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Abstract: “Flawless skin is the most universally desired human feature” is an iconic statement by
Desmond Morris. Skin indicates one´s health and is so important that it affects a person’s emotional
and psychological behavior, these facts having propelled the development of the cosmetics industry.
It is estimated that in 2023, this industry will achieve more than 800 billion dollars. This boost is
due to the development of new cosmetic formulations based on nanotechnology. Nanocarriers have
been able to solve problems related to active ingredients regarding their solubility, poor stability, and
release. Even though nanocarriers have evident benefits, they also present some problems related
to the high cost, low shelf life, and toxicity. Regulation and legislation are two controversial topics
regarding the use of nanotechnology in the field of cosmetics. In this area, the U.S. FDA has taken
the lead and recommended several biosafety studies and post-market safety evaluations. The lack
of a global definition that identifies nanomaterials as a cosmetic ingredient is a hindrance to the
development of global legislation. In the EU, the legislation regarding the biosafety of nanomaterials
in cosmetics is stricter. “The cost is not the only important issue, safety and the application of
alternative testing methods for toxicity are of crucial importance as well”.

Keywords: delivery systems; nanotechnology; cosmetics; legislation; Europe; USA

1. Introduction

The need to look our best is of utmost importance in society. A well-known pronounce-
ment is that the “eyes are the windows to our soul”, but skin appearance can also tell a lot
about a person’s health and state of mind. In 1967, an iconic statement by the zoologist
Desmond Morris that “flawless skin is the most universally desired human feature” [1],
clearly identifies the importance of healthy skin. Skin appearance indicates a person’s
general health status, vitality, and nutritional state [2–9]. Indeed, skin health is related to
overall well-being, in other words, the skin is the body’s “visual certificate of health” [9,10].
The importance of skin appearance in dermatological disorders is evident since their clear
visibility can significantly influence the patients’ daily activities, mental well-being, self-
esteem, and social relationships [11–13]. Moreover, skin is a person’s primary interface
with their surroundings, so its quality may affect the judgments of others regarding their
emotional and psychological health, youthfulness, and personality traits [9,13–15]. There-
fore, advances in the cosmetics field are extremely important, since the development of
new technologies, products, and aesthetic procedures promotes the quality of the skin
and, as a result, the general well-being of a person. It has been shown that non-invasive
facial rejuvenation allows for sustained improvements in self-ratings of attractiveness and
self-esteem and decreases self-perceived age [9,16–20].
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It is important to mention that skin, being the major organ of the integumentary system
and composed of three main layers (epidermis, dermis, and subcutaneous tissue), plays
several roles in human health. Skin is involved in the physical, chemical, and biological
protection of internal organs from environmental threats such as the presence of particles,
chemicals, dehydration, and infections. Skin also has an important role in the thermo- and
hydro-regulation mechanisms [21,22].

In the last years, there has been significant development of the cosmetics industry,
which has huge growth potential. In 2017, the global market for the cosmetic industry
was evaluated at USD 532.43 billion and is expected to reach 805.61 billion by 2023, with a
compound annual growth rate higher than 7% (7.14% 2018 to 2023) [23].

The exponential rise in the cosmetics industry has been driven by the significant
demand for personalized and innovative products designed based on ever more detailed
scientific knowledge [24,25].

As a definition, a cosmetic product is a substance or mixture of substances that can be
used on the external areas of the human body such as the epidermis, hair, lips, nails, external
genital organs, teeth, and mucous membranes of the mouth. The aim is to clean, perfume,
or protect the site of application, changing its appearance, preserving it, or correcting odors
emanating from it [26].

The cosmetic efficacy depends not only on the active ingredients present but also on
the technology used to prepare them [25]. Generally, products such as creams, lotions,
and gels have active ingredients and substances that form the base, vehicle, and product
presentation; each component has a purpose in the formulation. The vehicle purpose is
to efficiently transport the active ingredient to the target site and to ensure that it remains
at the target location enough time to reach the desired effect [25,27]. The vehicle should
ensure the chemical, physical, and microbiological stability of the whole formulation. It is
important to mention that the vehicle does not have to be inert, it can also have biological
properties with the ability to contribute to the overall effect [25]. For instance, lecithin is
widely used as an emulsifier in cosmetic formulations, which has a moisturizing effect,
contributing to skin hydration [28].

The cosmetics industry is adopting newer technologies to develop their products,
particularly technology at the nano level.

Nanotechnology is a powerful and innovative technology that has revolutionized
science in the 21st century [29,30]. A growth rate of 17% (on average) of nanotechnology-
based products is expected in the global cosmetics market each year [23]. In general, this
technology allows for the manipulation of matter at the nanoscale, which is in the range
of 1–100 nm. Nanotechnology allows for the enhancement of several properties such as
durability, water resistance, strength, and conductive resistance. This technology enables
the production of engineered nanomaterials for several consumer products in different areas
such as cosmetics, coatings, food, textiles, medicine, etc. [30]. Concerning the medical field,
nanotechnology has played a fundamental role in improved drug delivery systems, leading
to the development of new therapies [31–33]. In the cosmetics industry, many nano-based
products have been developed comprising nanomaterials of different compositions, sizes,
and shapes. Indeed, due to the large variety of nanomaterials, it is possible to group them
into two broad classes: organic and inorganic nanoparticles. The organic nanoparticles
can include lipid-, surfactant-, and polymer-based nanostructures. Among the lipid- and
surfactant-derived nanoparticles, there are vesicular and non-vesicular systems. On the
other hand, inorganic nanoparticles are composed of metals or metal oxides [25].

These nanomaterials have mostly been chosen due to their ability to overcome the typ-
ical limitations of cosmetics such as penetration, stability, and active ingredient-controlled
release. This new approach conferred a new potential to the products as the nanomate-
rials can also be active agents [25,34]. Nanostructures, as the name indicates, have small
dimensions with a large surface-to-volume ratio, allowing an increased encapsulation
efficiency, the production of formulations with a lighter texture, and better dispersibility
and transparency [25,35].
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The cosmetics industry aims to innovate, so a significant investment has been made
in the field of cosmeceuticals. Cosmeceuticals include personal care products that contain
biologically active ingredients with medicinal or druglike benefits [36,37]. It is important
to mention that a cosmeceutical does not require Food and Drug Administration (FDA)
approval, making it easier to take the developed products from the “bench to the clinics”.
This area is the borderline between personal care product cosmetics and pharmaceuticals.
Cosmeceuticals satisfy the requirements of beauty and health, carrying out their functions
as whitening, anti-wrinkling, antiaging, tanning, protection, deodorants, and hair and
nail care [36]. Nanotechnology is very important in this field as it has widely contributed
to overcoming the limitations associated with conventional products, leading to a more
efficient active ingredient release, therefore increasing the final value of the product meeting
the consumers’ needs [37].

This review paper discusses the impact of nanocarriers in the cosmetics industry,
namely, their recent applications, efficacy, and legislation challenges in Europe and the USA.

2. Nanotechnology in Cosmetology

Nanotechnology has been implemented in the cosmetics industry for more than
30 years [38–40]. The low solubility penetration, poor stability, or uncontrolled release
of cosmetic active ingredients can be improved by the use of nanocarriers [41–44]. As
Davies et al. reported, the co-nanoencapsulation of resveratrol and lipoic acid increased
their chemical stability, photostability, antioxidant activity, and skin permeation [45]. The
nanoencapsulation also resulted in a more controlled release through the lipid-core nanocap-
sules [45]. The use of nanotechnology is crucial for the size reduction in the formulation
ingredients, improving deep skin penetration, sustained skin absorption, ultraviolet (UV)
protection, higher stability, and the final quality of the product [46]. In fact, nanotechnology-
based formulations have been frequently used, not only in different beauty products and
skincare products, but also in sunscreens, hair care products, deodorants, perfumes, and
dental products, since they enhance the performance of the active ingredients. In summary,
nanocarriers have been used as delivery systems to improve the efficiency of cosmetic
products (Figure 1).
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Several studies have demonstrated the benefits of nanotechnology in the cosmetics
field. Chaki et al. [47] reported that the use of yttrium oxide deposited onto titanium
dioxide nanoparticles, forming yttria based nanocomposites, had improved optical and
biocompatibility properties with reduced photocatalytic activity, making them suitable for
use in sunscreen products. Cyclosporine A is commonly used as a cosmetic ingredient, al-
though its high molecular weight and poor water solubility limits its topical administration.
A recent study by Silva et al. [48] revealed that the incorporation of cyclosporine A into
solid lipid nanoparticles, Softisan® 649, subjected to a freeze-drying process resulted in an
oleogel with pseudoplastic behaviors, leading to an in vitro controlled permeation profile.
Moreover, this delivery system allows for the direct application of these ingredients onto
the skin, discarding the incorporation of the nanoparticles into a gel, cream, or ointment,
which is an advantage over conventional solid lipid nanoparticles.

