order approximation
on the space derivatives was used to solve the mathematical model described through
Equations (5), (8) and (9). Additionally, the FDM was also used to solve the model proposed
through Equations (9), (14) and (15). Second-order approximations to the spacial derivatives
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and a first-order approximation to the time derivative were used to discretize the local
energy–mass balance given by Equation (9) as follows:(

βi
2rn − λi

)
Tn−1,j

i + (2λi + 1)Tn,j
i +

(
− βi

2rn − λi

)
Tn+1,j

i = Tn,j−1
i , (29)

with

Tn,j
i = T(rn, tj), Tn,j−1

i = T(rn, tj−1), (30)

Tn+1,j
i = T(rn+1, tj), Tn−1,j

i = T(rn−1, tj), (31)

λi =
ki∆t

ρiCi∆r2
i

, βi =
ki∆t

ρiCi∆ri
(32)

where i = `(s) is used for liquid (solid) phase, n represents the nth node, j the jth time level
and ∆ri the node separation in each phase. The dimensionless parameter at each phase
λi defined in the last equation depends on the thermodynamic properties of each phase,
the node separation ∆ri and the time step ∆t used during the simulations. Forward and
backward second-order approximations to the space derivatives that appear in Equations (5)
and (14) were used as follows:

rj+1 = rj − ∆t k`
2ρi ∆r` ∆hm

(
3Tn,j

` − 4Tn−1,j
` + Tn−2,j

`

)
+

∆t ks

2ρi ∆rs ∆hm

(
−3Tn,j

s + 4Tn+1,j
s − Tn+2,j

s

)
, (33)

where ρi = ρ` or ρi = ρs represents the density that is used in Equations (8) or (15),
respectively. A first-order approximation to the time derivative of r was used with an
explicit scheme to estimate the radius of the region delimited by the liquid–solid interface
at the next time level rj+1.

Explicit schemes with a first-order approximation on the time derivatives were used to
determine the outer radius Rj+1 or the excess liquid δzj+1 at the next time level according
to each mass-accommodation method. In this approximation, the outer radius Rj+1 can be
obtained from the discretized form of Equation (8) and using the value of rj+1 given by the
previous equation with ρi = ρ` as follows(

ρ`
ρs
− 1
)

r̄j
(

r̄j+1 − r̄j
)
+ Rj

(
Rj+1 − Rj

)
= 0. (34)

The amount of excess liquid δzj+1 when using the second mass-accommodation
method, can be obtained from the discretized form of Equation (15) and using ρi = ρs when
estimating rj+1, as follows(

1− ρs

ρ`
+ δzj

)
r̄j
(

r̄j+1 − r̄j
)
+

1
2

((
r̄j
)2
− r2

0

)(
δzj+1 − δzj

)
= 0. (35)

Finally, a total number of 50 nodes in the liquid layer and 100 nodes in the solid phase
were used during all simulations performed in this work. The time step on each of the
numerical simulations performed is ∆ t = 0.001 s.

The numerical results shown in Figure 2 correspond to the time asymptotic values for
r(t) and R(t). The numerical results are compared with the steady-state values for rss and
Rss given by the solution to the nonlinear system of Equations (21) and (22), and also with
the steady-state value obtained through Equation (22) when the outer radius is constant
and equal to R(0).
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Figure 2. Logarithmic relation between the two mass-accommodation methods previously dis-
cussed ln

(
r(1)/r(2)

)
and ln

(
R(1)/R(2)), obtained from the exact steady-state solutions given through

Equations (21) and (22), and the asymptotic time values estimated through the FDM. Asterisk and
cross symbols are used to represent the relation obtained through the exact steady-state values.
Empty circles and squares represent the relation between the asymptotic time limits according to
the numerical solutions for each mass-accommodation method. The dashed line corresponds to the
predicted relation for high melting fractions according to Equation (28).

Time asymptotic values were obtained by solving each model through the FDM and
for several values of k` in the range k`/ks = [0.83, 4166.7]. Figure 2 shows the logarithmic
behaviour of r(1,FDM)

lim /r(2,FDM)
lim and R(1,FDM)

lim /R(0), which is consistent with the result
shown through Equation (28).

