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Abstract: Development of high throughput robust methods is a prerequisite for a successful clinical
use of LC-MS/MS assays. In earlier studies, we reported that nLC-MS/MS measurement of the
O-glycoforms of HPX is an indicator of liver fibrosis. In this study, we show that a microflow
LC-MS/MS method using a single column setup for capture of the analytes, desalting, fast gradient
elution, and on-line mass spectrometry measurements, is robust, substantially faster, and even more
sensitive than our nLC setup. We demonstrate applicability of the workflow on the quantification of
the O-HPX glycoforms in unfractionated serum samples of control and liver disease patients. The
assay requires microliter volumes of serum samples, and the platform is amenable to one hundred
sample injections per day, providing a valuable tool for biomarker validation and screening studies.

Keywords: microflow LC-MS; mLC-MS/MS; liver fibrosis; hemopexin; biomarker

1. Introduction

Biomarker studies rely heavily on nano-flow liquid chromatography tandem mass
spectrometry (nLC-MS/MS) for both the discovery shotgun proteomics and the targeted
follow-up validation studies. In contrast to the small molecule analyte quantification,
where standard HPLC flow rates for LC-MS analysis are common, the nLC-MS/MS has
been favored for peptide quantification primarily because of the sensitivity of analyte
detection. However, nLC-MS methods remain technically challenging, time consuming,
and less robust [1], which limits their use in clinical laboratories or their applications to
large sample sets.

More recently, researchers have begun to explore capillary columns with a bore wider
than the conventional 75 µM ID nano-flow analytical columns [2–4]. This allows execu-
tion of the LC step of proteomic studies at a microflow rate, and at a substantially higher
throughput. The increased flow rate reduces the gradient time and increases the repro-
ducibility and robustness of the measurements [5]. However, in a conventional single
spray-tip setup, the higher flow rate diminishes ionization efficiency and lowers sensitivity
of detection below acceptable limits for the majority of the peptides in complex samples.
This has been addressed by the development of a multi-nozzle emitter that splits the flow
evenly into multiple smaller streams, which has been shown to enhance substantially
the ionization efficiency [6]. In combination with advances in the sensitivity of the mass
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spectrometers, the microflow LC-MS/MS (mLC-MS/MS) methods reach sensitivity of de-
tection comparable to that of nLC-MS/MS. Shotgun proteomics studies using mLC-MS/MS
have reported identification of close to 10,000 proteins in cell digests, and stability and
reproducibility over thousands of runs [5,7]. In these studies, the robustness of the method
in high-throughput bottom-up proteomic analyses has been demonstrated using complex
cell, tissue, and body fluid digests. The microflow method enabled avoidance of column
overloading, resulting in good peak shapes. This, in addition to negligible carryovers, is
critical for accurate quantification of compounds by the LC-MS/MS analyses. The method
has been adapted for protein biomarker studies using data independent analysis (DIA),
parallel reaction monitoring (PRM), and multiple reaction monitoring (MRM) [3,8–10].
However, we are not aware of any reports of the use of the mLC-MS/MS for the analysis of
O-glycopeptides.

In this study, we developed a mLC-MS/MS-PRM assay for the quantification of
site-specific mucin-type O-glycoforms of hemopexin, which we previously reported as a
promising candidate biomarker for the serologic monitoring of liver fibrosis [11,12]. We
have shown that the sialylated O-glycoforms of hemopexin (HPX) in serum of patients are
associated with advancing fibrosis in hepatitis C-associated liver disease [11]. This may
prove useful in the monitoring of the fibrotic liver disease, which affects a large segment of
the world’s population, and whose progression can be mitigated by timely lifestyle changes
and interventions [13,14]. Our newly optimized method allows for capture of the analytes,
desalting, and gradient elution using a one-column setup, directly in a tryptic digest of
unfractionated serum, which significantly reduces the time needed for sample preparation
and analysis. We used the method to quantify the HPX glycoforms in serum samples of
HCV-induced liver disease, and we demonstrate that the mLC-MS/MS-PRM assay offers
substantially higher throughput compared to our reported workflow [11], maintains higher
sensitivity of detection, and offers a high-throughput serologic assay (100 injections/day)
for an improved screening of these glycopeptide biomarker candidates.