Phenolic compounds, due to their numerous properties such as antioxidant, antimi-
crobial, and anti-inflammatory can be used to overcome several problems such as skin
aging, pigmentation disorders, solar exposure effects, and cancer [49–51]. However, these
compounds are not stable upon extraction, being susceptible to degradation, resulting in
low bioavailability [52]. They are also rapidly metabolized and poorly soluble in water.
Therefore, to take advantage of all of their biological properties, it is necessary to overcome
the above-described problems, which is through encapsulation into nanocarriers such
as liposomes [53]. Furthermore, Kalouta et al. [54] showed that the undesirable sensory
characteristics of natural extracts can be overcome by nanoencapsulation, allowing them
to be incorporated in cosmeceutical facial creams. Cycloastragenol is a saponin plant
that acts as a telomerase activator and has been used as an oral anti-aging supplement
and as an active ingredient in topical cosmetic formulations. However, its direct topical
application is not yet possible as its penetration across the skin barrier has not been proven.
Therefore, to overcome the low or no existence skin permeability, Wang et al. [55] prepared
phospholipid vesicles such as liposomes, transethosomes, and ethosomes using soy and
sunflower phospholipids with different penetration enhancers (ethanol and surfactants) to
deliver cycloastragenol across the skin barrier. This study showed that the encapsulation
of cycloastragenol molecules into phospholipid vesicles enhanced its transport through
the skin.

In brief, the ultimate goal of the cosmetics industry is to develop the most efficient
formulation. Therefore, nanotechnology is a strong ally for them to achieve this goal as
nanotechnology-based materials improve the delivery rate of the active ingredients to the
target site with long-term stability [56]. In this way, world-famous cosmetics brands are
increasingly using nanocarriers in their products [57]. L’Oréal S.A, a well-known cosmetic
brand, ranks sixth place in the United States regarding nanotechnology-related patents,
just by essentially using four nano-ingredients, TiO2, ZnO, silica, and carbon black, in
their products. Another example is the Shiseido Company, which uses TiO2 and ZnO
nanoparticles in wet-based formulas such as emulsions [56].

3. Nanocarriers

Nanocarriers, whose main function is to transport and deliver bioactive agents to a
target tissue [58–61], can be composed of several materials with different structures. The
primary characteristic of a nanocarrier is its size. The size of the particle is of utmost impor-
tance as it influences the biological properties of the carrier [62]. Indeed, the size influences
the penetration ability and cellular uptake of nanocarriers as well as the encapsulation,
blood circulation time, pharmacokinetics, and pharmacodynamics [63]. Furthermore, the
physical and chemical properties of bioactive molecules as well as their biological charac-
teristics can be altered upon loading them into nanocarriers. This effect is particularly due
to the preparation methods such as dissolution, dispersion, encapsulation, adsorption, and
coupling. In fact, properties such as saturation, solubility, dissolution rate, crystal charac-
teristics, hydrophilic and hydrophobic, stability, specific molecular affinity, cell affinity, and
biodegradability can be modified by nanoencapsulation. In turn, these modifications can
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positively affect the absorption, distribution, metabolism, and excretion of active compo-
nents. Moreover, the therapeutic effect and bioavailability of cosmetic efficacy components
can be intensified, and its adverse reactions can be attenuated by encapsulation [62]. Given
the positive impact of nanocarriers on the improvement of cosmetic products, various
novel carrier systems and nanomaterials have been developed (Table 1).

Table 1. Compositions and sizes of carriers used in the cosmetics industry.

Carriers Composition Size Range References

Nanoemulsions
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Table 1. Cont.

Carriers Composition Size Range References

Nanogold
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Table 1. Cont.

Carriers Composition Size Range References
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These are free-flowing particles and have a 3D
network of degradable polyester <1 µm [64,74]

Several nanostructures can be used in the cosmetic field, some of are briefly described
in Table 1 as well as some characteristics of their composition and sizes.

In the next section, we discuss the main characteristics and applications of the carriers
listed in the previous table (Table 1).

3.1. Nanoemulsions

A nanoemulsion is transparent or translucent with good properties, as described in
Figure 2 such as low viscosity, efficient drug penetration, elevated interfacial area, high
solubilization capacity, merging textures, and high kinetic stability as well as the ability to
carry both hydrophilic and hydrophobic drugs, controlled release, and hydrating power.
These characteristics make this type of nanocarrier a suitable candidate for delivering
cosmetic ingredients to the skin [64,65]. A study reported by Kong et al. [75] revealed
that lipophilic hyaluronic acid can be carried by nanoemulsions and effectively used as a
transdermal delivery system for cosmetic applications. Furthermore, it has been shown
by Kabri et al. [76] that a nanoemulsion with salmon oil, miglyol, and rapeseed oil as a
matrix is a cosmetic transdermal formulation with extremely good characteristics regarding
its turbidity, stability, and size. Arianto et al. [77] prepared sunflower oil nanoemulsions
by the spontaneous emulsification method. Arianto and colleagues showed that the sun-
flower oil nanoemulsion with a ratio of Tween 80 and sorbitol of 38:22 had a higher sun
protection factor compared to an emulsion. Therefore, this nanoemulsion formulation is
considered to be more efficient for sunscreen cosmetic use than the emulsion [77]. Addi-
tionally, Kazemi et al. [78] tested a nanoemulsion cream containing lavender essential oil
and licorice extract for the healing of deep skin wounds in a rat model. The nanoemulsion
revealed an increase in collagen deposition and a faster re-epithelialization as well as an
increase in the antioxidant activity in the wound area. Hence, the preparation of nanoemul-
sions loaded with lavender essential oil and licorice extract is a promising strategy to be
used in cosmetic products for cutaneous wound healing [78].

3.2. Liposomes

Liposomes can attach to the cell plasma membrane, mediating the release of its
contents, demonstrating that they can be used for delivery purposes. For instance, p-
chlorophenyl benzyl ether (CBE) is a potential candidate as a skin brightening agent,
however, it cannot successfully pass the stratum corneum to reach the melanocytes located
at the skin-deep layer due to its low solubility in water. Therefore, to overcome this limi-
tation, Singpanna et al. [79] incorporated CBE into liposomes via the thin-film hydration
method, leading to better skin penetration of the active ingredient. Liposomes were also
able to improve the anti-melanogenic activity of CBE in B16-F10 cells [79]. Furthermore,
the easiness in the synthesis of the liposomes as well as its efficiency in the encapsulation
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of active ingredients and constant release into the cells make them well suited for cosmetic
preparation [64,80,81]. Indeed, liposomes are one of the most widely used cosmetic delivery
systems since they can incorporate molecules with different characteristics, hydrophilic
and lipophilic, into their aqueous core and nonpolar portion of the bilayer membrane,
respectively [65]. In this way, the active compounds are protected from metabolic degra-
dation [82]. This is particularly important for the transport of vulnerable agents such
as vitamins [83], phenolic compounds [84], quercetin [85], and benzoyl peroxide [86,87].
Additionally, phosphatidylcholine, which is a major component of liposomes, is extensively
used in skincare formulations since it contains softening properties. Recently, it was shown
by Figueroa-Robles et al. [84] that the application of the liposomal technique allows for
better penetration through the stratum corneum, preventing rapid degradation and acting
as a control to regulate the release of phenolic compounds. Furthermore, it has been demon-
strated to have the ability to deliver folate transdermally encapsulated into liposomes and
incorporated in a cosmetic base without the need of a surfactant or external energy for
permeation [88].
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Figure 2. Properties of the nanoemulsions.