3. Experimental Setup

The characterization of the PCM was performed through the experimental setup
shown in Figure 3a. Additionally, the setup is shown schematically in Figure 3b. The com-
ponents used to perform the experimental tests and the thermocouple distribution on the
whole experimental array are shown schematically in Figure 3b. The experimental array
consists of the following main components:

1. A 10 L cylindrical container which constitutes a vertical annular region that is used
to store paraffin wax. Four arrays of thermocouples distributed in concentric circles
were placed inside the PCM in its solid phase. The inner radius of the annular region
is formed by a 0.5 in copper tube that is placed along the axial symmetry axis of the
cylindrical unit. Liquid water was gradually heated and circulated through the copper
tube for thermal energy transfer at the copper–PCM interface.

2. A data acquisition system for temperature processing and data collection through the
thermocouple array.

3. A system designed to control the liquid-water temperature and mass flow was developed.

Temperature sensing at the cylindrical TES unit consists of 22 K-type thermocouples
as shown in Figure 4. Thermocouples used to collect data within the PCM were distributed
in four sets of concentric circles with radii r1 = 4.1 cm, r2 = 5.8 cm, r3 = 7.5 cm and
r4 = 9.2 cm. Additional thermocouples were used to measure the surrounding air tempera-
ture or ambient temperature, the copper–PCM interface temperature, the aluminium–PCM
interface temperature, the inlet/outlet temperature of the liquid water, the temperature
of the water at three equally spaced positions along the direction of the HTF mass flow,
and the air temperature in direct contact with the aluminum shell.
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(a) Experimental Setup

(b) Schematic diagram

Figure 3. (a) Experimental setup with the cylindrical unit and thermocouple array. (b) Schematic
representation of the experimental setup with the following components: 1. Lauda Thermostatic Bath,
2. Thermal energy-storage unit, 3. SCXI-1000 National Instruments module for thermocouple signal
conditioning, 4. Laptop for data processing, A. 1 K-type thermocouple for heat bath temperature
sensing, B. 1 K-type thermocouple for HTF inlet temperature sensing, C. 22 K-type thermocouple
array for temperature sensing at the copper–PCM interface, aluminium–PCM interface and PCM
temperature field estimation and D. 1 K-type thermocouple for HTF outlet temperature sensing. E. 1
K-type thermocouple for ambient temperature sensing.

Figure 4. Cylindrical unit with thermocouple array for temperature sensing.

The data acquisition system was developed through a data collection board (National
Instruments 6062E DAQ PCMCIA), a module for thermocouple signal conditioning (NI
SCXI-1102B), a 32-channel isothermal terminal block (NI SCXI-1303) and a rack for instru-
ment housing (NI SCXI-1000). The National Instruments modules are shown in Figure 5a
and a laptop with a code developed in LabView for monitoring and storing data is shown in
Figure 5b. The HTF (water) mass flow and temperature was controlled through a Lauda™
ECO E 10 S Heating Thermostatic Bath. Temperature data were collected with the data ac-
quisition system just described. Constant mass flow of liquid water which acted as the HTF
was fixed at 10 liters/min. The HTF was gradually heated through the Lauda thermostatic
bath and maximum temperature values were fixed at 70 ◦C. Finally, experimental tests
were carried out during a four hour period and temperature data was collected during the
entire duration of the tests through the data acquisition system previously described.
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(a)

(b)

Figure 5. Data acquisition and processing system. (a) Data acquisition system. (b) Laptop for
temperature data processing.

4. Results and Discussion

The second mass-accommodation method, described in Section 2, was applied to
analyse the experimental results obtained from a melting (charging) process of paraffin
wax used as the PCM. The thermodynamic variables of the PCM were estimated by
assuming that heat transfer within the paraffin is dominated by conduction and through
the model presented in Section 2. The PCM is stored inside an annular region where
water constitutes the HTF, and circulates through an inner copper tube with a radius of
r0 = 6.35 mm concentric to an aluminium surface with an outer radius of R = 10.8 cm.
Thermocouples for temperature measurements within the PCM domain were placed at a
height equal to h = L/2, where L = 10 cm represents the total height of the heat storage
unit. Thermal energy is transferred to the PCM through liquid water that circulates within
the inner tube. The water acting as the HTF absorbs thermal energy from a heat bath with a
thermostat fixed to 70 ◦C. The outer radius is in contact with the surrounding air at ambient
temperature. Liquid water is gradually heated and circulated through the inner tube from
an initial temperature of 17.5 ◦C until the water temperature reaches a steady-state value
of 70± 1 ◦C. Temperature data collection within the paraffin started from the instant in
which the temperature at r = r0 reached the melting temperature Tm of the PCM.