2. Results and Discussion

Liver biopsy has been the gold standard in the diagnosis of fibrotic changes associated
with chronic liver diseases, and non-invasive methods such as liver imaging, ultrasound
elastography, and serologic monitoring provide additional options [13]. Serum protein
biomarkers, including glycosylation pattern of liver secreted proteins, represent an at-
tractive strategy for serologic monitoring of liver disease (reviewed in [15,16]). We have
characterized O-glycoforms of HPX by mass spectrometry [11,12,17] and demonstrated that
the relative abundance of the di- and mono-sialylated O-glycoforms increase significantly
with the progressing fibrotic liver disease of HCV etiology [11]. Building upon our earlier
studies, we aimed to develop a fast mLC-MS/MS assay to quantify the HPX glycoforms at
high throughput.

2.1. Microflow LC-MS/MS for the Quantification of O-HPX

We optimized a microflow (1.5 µL/min) LC-MS/MS workflow with 5× higher through-
put compared to the earlier nanoflow (0.3 µL/min) method. In a conventional metal/glass
needle emitter setup this would translate to a loss of sensitivity because of the dilution
of analytes. To circumvent this, we used a multi-nozzle emitter (8-nozzle, Newomics) [6],
which has been reported to achieve sensitivity close to routine nLC-MS/MS applications.

The sample trapping and desalting was achieved within 2 min at a 5 µL/min flow rate
using a 20 mm C18 trap column, followed by elution of the analytes at a 1.5 µL flow rate
in 3 min, column washing for 2 min, followed by a 6 min equilibration step (total 13 min;
for a schematic see Supplementary Figure S1). The time gap between each sample run is
negligible, thus making the analysis of approximately 100 samples per day feasible. The
analytes were measured by a scheduled PRM assay using an Orbitrap Fusion Lumos Mass
Spectrometer (Thermo Scientific, Dreieich, Germany).
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Measurement using serially diluted samples showed optimal sensitivity between
0.1 and 0.2 µg of injected serum protein sample (Figure 1). The retention time (RT) of the
analytes was highly reproducible (RSD 0.20%, Figure 2) which is suitable for automated
results processing. The S-HPX measurement (i.e., the ratio of disialo m/z 916.4/monosialo
m/z 843.6 analyte) [11] was shown to be consistent over 50 injections (RSD 8.91%, Figure 3),
demonstrating outstanding technical reproducibility of the label-free tandem mass spec-
trometry assay.
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The consistent elution time at 5.85 ± 0.12 min demonstrates excellent reproducibility.

2.2. Application of the Micro-Flow LC-MS/MS Assay to Serum Samples of Liver Disease Patients

We reported detectability of other O-glycoforms of HPX, including the Tn-antigen, in
our previous study; however, we were not able to quantify these analytes in the patient
samples [11]. In our current assay, we quantify the additional analytes because of enhanced
sensitivity of the current setup in spite of the introduction of faster flow rates (Supplemen-
tary Table S1). The inclusion list consisted of multiple O-glycoforms of the N-terminal HPX
tryptic peptide [HexNAc (m/z 973.5), HexNAc-Hex-Neu5Ac (m/z 843.6), HexNAc-Hex-
2Neu5Ac (m/z 916.4), 2HexNAc-2Hex-2Neu5Ac (m/z 1007.7), 2HexNAc-2Hex-3Neu5Ac
(m/z 1080.5), 2HexNAc-2Hex-4Neu5Ac (m/z 1153.2), HexNAc-Hex (m/z 770.9)]. Their elu-
tion profile shows that the analytes elute within a short window of 5.83–5.91 min (Figure 4).
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The enhanced detection of the O-HPX glycoforms in unfractionated serum samples using
this microflow method may be due to the combination of sample loading capacity and
excellent peak shape (Figure 5) obtained at the higher flow rate. With the assumption
that minor ionization differences of the glycoforms do not affect the overall results, we
calculated the ratios of multiple sialylated to respective monosialylated glycoforms. The
ratios of the sialylated O-HPX analytes (S-HPX) were calculated based on the peak areas of
the multiple sialylated structures to singly sialylated structures 916.4/843.6, 1080.5/1007.7,
and 1153.2/1007.7 using the transitions described previously [11].
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As a proof of applicability, we quantified S-HPX in serum samples of 15 HCV fibrotic
and 15 HCV cirrhotic patients (HALT-C trial participants), and compared the quantities
to 15 serum samples of healthy controls. The measurement was undertaken using a
fixed volume of serum samples and the measure is normalized by the ratio of the gly-
coforms of the same protein, as described previously [11]. Statistical analyses were per-
formed to find the association between the different analytes and the disease status. The
mean ratio and standard error of 916.4/843.6 in control, fibrotic, and cirrhotic groups was
7.905 ± 0.8562, 13.69 ± 2.942, and 29.99 ± 4.950; and that of 1080.5/1007.7 was 8.802 ± 0.8,
11.65 ± 1.558, and 21.59 ± 2.587; and that of 1153.2/1007.7 was 1.07 ± 1.131, 4.261 ± 1.979,
and 14.65 ± 3.49 respectively. One-way ANOVA analysis showed that the relative ratios
for the three analytes, 916.4/843.6 (p < 0.0001), 1080.5/1007.7 (p < 0.0001), and 1153.2/1007.7
(p = 0.0004) vary significantly between the control, fibrosis, and cirrhosis groups
(Figure 5). Thus, this study expands the number of meaningful analytes for the detection
of liver fibrosis. It confirms the results observed in our earlier study, that the S-HPX in-
creases progressively in fibrotic and cirrhotic participants compared to disease-free controls
(Figure 5). Further studies are needed to understand the mechanism and biological pro-
cesses controlling this outcome. Nevertheless, our results show that the mLC–MS/MS-PRM
assay has adequate analytical performance for direct quantification of the clinically relevant
S-HPX analyte in serum samples.