Bi et al. [89] reported the use of liposomes to transdermally deliver vitamin D3. This
new system resulted in a product with improved stability, which can be used to repair
the photoaging condition. Despite the advantages of liposomes, as described in Figure 3,
they also have some limitations in terms of their applicability. These limitations have
hindered their widespread use in commercial products [90]. Among their limitations are
the identifiable physical and chemical instability, low loading capacity, high production
cost, low solubility, occasionally oxidation and hydrolysis reaction, osmotic sensitivity, and
minimum reproducibility [64,90,91].

3.3. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are biodegradable lipids with low toxicity [22,92]
that can not only protect the constituents they incorporate from destruction, but can also
be used as a means of transporting cosmetic agents into the stratum corneum since they
can easily penetrate this layer [64,93]. SLNs can entrap various active compounds with
several properties such as hydrophilic [94], lipophilic [95], or poorly water-soluble [96].
Furthermore, SLNs have better stability than liposomes as a result of being solid [97]. The
encapsulation of these nanoparticles protects the cosmetic agents from biodegradation
by enzymes, granting them transport in a controlled manner for a prolonged time and
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enhancing the penetration of the active agents into the stratum corneum [64,98]. Indeed,
Soldati i verified that the incorporation of resveratrol into SLNs from natural seed butter
Theobroma grandiflorum increased the antioxidant activity by 20% with improved permeation
and retention of the active ingredient in the human skin [95]. Moreover, the SLNs containing
resveratrol revealed an increase in resveratrol concentration more than 2-fold in the stratum
corneum compared to a resveratrol ethanolic solution [95]. The intrinsic properties of
SLNs such as nanoscale geometry, site-dependent activity, magnified skin penetration,
low toxicity, and high bioavailability allow for their use in cosmeceuticals (Figure 4) [64].
Furthermore, these nanoparticles have occlusive properties that increase skin hydration [99].
The preparation method and physicochemical characteristics of the active agents can
influence the efficiency of SLNs [100]. A study by Aland et al. [96] demonstrated that a
transdermal delivery formulation of tazarotene loaded into SLNs had better tolerability
than the marketed formulation for the treatment of psoriasis. Indeed, the new formulation
did not reveal any sign of skin irritation, showing an improvement in transdermal delivery
of tazarotene. In conclusion, several studies have demonstrated the effectiveness of SLNs
in delivering active ingredients with different properties, which makes this technology of
great value for the cosmetics industry.
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3.4. Nanostructured Lipid Carriers

Nanostructured lipid carriers (NLCs) were developed to solve the limitations related
to SLNs, being better in terms of stability, skin hydrating ability, drug loading, penetration,
sun protection feature, and safety [22]. These nanoparticles follow a biphasic release
pattern and guarantee close contact to the stratum corneum, increasing permeability of
the active substance through the skin. Furthermore, NLCs have enhanced UV protection
with minimum side effects and are stable upon storage [22,101]. These NLC attributes
including the improved skin bioavailability, film formation, and controlled occlusion
make them an important asset to be used in cosmetics (Figure 5). Moreover, NLCs are
formulated using physiological and biocompatible lipids, therefore, toxicity issues are
reduced [65,102]. Noh et al. [103] developed a NLC-based transdermal formulation for
isoliquiritigenin with ceramide with improved efficacy of the cosmetic agent. Quercetin,
an antioxidant, can be used as sunscreen to provide additional skin photoprotection.
Nevertheless, this antioxidant molecule has poor permeation and low stability, making it
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difficult to use in cosmetic products [104]. To overcome these limitations Felippim et al. [104]
developed a photoprotective formulation containing quercetin loaded in NLCs. This
formulation showed a significant improvement in the sun protector factor in vivo, without
the need to increase the number of UV filters. In conclusion, the nanoencapsulation of
quercetin revealed a synergistic effect in the sun protector factor with enhanced skin barrier
function and hydration. Pereira et al. [105] proposed the encapsulation of clindamycin
phosphate and rifampicin into NLCs to be used as a topical alternative for the treatment
of hidradenitis suppurativa, which is a chronic inflammatory disease associated with a
permanent obstruction of the pilosebaceous units. The formulation prepared revealed
non-irritative behavior for topical application as well as drug-controlled release profiles.
Furthermore, these nanocarriers provided a significant increase in rifampicin uptake into
the hair follicles and the formation of a depot of clindamycin on sebaceous skin [105].
In brief, several works have revealed the ability of NLCs to overcome the limitations of
different cosmetic ingredients and deliver these ingredients to the desired parts of the body,
attaining long-term stability.
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3.5. Niosomes

The building component of niosomes is a surfactant. Surfactants are non-toxic, biocom-
patible, and biodegradable, increasing the efficiency of niosomes [106]. Indeed, niosomes
reveal high stability and are biodegradable. [107]. Furthermore, these nanocarriers enhance
the bioavailability of poorly absorbed ingredients as well as improve skin penetration [108].
Indeed, niosomes allow the molecules to penetrate the living tissue at a high rate, which is
a desirable feature in skin care applications and cosmetics [64]. A study by Lu et al. [109]
reported the development of niosomes loaded with quercetin for whitening and antiox-
idant ability, which showed a better skin permeation, sustained release over time, and
improved transdermal penetration with skin retention 2.95 times higher than that in the
quercetin solution.

Radmard et al. [110] showed that a formulation of niosome containing arbutin is
non-cytotoxic and does not cause skin irritation with improved skin delivery of arbutin.
Therefore, arbutin loaded into niosomes could be a new approach for the treatment of
hyperpigmentation conditions [110]. Several studies have demonstrated the advantage of
using niosomes as nanocarriers in cosmetics [111–114].
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3.6. Nanocapsules

Nanocapsules enable the release of active agents under controlled conditions and the
prevention of harmful effects at the site of delivery due to their nanostructures [115,116].
Capsaicin is a topical analgesic used in the treatment of chronic pain, which is used for long
periods and results in skin irritation [117]. Therefore, Contri et al. [118] showed that when
capsaicin was encapsulated into nanocapsules, there was a decrease in the negative effects
of capsaicinoids without changing their effect on skin. Moreover, the active ingredients
were protected against photo- or chemical degradation, therefore increasing their stability.
The enhanced efficacy of this system was due to the improved interaction with tissues
and cells [116]. A recent study showed that UV filter nanocapsules with the organic UV
filter octyl dimethyl para-aminobenzoic acid (OD-PABA) in mini-emulsion polymerization
enhanced the sun protection factor by 300% compared with the free OD-PABA formulations.
This study also reported that the encapsulation of OD-PABA could considerably minimize
the cytotoxicity. It was observed that cell viability in the presence of UV filter nanocapsules
improved 17%, increasing the safety of the UV filter in sunscreen formulations [119]. Other
molecules have been successfully encapsulated into nanocapsules, forming promising
formulations to be applied in the cosmetic field such as dutasteride (used in the treatment
of alopecia) and desonide (used in atopic dermatitis) [120,121].

3.7. Nanospheres

Nanospheres can be loaded with several substances (drugs, enzymes, and genes) that
are dissolved, encapsulated, or entrapped into the polymer matrix. The encapsulation
protects them from chemical end enzymatic degradation [65]. Nanospheres are widely
used in antiwrinkle, moisturizing, and anti-acne cream preparations to deliver the active
ingredients to the deeper layers of the skin more efficiently and precisely [64]. A study
by Müller et al. [122] reported the production of nanospheres formed by Ca2+ and polyP,
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aCa-polyP-NP, encapsulating retinol. These active ingredients activate collagen gene
expression, which is desirable, for example, in antiwrinkle products since collagen decreases
in aging skin. The Ca-polyP/retinol nanospheres increased cell growth and collagen type
III expression. However, not many studies on the application of nanospheres as potential
nanocarriers in the cosmetic field have recently been reported in the literature.