The temperature sensing was performed through a distribution of thermocouples in
four concentric circles at fixed radii of: r1 = 4.1 cm, r2 = 5.8 cm, r3 = 7.5 cm and r4 = 9.2 cm.
Four thermocouples were placed at equal angular separations in each concentric circle,
as shown in Figure 4. Therefore, the total number of thermocouples used to measure the
temperature profile within the paraffin wax was 16. Each set of four sensors along the
radial direction were slightly tilted, as shown in Figure 4, to minimize errors in temperature
measurements due to the thermal energy absorbed by the nearest thermocouples. The
temperature at each radius ri was estimated through the temperature average obtained
from the four thermocouples distributed along each concentric circle. Additionally, one
thermocouple was placed at the copper–PCM interface to estimate the temperature at r = r0.
Finally, four thermocouples were placed at the aluminium–PCM interface to determine
experimental values of the temperature at r = R.

Figure 6 shows the average temperature as a function of time, obtained from the
thermocouple readings at the copper–PCM and aluminium–PCM interface. Temperature
values were registered approximately every second from the instant in which the copper–
PCM interface reaches an average value equal to Tm = 55 ◦C. The temperature at the
copper–PCM interface was obtained from the experimental values shown in Figure 6
and defined as a piecewise function for the numerical simulations. Two sections were
obtained and each section was approximated through a polynomial fit with the highest
correlation, as illustrated in Figure 6. Additionally, the temperature at the aluminium–PCM
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interface for the numerical simulations was obtained through a polynomial fit with the
highest correlation.

Figure 6. Nonhomogeneous isothermal boundary conditions. (a) Symbols represent time-dependent
temperature values registered by the thermocouple located at the copper–PCM interface and the
solid line corresponds to the best fit with the highest correlation. (b) Time-dependent temperature
readings at the aluminium–PCM interface. Symbols represent the temperature values registered by
the thermocouples located at r = 0.108 m and the solid line is the best fit with the highest correlation.

The boundary condition at the copper–PCM interface used to solve the model de-
scribed in Section 2 and shown in Figure 6 is given by:

T`(r0, t) =
{

0.027t + 24.37, 1191.7 ≤ t ≤ 1637.4
3.34× 10−12 t3 − 1.01× 10−7 t2 + 10.06× 10−4 t + 65.86, 1638.3 ≤ t ≤ 14402 ,

(36)

where the temperature ranges obtained in the time domain 1191.7 ≤ t ≤ 1637.4 and
1638.3 ≤ t ≤ 14402 are [56.55, 68.58] ◦C and [67.25, 69.38] ◦C, respectively.

The root-mean-squared error (rmse) of each polynomial fit was obtained as follows:

rmse =

√√√√ 1
N

N

∑
i=1

(
T(exp)

i − T(fit)
i

)2
, (37)

where N is the total number of observations or temperature readings and T(exp)(T(fit))
represents the experimental (fitted) temperature values. The rmse obtained from the linear
and cubic functions shown in Equation (36) is rmse = 0.1804 oC and rmse = 0.1147 ◦C,
respectively. Additionally, the correlation coefficient r2

c was determined from several
polynomial fits, and the function with the highest value of r2

c is shown in Equation (36).
The correlation coefficient was obtained through the following relation:

r2
c = 1−

∑N
i=1

(
T(exp)

i − T(fit)
i

)2

∑N
i=1

(
T(exp)

i − T(exp)
avg

)2 , (38)
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where T(exp)
avg (T(fit)

avg ) is the average temperature of the experimental (fitted) data. The highest
correlation coefficient found corresponds to a linear and cubic function where r2

c = 0.9973
and r2

c = 0.9495, respectively.
Finally, the boundary condition at the aluminium–PCM interface was determined

from the experimental data shown in Figure 6 as follows:

Ts
(

R(t), t
)
= −7.56× 10−9 t2 + 6.13× 10−4 t + 16.78 for 1191.7 ≤ t ≤ 14402, (39)

where the temperature range in the time domain given by the above equation is [17.50, 24.04] ◦C
as illustrated in Figure 6. The polynomial shown in the last equation corresponds to the
function with the highest correlation of r2

c = 0.9985 and a root-mean-squared error of
rmse = 0.0731 ◦C.

The temperature at each value of ri considered in the experimental setup shown in
Figure 4 was obtained through the temperature-averaged readings, registered by the set of
thermocouples distributed along each concentric circle. The average temperature at each
radius was registered at equally spaced time intervals, as shown in Figure 7.