Overall, we demonstrate the utility of a 13 min mLC-MS/MS-PRM assay for the quan-
tification of the S-HPX glycoforms diagnostic of liver fibrosis of HCV etiology. The assay is
more sensitive compared to that of our earlier report, highly reproducible, and amenable to
100 sample injections per day. Target analyte carryover between the sample injections is
negligible (results not shown). In conjunction with a simple sample preparation method
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without an off-line desalting step, our workflow enables analysis of at least 30 samples per
day in triplicate, including necessary QC injections. These parameters would be applicable
in a clinical setting. A further increase in the throughput is feasible using a wider-bore capil-
lary column with a higher flow rate, thereby reducing the gradient run time. A multi-nozzle
emitter suitable for a flow rate up to 40 µL is commercially available and would support
such adjustments. Optimization of a high-flow high-sensitivity methodology would be a
focus for future studies.
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Figure 5. Quantification of S-HPX in control (CTRL, n = 15) and progressing stages of liver disease,
liver fibrosis (FIB, n = 15), and cirrhosis (CIR, n = 15). S-HPX, the ratio of monosialylated glycopeptide
of the same structure (disialoT/monosialoT) increases significantly (p < 0.01) from the control,
to the fibrosis and cirrhosis groups. Ratio of (A) HexNAc-Hex-2Neu5Ac/HexNAc-Hex-Neu5Ac,
(B) 2HexNAc-2Hex-3Neu5Ac/2HexNAc-2Hex-2Neu5Ac, (C) 2HexNAc-2Hex-4Neu5Ac/2HexNAc-
2Hex-2Neu5Ac.

3. Materials and Methods
3.1. Materials

Ammonium bicarbonate, DL-dithiothreitol (DTT), iodoacetamide (IAA) (Sigma-Aldrich
St. Louis, MO, USA); sequencing grade trypsin (Promega, Madison, WI, USA)). LC/MS
grade Water, 0.1% formic acid in Acetonitrile, 0.1% formic acid in Water (Thermo Fisher
Scientific, Waltham, MA, USA). Acclaim PepMap 100 column (Thermo Fisher Scientific,
Waltham, MA, USA).
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3.2. Sample Processing

Serum samples were processed by trypsin digestion, without any enrichment step,
as described earlier [11]. Briefly, 2 µL of each serum sample was diluted to 140 µL with
25 mM ammonium bi-carbonate; the proteins were reduced by 5 mM DTT at 60 ◦C for
1 h, followed by alkylation with 15 mM iodoacetamide for 20 min at RT in the dark.
Residual iodoacetamide was reduced with 5 mM DTT for 20 min at RT. The proteins (20 µL
by volume from above) were digested with mass spectrometry grade trypsin (1 µg) at
37 ◦C O/N. Tryptic peptides were analyzed without further processing to ensure reliable
quantification of the glycoforms.