3.8. Gold and Silver Nanoparticles

The anti-microbial properties of nanogold and nanosilver particles are important for
their use in the cosmetics industry. Indeed, it has been reported that silver nanoparticles
used in cosmetics, for example, in underarm deodorant, will provide protection all day
long. Likewise, nanogold could be added to toothpaste, since it eliminates the bacteria
present in the mouth [98]. Concerning silver nanoparticles, their antibacterial activity is due
to the modification in bacteria cell wall permeability as well as silver ions bonding to the
respiratory chains. This association leads to an increase in the production of reactive oxygen
species (ROS), making it difficult for the survival and growth of bacteria [64]. On the other
hand, nanogold particles are biocompatible, non-cytotoxic, highly stable, and inert in nature.
These nanoparticles can be easily delivered to the target site due to their shape, small size,
crystallinity, and large surface area [123]. Moreover, the antioxidant and antibacterial
properties of the gold nanoparticles enable the production of lotions that enhance skin
texture and delay aging [115]. Nanogold particles have a very high drug-loading capacity
and due to their powerful antibacterial and antifungal properties, they are considered a
valuable material in the cosmeceutical industry [123]. In beauty care, gold nanoparticles
are used to vitalize skin metabolism, grant antiseptic and anti-inflammatory properties,
improve elasticity and firmness of the skin, and increase blood circulation [124]. Pulit-
Prociak et al. [125] developed stable cosmetic formulations with silver or gold nanoparticles,
proving their penetration in a skin model membrane. Additionally, both the silver and gold
nanoparticle creams revealed suitable fungicidal properties [125]. Thus, the incorporation
of these nanoparticles into creams or other products can be an interesting technique for the
cosmetics industry.

3.9. Nanocrystals

Nanocrystals have interesting properties, particularly their significant adhesiveness,
which leads to high retention time at the target site due to their high loading capacity and
surface area [115]. Generally, nanocrystals are found as individual or polycrystalline forms
incorporating rutin (flavonoids) as an active compound [126]. Furthermore, they have
the required properties represented (Figure 6) [127] to make them suitable for the dermal
application of cosmetics incorporating poorly soluble molecules [128]. Indeed, a study
by Müller et al. [129] reported that both hesperidin and rutin nanocrystals boosted the
sun protection factor, confirming that nanocrystals improve skin penetration into the skin.
Quan et al. [130] prepared 18β-glycyrrhetinic acid (GA) nanocrystals to overcome its poor
solubility in water and, consequently, its poor skin permeability and low bioavailability.
GA is widely used in clinical for the treatment of skin inflammatory diseases. Its nanocrys-
tallization has better water solubility and improved skin penetration. This formulation
also provides the inhibition of pro-inflammatory factors and tissue edema in vivo [130].
Other examples of the application of nanocrystals have been reported in the literature as
promising nanocarriers in cosmetics such as vitamin C and quercetin [131,132].

3.10. Dendrimers

Dendrimers have end groups, which are engineered to attach active components aim-
ing at a specific target. This characteristic results in the carrier’s versatility, as hydrophobic
and hydrophilic drugs can be fused with the dendrimer [133]. Additionally, dendrimers
have several positive characteristics for the cosmetics industry (Figure 7) [90] such as
facilitating drug skin permeability and are used in skin and hair care products [115]. A
recent study by Sanz del Olmo et al. [134] reported the synthesis of carbosilane dendrimers
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functionalized with phenolic acids (ferulic, caffeic, and gallic acids), revealing an improve-
ment in the antioxidant activity and antibacterial capacity of polyphenolic compounds.
Therefore, the application of dendritic systems as anchorage platforms for polypheno-
lic compounds in the cosmetics field would be advantageous [134]. Pentek et al. [135]
developed a multifunctional dendrimer to increase the solubility and stability issues of
resveratrol, leading to a scale-up and commercialization of the system as an anti-aging
cream. In this way, the use of dendrimers as nanocarriers are a valuable strategy for the
cosmetics industry.
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3.11. Cubosomes

Cubosomes are nanostructured particles that are thermodynamically stable, biocom-
patible, and have bioadhesive properties. These carriers can be used to deliver molecules
by different routes such as topical, parenteral, transdermal, and oral. They have several
properties such as a multicompartmental structure, easiness to prepare, high drug payload,
use of biodegradable lipids, encapsulation of several molecules with different properties
(hydrophobic, hydrophilic, or amphiphilic moieties), and the ability to target specific tissue
and control release (Figure 8). Indeed, it has been shown that cubosomes can bring many
benefits to the cosmetics industry. For example, Khan et al. [136] demonstrated that cubo-
somes loaded with erythromycin are effective for topical drug delivery in a sustained and
non-invasive manner for the treatment and prevention of acne. Lately, not many studies on
the application of cubosomes as potential nanocarriers in cosmetics have been reported in
the literature.
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3.12. Hydrogels

In the cosmetics industry, hydrogels can be used as skin delivery systems [64].
Pagano et al. [137] revealed a technological approach to stabilize lipoic acid, which is an
anti-aging compound. Lipoic acid activity is limited by its low solubility, low stability to
oxidation, and thermal processes. The stabilization was achieved by the intercalation of
α-lipoic acid (ALA) in MgAl and ZnAl and subsequent introduction of the hybrid product
in hydrogel formulations [137]. The study showed that the hydrogel containing MgAl-ALA
had enhanced rheological properties and stability, was safer than ZnAl-ALA, and represents
a valuable alternative to the commercial formulations available on the market [137]. Despite
their suitable properties, not many recent publications on the application of hydrogels as
potential nanocarriers in cosmetics can be found in the literature.

3.13. Fullerenes/Buckyballs

Fullerenes are an advanced type of nanoscale material that has an antioxidant po-
tential superior to vitamins [64]. They control melanin production, having a brightening
effect due to the inhibition of free radicals caused by UV exposure. Fullerenes are used in
creams aiming to clear the dark circles surrounding the eyes, providing a healthy and fresh
look [138,139]. A recent study by Saitoh et al. [140] showed that polyvinylpyrrolidone-



Molecules 2022, 27, 1669 15 of 35

entrapped fullerene (C60/PVP) significantly reduced the UVB-induced generation of intra-
cellular peroxynitrite levels. Therefore, C60/PVP can be useful as a cosmetic ingredient to
prevent skin injuries and dysfunction due to nitric oxide/peroxynitrite induced effects in
human skin keratinocytes [140].

3.14. Polymersomes

Polymersomes are biologically stable and highly versatile carriers with the ability to
encapsulate and release molecules that are easily altered through the addition of several
stimuli-responsive and biodegradable blocks of copolymers. Their permeability, mem-
brane thickness, and responsiveness to stimuli can be influenced by the synthetic block
copolymers used to prepare them [141,142]. These nanocarriers can release the drug, in a
controlled manner, as a result of their flexible membrane [143]. Oliveira et al. [144] revealed
that polymersomes of Pluronic L121 have low photo/cytotoxicity, so they are a safe alter-
native to develop topical formulations, not only for application on UV exposed skin, but
also for protein delivery. Moreover, it has been shown that antioxidant skin protection can
be improved by catalase loaded Pluronic L121 polymersomes, especially in the deepest
layers of the skin. Nevertheless, not many studies on the application of polymersomes as
potential nanocarriers in cosmetics can be found in the literature.

3.15. Carbon Nanotubes

Carbon nanotubes (CNTs) have desirable qualities for application in the field of
pharmacy such as lightweight, good tensile strength, and small size with a high aspect
ratio [65]. This technology has also an important impact on cosmeceuticals, whereby various
carbon nanoparticle patents have been filed such hair coloring and cosmetic products [90].
However, no recent studies on the application of CNTs in cosmetics have been found in
the literature.