Liquid and solid samples of paraffin wax were prepared to estimate the liquid and
solid densities. The density of liquid paraffin was determined by pouring a fixed volume
of PCM on a beaker previously placed on a scale. Four samples of liquid PCM with
different volumes at 70 ◦C were used to estimate the density of the liquid phase, and an
average density of ρ` = 735.25 kg/m3 was estimated. Similarly, four solid cylindrical
samples of PCM with different volumes at 20 ◦C were used to determine the density
of the solid phase. The volume and mass of each solid cylinder was measured and an
average density of solid PCM ρs = 849.39 kg/m3 was estimated. The melting temperature
Tm = 55 ◦C was determined through the liquid–solid coexistence of the paraffin wax close
to thermodynamic equilibrium.

Thermal conductivities and specific heat capacities were estimated through the sec-
ond mass-accommodation method described in Section 2 and using the nonhomogeneous
isothermal boundary conditions given by Equations (36) and (39). The temperature depen-
dence of the thermodynamic variables in the operating temperature range of the cylindrical
unit of [17, 70] ◦C was not considered. The latent heat of fusion can be approximated
as ∆hm = (C` − Cs) Tm assuming that C` and Cs are close to their saturation values at
Tm = 55 ◦C. The mass-accommodation method described through Equations (14) and (15)
for the dynamical variables r(t) and δz(t), and the local energy balance at each phase
given by Equation (9) was implemented through the implicit FDM previously described.
The initial radius of the region delimited by the liquid–solid interface r(0) was very close
to the radius of the inner tube, since data collection started very close to the melting tem-
perature of the PCM. A value of r(0) = 6.36 mm was used and a temperature of 55 ◦C
was established at each node within the initial liquid layer. The HTF was circulated at
ambient temperature and gradually heated before data collection, until the copper–PCM
interface reached the melting temperature of the PCM. During this previous stage, the PCM
was found in its solid state and a logarithmic temperature profile was registered by the
thermocouples when data acquisition started. The logarithmic temperature distribution
obtained from the gradual heating of the solid PCM was used as the initial temperature
profile in the solid phase. Low melting fractions are expected in the range of thermal
conductivities considered during the analysis of experimental data and according to the
models introduced in this work.

Figure 7 shows the results obtained for the temperature at each concentric circle of
radius ri. The time evolution of the average temperature value at each radial coordinate
ri is shown in Figure 7. The FDM solutions to the model previously described are also
shown in solid lines. The numerical solutions were obtained for several possible values of
k`, ks, C` and Cs. The numerical results were compared with the experimental temperature
values shown in Figure 7, and a quadratic error function was defined to find the set of
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thermodynamical parameters that best reproduce the experimental data. The quadratic
error used was defined as follows:

ET(k`, ks, C`, Cs) =
n

∑
j=1

(
T(exp)

i (tj)− T(FDM)
i (tj)

)2

, (40)

where T(exp)
i (tj) represents the average temperature registered by the ith thermocouple and

T(FDM)
i (tj) is the temperature obtained through the numerical solution of the second mass-

accommodation method at each time value tj shown in Figure 7 and at each thermocouple
radial position ri. The error function is evaluated for each particular set of thermodynamic
parameters k`, ks, C`, Cs, where a total of 104 sets of thermodynamic parameters was inves-
tigated in a range of possible values to find the least square error. The result is illustrated in
Figure 7, where the average temperatures registered at each sensor are shown in red circles.
The error bars correspond to the standard deviation obtained from the temperature read-
ings registered by each of the four sensors distributed along a particular concentric circle of
radius ri. Figure 7 also shows the numerical result obtained with the set of thermodynamic
parameters that minimize the error defined through Equation (40). The numerical results
shown in Figure 7 correspond to the solutions of the second mass-accommodation method
described previously and defined through Equations (9), (14) and (15).

Figure 7. Time evolution of the temperature at each thermocouple radial position according to the
the experimental and numerical results. Experimental values of the average temperature at each
radial coordinate (a) r1 = 4.1 cm, (b) r2 = 5.8 cm, (c) r3 = 7.5 cm and (d) r4 = 9.2 cm, respectively are
shown in red circles and the result obtained through the FDM is shown in solid lines. The numerical
result was obtained through the solution of the model described by Equations (9), (14) and (15) and
through the set of thermodynamic variables k`, ks, C` and Cs with the lowest quadratic error shown
by Equation (40).