3.16. Nanosponges

Nanosponges are freely flowing particles with thin cavities (nanometer range) that can
be filled with lipophilic and hydrophilic moieties. They have high entrapping potential and
the ability to release the active ingredients in a controlled diffusion. Nanosponges can be
loaded with antifungal, antibiotics, local anesthetics, etc. for topical use, having the relevant
attributes to be used in dermatological and cosmetic products. These structures can be
used to enhance lotions, gels, powders, creams, and ointments intended for topical use [65].
Kumar et al. [145] reported that the encapsulation of azelaic acid in nanosponges increased
the efficacy of the drug concerning the solubility, release, and safety, with suitable antimi-
crobial, antityrosinase, and antioxidant activity for the treatment of hyperpigmentation
associated skin disorders. Currently, not many studies on the application of nanosponges
as potential nanocarriers in the cosmetic field have been reported in the literature.

4. Active Ingredients in Cosmetic Nanocarriers

Active ingredients are the keys to the success of the cosmetics industry and their
incorporation into nanocarriers, as mentioned in the previous section, is revolutionizing the
industry. In order to understand the constraints associated with the active ingredients and
their incorporation, in this section, we present their fragilities and how to overcome them.

Nanocarriers are usually used in the cosmetics industry to overcome the problems
associated with bioactive agents such as low stability, poor solubility, and penetration
ability. Most of the active ingredients are inherently unstable under environmental stress
conditions. One of these ingredients is retinol as well as antioxidants that are sensitive to UV
light, heat, and oxygen. As previously mentioned, encapsulation of these active ingredients
can prevent their degradation, increasing their shelf-life and in vivo performance [65,146].
Indeed, a paper published in the literature reported that retinol, whose efficacy is limited by
an extreme sensitivity to light and temperature, can be encapsulated by solvent evaporation
using a cationic polymer with high efficiency [147]. This encapsulation allowed for the
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protection of the active ingredient from oxidation for at least eight weeks and showed that
the release of retinol from the nanoparticles was not immediate, but released throughout
18 h [147]. Furthermore, nanocarriers allow for the use of poorly soluble molecules in
different formulations by increasing their solubility [90,148]. For instance, lutein is unstable,
has poor solubility, and bioaccessibility, however, its encapsulation in zein/tea saponin
nanoparticles overcomes these limitations. In fact, these nanoparticles demonstrated great
stability at pH 4.0–9.0, revealed excellent ionic strength stability and thermal stability as
well as enhanced solubility and bioaccessibility of lutein [149]. Several active ingredients
have been loaded into nanocarriers such as retinoids, antioxidants, enzymes, peptides,
ceramides, hyaluronic acid, and organic UV filters [25], which lessen their use in cosmetics.
The limitations of the main active ingredients are summarized in Table 2.

Table 2. Limitations of the active ingredients.

Active Ingredient Limitations References

Retinoids
Chemical structure exposes the retinoids to photopolymerization,

photodegradation, photooxidation and photoisomerization; Some of them cause
sensitization and skin irritation

[150]

Antioxidants Limited stability in topical preparations [151]

Enzymes
The native structure is destabilized by many common ingredients, which

strongly affects enzymatic activity; their high molecular weight limit enzymes
skin penetration

[25]

Peptides Susceptible to degradation and low permeability [25]

Ceramides Low solubility [152]

Hyaluronic acid Hyaluronic acid with high molecular weight and hydrophilicity reveals
poor penetration [153]

Organic UV filters May cause many adverse effects due to the production of toxic metabolites and
ROS, which can be triggered by percutaneous accumulation and absorption [154,155]

4.1. Retinoids

Vitamin A (retinol) and its derivatives (retinoids) are some of the most widely used
and important active ingredients in the cosmetics industry. This is due to their ability to
stimulate epidermal growth, differentiation, and maintenance as well as control sebum
and enhance extracellular matrix production, reducing skin wrinkles and acne [25]. These
ingredients are widely used in the treatment of pigmentation and photoaging disorders as
they inhibit melanogenesis, increase cellular turnover, and block the transport of melanin
to epidermal cells [156], although their usefulness can be limited (Table 2). In turn, the limi-
tations can be overcome by using nanotechnological approaches. It has been reported that
tretinoin (all-trans retinoic acid) and its precursor (retinal) performance can be enhanced
by conjugating them with polymers that can self-assemble into nanoparticles [157,158].
The activity of retinoids can also be improved by their nanoencapsulation, as demon-
strated by the decreased photodegradation of tretinoin into liposomes and caprolactone
nanocapsules [159,160].

4.2. Antioxidants

Antioxidants have an important role in protecting DNA against damage caused by
ROS produced by internal or external stimuli [161]. Antioxidant function is achieved
through the neutralization of ROS, inhibiting ROS-producing enzymes or chelating transi-
tion metal ions. The excessive production of ROS in the skin and the consequent appearance
of wrinkles and hyperpigmentation can be caused by the exposure to UV radiation. This
aging can be prevented by the local administration of antioxidants, which may or may not
be enzymes. Thereby, antioxidants can be incorporated into anti-aging products as well as
in sunscreens, improving their photoprotective power [162]. Despite their benefits, antioxi-
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dants have limitations (Table 2) that can be overcome through the use of nanocarriers [151].
The nanocarrier is usually chosen depending on the polarity of the active ingredient [25]. A
recent study by Maretti et al. [163] reported the nanoencapsulation of the highly lipophilic
β-carotene in NLCs to promote skin permeation of this active ingredient across the stratum
corneum barrier, enhancing its antioxidant properties in photoaging and epithelial skin
cancer prevention. This investigation showed that NLCs approximately 200 nm in size
could be an appropriate approach to overcome the stratum corneum barrier, aiming to
provide deeper β-carotene actions as well as avoid its degradation [163]. Another work
by Vieira et al. [164] reported the encapsulation of Haematococcus pluvialis carotenoids into
poly-lactide-co-glycolide nanocapsules to overcome its low water solubility and elevated
instability, resulting in an advanced topical product with antioxidant properties. Nanocap-
sules, which were prepared by the solvent displacement method, demonstrate the sustained
release of carotenoids from a gel system resulting in a higher antioxidant activity than
ascorbic acid. Therefore, the hydrogel developed can be of high value to the cosmetics
industry since it may provide prolonged protection of the skin against the photooxidation
process [164]. Other examples can be found in Table 3.

4.3. Enzymes

The utilization of enzymes in the cosmetics industry is relatively recent, being limited
to a number of products available on the market. Enzymes have revealed a better per-
formance compared to common active ingredients, however, their delivery in a cosmetic
preparation is challenging (Table 2). Although their high molecular weight limits the skin
penetration of enzymes, they have been recommended for skincare products including
enzymatic antioxidants, DNA-repairing enzymes, hyaluronidases, lipases, and exfoliat-
ing enzymes [165]. Moreover, the use of enzymes in cosmetic products is expected to
be enhanced by their nanoformulation [166]. For instance, the liposomal formulation of
photolyase, referred to as photosomes, revealed the ability of the enzyme to repair UVB
induced cyclobutane pyrimidine dimers in human keratinocytes [167]. Therefore, photo-
somes may be incorporated in sunscreens to reduce the development of skin cancer [167].
Other examples can be found in Table 3.

4.4. Proteins and Peptides

An important group of molecules used in cosmetics are short peptides comprising 2–7
amino acids that can be classified as signal peptides, neurotransmitter inhibitors, carrier
peptides, peptides, and enzyme inhibitor peptides. These molecules are usually used in
anti-aging products [168].

Currently, there are some non-toxic formulations for hair perming that were devel-
oped to substitute the current synthetic perming formulations. An example proposed by
Cruz et al. [169] was based on the use of keratin decapeptide sequences derived from the
human keratin genome. These peptides replace the harsh alkaline reductive solutions,
minimizing or even avoiding the damage caused to the hair fibers by chemical products. In
the work by Song et al. [170], the capacity of cysteine and polycarboxylic acids to substitute
the thioglycolates and the hydrogen peroxide was demonstrated.

The use of peptides in topical formulations has drawbacks (Table 2) that can be
overcome by their nanoformulation. For example, a study by Puig et al. [171] showed
that the use of liposomes loaded with tripeptide-10 citrulline, chosen by its capacity to
interact with collagen fibers, increased skin elasticity. A work by Suter et al. [172] reported
the entrapment of a heptapeptide in SLNs, using shea butter as the dispersant phase and
lecithin as a stabilizer. Hence, it was shown that SLNs allowed for peptide delivery into
the skin, enabling it to perform protective functions [172]. Until now, the most efficient
peptide delivery system is through nanoformulation over common formulations [25]. Other
examples can be found in Table 3.
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4.5. Ceramides

Ceramides are known constituents of the lipidic matrix, so their use as new moistur-
izing agents to restore the skin barrier functionality has been suggested. However, their
application has some limitations (Table 2) that are usually overcome through the use of
nanocarriers [152]. Indeed, microemulsions and nanoemulsions have been shown to encap-
sulate them very efficiently [173]. A study by Tessema et al. [174] reported the encapsulation
of ceramides in lectin-based microemulsions and starch-based nanoparticles, revealing
that microemulsions improved in vitro release and the penetration of ceramides compared
to the other formulations. On the other hand, the nanoparticles retarded the release of
ceramides and enabled the penetration of small quantities of ceramides into the deeper
layers of the multilayer membranes. Both formulations were effective in concentrating
ceramides in the stratum corneum [174].

4.6. Hyaluronic Acid

In young skin, hyaluronic acid is abundant, but it decreases with aging. Its ability to
retain water molecules makes it widely used in cosmetics as a moisturizing agent [175]. It is
also applied in anti-wrinkle products [176]. Nevertheless, the potential of hyaluronic acid
can be limited (Table 2). Hyaluronic acid microinjection allows for maximum accumulation
down to the dermal layer [177], but the use of nanotechnology has also been proposed to
improve hyaluronic acid performance. For instance, Jegasothy et al. [178] demonstrated a
superior penetration of hyaluronic acid by reducing its molecular weight and formulating
the polymer in the form of nanoparticles.

4.7. Organic UV Filters

The chemical structure of organic UV filters is composed of a chromophore conju-
gated with an aromatic ring substituted by an electron-donating group [179,180]. The UV
filters can be classified as UVA, UVB, or broad-spectrum absorbers. They are extremely
important in the development of sun protection products. However, nowadays, they can
be incorporated in different cosmetic products such as make-up to improve their value in
the prevention of long-term UV induced damage. However, their use may cause concern
(Table 2). The limitations of these active ingredients can be overcome by nanoencapsulation,
which can not only optimize the properties of the carriers, but also increase the retention
of the active ingredient in the uppermost layers of the skin, avoiding permeation [181].
Furthermore, the use of nanocarriers can solve common disadvantages of bioactive agents
such as high lipophilicity and limited photostability. A recent paper by Daneluti et al. [182]
reported the encapsulation of avobenzone, oxybenzone, and octyl methoxycinnamate in
mesoporous silica SBA-15, revealing the increase in safety and efficacy of UV filters. Other
examples can be found in Table 3.

Table 3. Applications of active ingredients into nanocarriers for cosmetics formulation.

Nanocarriers Active Ingredients Cosmetic Use References

Polymeric micelles Curcumin Whitening [183]

Nanostructured lipid carriers Passiflora edulis seeds oil Whitening [184]

Niosomes Quercetin Whitening [109]

Niosomes Arbutin Whitening [110]

Nano sponges Azelaic acid Whitening [145]

Nanostructured lipid carriers Orobol Anti-ageing [185]

Nanoliposomes
Carnosine

Palmitoyl tripeptide-5
Acetyl hexapeptide-3

Anti-ageing [186]
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Table 3. Cont.

Nanocarriers Active Ingredients Cosmetic Use References

Nanoemulsions Astaxanthin Anti-ageing [187]

Dendrimers Resveratrol Anti-ageing [135]

Solid lipid nanoparticles
Nanostructured lipid carriers

Nanoemulsion
Lutein Anti-ageing [188]

Nanostructured lipid carriers Finasteride Anti-alopecia [189]

Nanoemulsions Minoxidil Anti-alopecia [190]

Nanocapsules Hinokitiol Anti-alopecia [191]

Lipid nanoparticles Hinokitiol Anti-alopecia [192]

SLN-Silica particles Octyl methoxycinnamate Sunscreen [193]

Nanostructured lipid carriers Quercetin Sunscreen [104]

Gold nanoparticles Snail slime Sunscreen [194]

Cellulose nanocrystals Diethyl sinapate Sunscreen [195]

Nanoemulsions Sunflower oil Sunscreen [77]

Nanocapsules Octyl dimethyl para-aminobenzoic acid Sunscreen [119]

Liposomes
Nanostructured lipid carriers

Solid lipid nanoparticles

Avobenzone
Omega-3 UV blocking sunscreen [196]

Cubosomes Erythromycin Anti-acne [136]

Microemulsions Curcumin Anti-acne [197]

Microemulsions Thai basil oils Anti-acne [198]

Liposomes Lauric acid Anti-acne [199]

Keratin: Zein nanoparticles Fragrances (linalool and menthol) Hair cosmetic [200]

5. Application and Efficacy of Active Ingredients in Cosmetic Nanocarriers

The utilization of nanocarriers in cosmetic products enhances the solubility and sta-
bility of active components and overcomes the cuticle barrier effect. This effect allows
the active cosmetics ingredients to enter the skin target site to perform its function in a
controlled, sustained, and long-term release, hence solving several skin problems and skin
diseases [62] and at the same time, improving the consumers’ quality of life (Figure 9).

The complications and diseases related to the epidermal barrier can lead to skin
dehydration, which in turn leads to sensitive, dry, itchy, chapped skin. However, the skin
barrier function can be restored, and the epidermal moisture content can be increased using
nanocarriers incorporated with skin moisturizing components. Indeed, this technology
can decrease skin problems, and at the same time, be preventive and have a therapeutic
effect on chronic skin diseases such as atopic dermatitis, eczema, and psoriasis [201–203].
It has been reported that tacrolimus, which is a compound used to manage moderate to
severe atopic dermatitis, can be loaded into mesoporous silica nanoparticles to overcome
problems related to its solubility and effective topical delivery. The encapsulation of this
compound revealed a significantly higher amount of retained tacrolimus and a much higher
reduction in ear thickness, suggesting that this technique is a promising strategy for the
topical delivery of hydrophobic drugs [204]. Another study published in the literature
aimed to prepare and characterize an innovative nanoemulsion formulation loaded with
Linum usitatissimum seed (linseed) oil (LSO) and investigate their potential in vitro and in
silico evaluation for the treatment of atopic dermatitis. This paper demonstrated that LSO
is a potential drug candidate for treatment of atopic dermatitis and its encapsulation in
nanoemulsions allowed for an effective topical delivery [205]. A recent study has shown
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that NLC loaded with three active compounds (azelaic acid, white willow bark extract,
and panthenol) has a prolonged moisturizing action and increases cellular viability, being
an efficient strategy for the treatment of atopic dermatitis and acne [206]. Concerning
psoriasis, a paper reported the incorporation of tacrolimus into lecithin chitosan hybrid
nanoparticles by ethanolic injection technique. The prepared nanoparticles showed a higher
skin deposition than the marketed product (63.51% vs. 34.07%) as well as a superior anti-
psoriatic efficacy. In terms of in vivo drug deposition, the hybrid nanoparticles revealed
superior skin deposition compared to the marketed product (74.9% vs. 13.4%) [207].
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Figure 9. Advantages of the application of active ingredients in cosmetic nanocarriers.