Collected temperature values T(exp)
i through the thermocouple data acquisition system

are shown in Figure 7 at the radial coordinates r1 = 4.1 cm, r2 = 5.8 cm, r3 = 7.5 cm
and r4 = 9.2 cm. The solutions obtained with the FDM and according to the second
mass-accommodation method T(2,FDM)

i constitute the numerical solutions with the set of
thermodynamic parameters shown in Table 2 that minimize the error given by Equation (39).
According to the definition of the latent heat as the difference between liquid and solid
enthalpies at the saturation temperature, and according to the specific heat capacities
shown in Table 2, the latent heat of fusion of the paraffin wax estimated in this work is
∆hm = 206.73 kJ/kg.
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Table 2. Thermodynamic properties and liquid–solid saturation values of paraffin wax estimated
through the experimental measurements and minimization of the quadratic error defined in this work.

Tm ∆hm k`(ks) C`(Cs) ρ`(ρs)

K (kJ/kg) (W/m ·K) (kJ/kg ·K) (kg/m3)

328 206.73 0.05(0.317) 3.20(2.57) 760(818)

According to the second mass-accommodation model and the type of boundary
conditions applied during the experimental tests, small values of r(t)� R(0) are expected
since rss � R(0) when k` � ks. Close to this limit, when γ � 1, and according to
Equation (21), the radial displacement of the liquid–solid interface is very small compared
to the outer radius as shown in Figure 8. The time evolution of the fraction of melted solid
fs = (Ms(0)−Ms(t))/Ms(0) was obtained during the time domain shown in Figure 8.
The fraction of melted solid was estimated through the set of thermodynamic variables that
minimizes the quadratic error given by Equation (40) and shown in Table 2. The results
illustrated in Figure 8 show that heat transfer within the liquid phase lies in the conductive
regime where a small thickness of liquid PCM layer is formed, and very small fractions of
melted solid fs ≈ 10−3 are observed.

Figure 8. (a) Numerical solution to the liquid–solid interface motion. The results illustrate the relation
between the liquid’s thickness and the outer radius of the thermal unit, according to the numerical
solution of the proposed model with the set of thermodynamic variables shown in Table 2. (b) Time
evolution of fs obtained from the numerical solutions to the proposed model and with the set of
parameters shown in Table 2.

5. Conclusions

In this work, two mass-accommodation methods that consider volume changes during
PCM melting in a vertical annular region were proposed. Mass conservation introduces
an additional equation of motion that depends on the way in which mass is distributed.
On the one hand, the outer radius was promoted as a dynamical variable to accommodate
mass in the radial direction. On the other hand, the excess volume of liquid becomes
a dynamical variable that is used to accommodate mass in the axial direction. We also
found that the local energy–mass balance at the liquid–solid interface depends on the
particular mass-accommodation method being used. Exact analytical expressions were
found for the steady-state values in each case. Additionally, the relationship between
the dynamical variables in the steady state and for high melting rates is proportional
to the relationship between liquid and solid densities. The numerical solutions were
verified through the steady-state solutions found in this work and for increasing values of
k`. The thermodynamic properties of a paraffin were estimated through a minimization
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process. Experimental measurements of the temperature field within the PCM were used
to characterize the behaviour of the PCM at low melting rates. A series of numerical
simulations with different thermodynamic parameter values were performed to find the
set of thermodynamic variables that minimizes the error between the experimental and
numerical results. Finally, we confirm that conduction constitutes the main heat-transfer
mechanism in cylindrical units with low melting rates.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

CSP Concentrating Solar Power
PCM Phase-change material
TES Thermal energy storage
LHTES Latent heat thermal energy storage
HTF Heat-transfer fluid
FDM Finite difference method
rmse Root-mean-squared error
k` Thermal conductivity of the liquid
ks Thermal conductivity of the solid
C` Specific heat capacity of the liquid
Cs Specific heat capacity of the solid
ρ` Liquid density
ρs Solid density
∆hm Latent heat of fusion
Tm Melting temperature
L Height of cylindrical unit
R Outer radius
r0 Copper tube radius
r Radius of region delimited by the liquid–solid interface
Rss Steady state of outer radius
rss Steady-state value of r
T`(r0, t) Temperature at the copper–PCM interface
Ts(R, t) Temperature at the aluminium–PCM interface
γ Dimensionless exponent
rc Correlation coefficient
fs Fraction of melted solid
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