A whitening and freckle-removing effect can also be achieved using nanocarriers
with whitening and freckle-removing efficacy components in cosmetics (Table 3). These
components inhibit several pathways such as melanocyte proliferation, tyrosinase, and
other related rapid-limiting enzyme activity as well as the inhibition of melanosome
migration [208]. A ROS-responsive transdermal nanocarrier incorporating a whitening
agent, glabridin, with the cell-penetrating peptide polyarginine R8 and bonded into the
hollow mesoporous silica nanoparticles by the borate ester bond was developed. The
work showed the rapid penetration of the synthesized nanocarriers through the epidermis
reaching keratinocytes and melanocytes. There was glabridin release in a controlled
ROS-responsive manner. A reversed UV-induced oxidative damage, phototoxicity, and
decreased hyperpigmentation was also observed [209].

There are also anti-aging ingredients usually applied in cosmetics that can eliminate
oxygen-free radicals. Nevertheless, there are some limitations such as low bioavailability,
poor stability, decomposition under light, oxygen, and heat, and difficulty in transder-
mal absorption that can be overcome by the emergent development of nanocarriers with
anti-aging components [210] (Table 3). A published paper reported the production of
astaxanthin loaded nanoemulsions by a convenient low-energy emulsion phase inver-
sion method. The prepared nanoparticles revealed an improvement in chemical stability
and skin permeability to astaxanthin. Therefore, this technique might be a promising
delivery system for the application of the active ingredient in dermal and transdermal
products [187].
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Hair loss can be treated by the topical application of anti-alopecia agents that can
be loaded into nanocarriers, enabling the alleviation of the side effects of their direct
application in the affected area [211] (Table 3). In the literature, a study reported on
the development of nanoemulsions containing minoxidil to sustain and deliver active
molecules to hair follicles for the optimization of alopecia areata treatment. Indeed, it
has been shown that the synthesized nanoparticles penetrated hair follicles 26 times more
efficiently than on the control sample, which means that they are a promising approach for
the topical treatment of alopecia [190].

Sunscreen components can absorb and reflect UV light, hence reducing the occur-
rence of light linear disease and light aging. These active ingredients usually have some
drawbacks such as large skin irritation and poor light stability, but these problems can
be overcome by loading sunscreen efficacy components into nanocarriers (Table 3). A
paper demonstrated the production of a new sunscreen formulation composed of hybrid
SLN-silica particles loaded with octyl methoxycinnamate (Parsol®MCX), and their further
incorporation into a hydrogel for skin administration. The enhancement of the bioadhe-
siveness of hydrogels, as a result of particles coated with colloidal silica, was evident. A
synergistic effect of Parsol loading into SLNs in the increase in sun protection factor has
also been shown [193]. Other examples are shown in Table 3.

6. Limitations of Nanocarriers

Despite the benefits for skin health and clear efficiency of their use in cosmetic prod-
ucts, nanocarriers can have some disadvantages such as their higher development cost,
sensitivity toward osmotic processes, low solubility, unsatisfactory stability, aggregation,
low shelf life, and drug loading capacity as a result of hydrolysis and leaching [37]. The
development of a formulation and subsequent preparation of a nanocarrier is not easy.
There are a significant number of conditions that need to be taken into consideration such as
the dosage and proportion of each component in the formulation. The preparation method
is also very important as it can affect the internal structure, charge, stability, interaction with
the active ingredients, and skin permeability [62]. Additionally, specialized equipment for
the preparation of poor hydrophilic ingredients and uploading capacity due to partitioning
effects may be necessary [37].

Some nanocarriers have toxicity potential. Their small size can be disadvantageous
as it allows for the passage of these nanostructures through cell membranes, being able to
reach organs and interfere with cells, proteins, and DNA [212]. For instance, nanocarriers
smaller than 10 nm can act similar to gas disturbing the cell chemistry as they can cross
cell membranes [213]. There are several routes through which nanocarriers can enter into
human organisms: skin, respiratory, and gastrointestinal. Nanocarriers that enter the
human body through inhalation can reach the brain [214]. These nanostructures have
low encapsulation capacity, being necessary to increase the addition of surfactants in their
formulations. In turn, surfactants can have adverse effects such as skin irritation and
trauma, disruption of skin enzyme activity, causing abnormal body physiological function,
and potential toxicity as a result of the accumulation of surfactants and nanocarriers in the
body [215]. On the other hand, the permeation of nanocarriers into unhealthy skin may
have distinct effects since the skin structure and its composition is different [216]. Therefore,
further studies regarding the application of nanocarriers into unhealthy skin as well as
long-term toxicity studies are needed.

The limitations of nanocarriers are not only related to scientific development but also
to legislation. It is well-known that there are significant differences between the European
and North American legislation that may hinder their application in the cosmetics field,
even though there are defined regulatory and safety guidelines comprising toxicity and the
labeling of nanocosmetics in the global market [217]. In the next section, we compare and
discuss the differences between the cosmetics regulatory system in Europe and the USA.
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7. Cosmetics Regulation in Europe and the USA

Currently, there is no worldwide definition of a nanomaterial as a cosmetic ingredient.
Therefore, every country follows its own description and legislation. Nevertheless, the
Europe (EU) and North America (USA) are the two major markets for cosmetics products.

7.1. European Regulations

Nanocarriers or drug delivery systems are a new class of products—functional cosmetics.
In Europe, cosmetic products are regulated by the European Commission through the

Cosmetics Regulation (EC No. 1223/2009). This directive offers the consumer a high safety
level. When a cosmetic ingredient fulfils the criteria defining a nanomaterial as set out in
the European Cosmetic Regulation, Article 2 (1) (k), it is necessary to notify the Commission.
The information should comprise the nanomaterial identification, specification, toxicologic
profile, and safety data (Art. 16 (3)) [218].

EC Regulation 1223/2009 describes the labeling rules for cosmetic products that have
nanomaterials in their composition. It states that a nanomaterial must be undoubtedly
identified in the ingredient list by using the word “nano” in brackets as a suffix to the
compound name. According to European law, all cosmetics brands must have a responsible
person (natural or legal) who is responsible for complying with this.

It is also mandatory to register each cosmetic, before reaching the market, at the EC
Cosmetic Products Notification Portal (CPNP). It is important to mention that if the new
formulation includes a new nanomaterial that did not go through a full risk assessment by
the Safety Assessment of Nanomaterials in Cosmetics (SCCS), this fact must be transmitted
to the EC. The information conveyed must include nanomaterial identification, physico-
chemical characterization, toxicity assessment, the safety of the cosmetic product, exposure
conditions, and finally the estimated amount sold per year [219].

At the beginning of 2020, the European Union Observatory for Nanomaterials (EUON)
declared that all companies involved with nanoforms should comply with REACH—
Registration, Evaluation, Authorization, and Restriction of Chemicals regulations. The EC
REACH regulations were issued in 2006 [220]. In 2018 (December), the EC restructured
Regulation 1907/2006 to include nanoforms.

The necessity to reduce animal suffering and experimentation led the European bodies
to instore new rules for the cosmetics industry. Therefore, no toxicological information
regarding hazard identification can be obtained through animal use as it is strictly prohib-
ited under EC Cosmetic Regulation No. 1223/2009. Therefore, different methods must be
employed such as ex vivo and/or in vitro [56].

The EU Cosmetic Regulation suggests that nowadays, there is inadequate information
on the risks associated with nanomaterials. To better assess their safety, the Scientific
Committee on Consumer Safety (SCCS) should guide cooperation with relevant bodies
on test methodologies that take into account the specific characteristics of nanomaterials
(Articles 29 to 31 of the EU Cosmetic Regulation) [218]. This led the SCCS to publish the
Guidance on the Safety Assessment of Nanomaterials in Cosmetics (SCCS/1484/12), which
has been updated more than 20 times in the past 10 years. The last update occurred in
March 2021 (SCCS /1618/20).

A report regarding the use on nanomaterials in cosmetics was published in July 2021
by the EC. According to data obtained from the Cosmetic Product Notification Portal
(CPNP), on a daily basis, approximately 800 new cosmetic products enter the EU market
upon their notification to the necessary organizations 10 of them with nanomaterials [26].

When analyzing the available data, regarding the notification of cosmetic products
with nanomaterials per country, France (5%) has the highest number of notifications,
followed by Poland (2%), Germany (1.5%), Italy (0.9%), and Spain (0.8%). When comparing
the overall notifications in the EU of cosmetics with nanomaterials, France is still the
major contributor, followed in this case by Italy, Germany, Spain, and Poland [221]. The
Commission considers that these differences are due the divergences in the application of
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the law by national authorities and/or economic operators due to an ambiguous definition
of nanomaterials and the reporting requirements.

According to Section 2 of the Commission Report (Review of Provisions Relating
to Nanomaterials), the cosmetic definition of nanomaterials should be updated and pre-
sented in the next report. The main reason for this review is to highlight the differences
found between the definition of nanomaterials in the Cosmetics Regulation and the 2011
Commission Recommendation.

7.2. USA Regulations

In the USA, there is a lack of regulations concerning nanomaterials/nanocarriers in
cosmetics. FDA is responsible for the monitoring of the use of nanoscale materials and
nanotechnology in cosmetics, and also conducts and keeps abreast of related research.

The FDA does not have a legal definition for nanotechnology, although it is as-
sumed that the term nanotechnology refers to materials with dimensions between 1 and
100 nm [222]. As a result, the FDA has formed the National Nanotechnology Initiative
(NNI) and the Nanotechnology Task Force (NTF) to determine and evaluate the necessary
regulations for nanotechnology products.

In the U.S., companies or individuals who want to market cosmetics are legally bound
to ensure the safety of all the ingredients present in the product including the ingredients
at a nanoscale level. Additionally, they are required to describe the conditions of use on
the label. According to U.S. law, cosmetic products and ingredients do not require FDA
approval, not even pre-market approval [222]. In contrast to European law, the FDA does
not require a clear indication on the label if any of the ingredients are nanomaterials. They
argue that the particle size may not necessarily be involved in the toxicologic profile, which
can confuse consumers.

Even though there is a significant lack of regulation by the FDA, there are some
regulations and protocols that cosmetics producers can select to follow. The FDA and the
Personal Care Products Council (PCPC) have established protocols for the registration of
ingredients and description of any adverse reactions, even though this is not mandatory,
but voluntarily, as the name clearly states—Voluntary Cosmetic Registration Program
(VCRP). Using this platform, cosmetic manufacturers can analyze the materials that pose
risk and remove them from the final product [219].

Taking into consideration that the regulatory authority for cosmetic products does
not allow for cosmetics or their ingredients to be changed or mislabeled, the FDA has
published a safety guide entitled “Guidance for Industry: Safety of Nanomaterials in
Cosmetic Products”. This guide refers to issues related to nano-tech strategies and the
usage of nanomaterials in cosmetics products [222]. Finally, the Guidance for Industry has
information regarding the safety assessment of nanostructured constituents in cosmetic
formulation and was developed to help identify any possible safety issues and how to
evaluate them [23] (Figure 10).

7.3. Other Countries

Before briefly discussing other countries, it is important to present another concept,
which is that of cosmeceuticals. Cosmeceutical consumption products are at the frontier
of cosmetics and pharmaceutical products. Although, this term is not recognized by the
Federal Food, Drug and Cosmetics Act and FDA, it is known that several cosmeceuticals
modify skin physiological processes, but producers evade clinical trials by presenting spe-
cific claims to escape the expensive and long authorization process by FDA. The cosmetics
industry is facing new challenges every day. These challenges require stricter regulation
in order to guarantee the safety of the marked products. A new group is being created by
different countries to adjust cosmeceuticals or borderline products (Table 4).
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Table 4. Definition of cosmeceuticals and rules in some countries.

Country Definition Rules References

Japan Product that are not a cosmetic or a
drug, is a “quasi-drugs”

Ingredients need to be pre-approved before
including them into the “quasi-drugs”

classification and require pre-approval before
introduced them into the market

[223]

Korea
Korea Food and Drug Administration

(KFDA) classifies them as
“functional cosmetics”

KFDA is responsible for improving the safety and
evaluation of functional cosmetics [224]

Thailand
According to the used ingredients in
cosmeceuticals, they are classified as

“controlled cosmetics”

the notification from the FDA for the use of this
products is mandatory [225]
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Table 4. Cont.

Country Definition Rules References

New Zealand
The category in which cosmeceuticals

are accommodated is called
“related products”

The regulation applied in New Zealand is similar
to the EU legislation. The specifics of claims

regulation and nanomaterials are the same and
must be notified to Environmental Protection

Authority (EPA)

[226]

Australia

In Australia, goods can be categorized
based on claims about the product and

product composition; the borderline
products are classified as

“therapeutic goods”

Only approved ingredients are used for the
manufacture of these products. The Australian

Register of Therapeutic Goods is the organization
that registers "therapeutic goods".

[227]

USA

In the U.S., there are three categories:
cosmetics, drugs, and over-the-counter

medications. There is not a legal
definition of cosmeceuticals according

to FDA.

Classification by the U.S. FDA depends on the
claims of the products. [222]

European Union

The EU does not have a category to be
called cosmeceuticals, but it has

stringent law in which any claims made
by the company are required to be

submitted as a proof

The European regulation requires that cosmetic
manufacturers declare all the

nanoparticles/nanomaterials present in their
products. They are required to add the word nano

to the ingredient list. Regulation (EC)
No.1223/2009.

[26]

China “cosmetics for special use”

Similar to the FDA, but more rigorous, the China
Food and Drug Administration (CFDA) requires

that all foreign cosmetic products, before their
release into the Chinese market, perform a safety

evaluation comprising of several tests such as
microbiology, toxicity, long-term toxicity, and

carcinogenic. The manufacturers are also required
to conduct trials to ensure their safety for humans.

The cosmetics (imported) are divided into two
main categories: special use cosmetics and

ordinary ones. As a result, each category needs a
distinct type of permit from the State Food and

Drug Administration (SFDA). Finally, the Health
Administration Department of the State
Council—SFDA—must issue hygiene or
record-keeping permit for the marketing

of cosmetics.

[228]

8. Conclusions and Future Perspective

The skin aspect is of utmost importance both physiologically and psychologically.
This fact has driven the boom of the cosmetics industry for the past years. It is well-
known that the revenue involved in this market is extremely high. It is expected to
reach over USD 800 billion by 2023. By itself, the nanotechnology market is one of the
most promising fields, but when combined with the high-value cosmetics market, it has
led to a technological revolution with a growth rate per year of 17%. The possibility of
incorporating the active ingredients of cosmetics in new and improved nanocarriers such
as liposomes, niosomes, and cubosomes among others, has resulted in a significant increase
in the effectiveness of the products. There are several advantages in the incorporation
of cosmetic bioactive ingredients into new and improved carriers, namely, high stability,
biocompatibility, controlled drug release, and high drug loading capacity, among others.

No doubt that the use of these carriers in the cosmetics industry is highly important,
but there are also significant challenges ahead, particularly in terms of biosafety and
polymer immunogenicity.
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The novelty in this field and the good results should be analyzed carefully. The
number of reports regarding the effect of these nanoparticles on metabolic pathways and
metabolites kinetics is scarce. Therefore, it is necessary to conduct in-depth research on the
long-term effects.

The lack of coordinated regulatory guidelines throughout several countries also poses
a risk to the safety evaluation of cosmetic products. The differences between the European
regulations and the USA regulations are significant. While in the USA, the registration of
the ingredients, particularly nanomaterials, is not mandatory, in Europe, it is absolutely
necessary to register all of the ingredients, with special attention to the nano ones.

More recently, the U.S. FDA has recommended human safety studies to evaluate the
post-marketing safety data.

The main concerns regarding the safety of nanomaterials in cosmetics were raised in
Europe, which led to the development of stricter regulations.

Shortly, it is expected that the cosmetics field will carry on to develop new and more
effective products based on nanomaterials. It is anticipated that the legislation in the USA
will approach the harsher European regulations.

“Flawless skin is the most universally desired human feature”–Desmond Morris.
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