3.3. Micro-Flow LC-MS/MS-PRM

LC-MS/MS analysis was performed using an Ultimate 3000 RSLCnano chromatograph
and Orbitrap Fusion Lumos Mass Spectrometer platform (Thermo) with a multi-nozzle
emitter (NEWOMICS, Berkeley, CA, USA) used as the microflow sprayer. Glycopeptide
separation was achieved in microflow mode using an Acclaim PepMap 100 capillary column
75 µm ID × 20 mm length, packed with C18 5 µm, 300 Å (Thermo). Glycopeptides were
separated as follows: starting condition flow 5 µL, 2% ACN, 0.1% formic acid; 0–1 min flow
5 µL, 2% ACN, 0.1% formic acid; 1–2 min flow 1.5 µL, 2–5% ACN, 0.1% formic acid; 2–5 min
flow 1.5 µL, 5–98% ACN, 0.1% formic acid; 7–9 min flow 1.5 µL, 98% ACN, 0.1% formic acid;
followed by equilibration to starting conditions for an additional 4 min (Supplementary
Figure S1).

We used a Parallel Reaction Monitoring (PRM) workflow with one MS 1 full scan
(400–1800 m/z, resolution 120 K, max IT 50 ms) and scheduled MS/MS fragmentation
(Isolation window m/z 2.0, HCD fragmentation, resolution 30 K, scan range 200–1400,
RF Lens 55%) for the analysis of the sialylated O-HPX glycopeptide TPLPPTSAHGN-
VAEGETKPDPVTER (Table 1).

Table 1. Targeted PRM analysis of tryptic O-glycopeptide of HPX: analyte composition, MS data
collection parameters, and transitions used for quantitation is highlighted.

Compound m/z z Collision
Energy (%)

Transitions Used for
Quantitation

HexNAc-Hex-Neu5Ac 843.6 4 20 905.8

HexNAc-Hex-2Neu5Ac 916.4 4 20 905.8

2HexNAc-2Hex-3Neu5Ac 1080.5 4 20 905.8

2HexNAc-2Hex-4Neu5Ac 1153.2 4 20 905.8

2HexNAc-2Hex-2Neu5Ac 1007.7 4 20 905.8

HexNAc 973.5 3 20 905.8

HexNAc-Hex 770.9 4 20 905.8

3.4. Study Population

Serum samples of participants in the HALT-C trial were obtained from the central
repository at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
as described previously [12]. In this study, O-HPX glycoforms comparison was performed
in 30 participants (15 HCV fibrotic and 15 HCV cirrhotic patients) and 15 disease-free
controls that donated blood samples at Georgetown University (GU) in line with approved
IRB protocols. Briefly, the HALT-C trial is a prospective randomized controlled trial of
1050 patients that evaluated the effect of long-term low-dose peginterferon alpha-2a in
patients who failed initial anti-HCV therapy with interferon [18]. Liver disease status of the
study participants was classified based on biopsy-evaluation into groups of fibrosis (Ishak
score 3–4) or cirrhosis (Ishak score 5–6). The two groups of liver disease samples, and the
controls, were frequency matched on age, gender, and race (Supplementary Table S2).
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3.5. Data Analysis

LC-MS/MS data were processed by Quant Browser (Thermo) with manual confir-
mation/integration. Peak areas were used for peptide and glycopeptide quantification
and data normalization. A specific Y-ion (e.g., loss of whole glycan) was used for the
quantification of the O-glycopeptides. The specific backbone fragments (y-ions) were used
for the confirmation of the correct O-glycopeptides signal. The details of the MS/MS
transitions used for the quantification of each glycoforms are listed in Table 1. Relative
intensity of multiple sialylated analyte was calculated by normalizing its peak area to the
peak area of monosialylated glycopeptide of the same structure (DisialoT/monosialoT,
etc.), as described previously [11].

Statistical analysis for the HCV dataset was performed using GraphPad Prism software
(v9.3.1). The ratio of three HPX-sialylated analytes 916.4, 1080.5, and 1153.2, to their
respective non-sialylated forms (843.6, 1007.7, and 1007.7), was used as the quantitative
measure for evaluation of the liver disease. The mean, standard error of mean, and the one-
way ANOVA test was performed to determine the correlation between different analytes
and disease status, and the data was visualized by nested Tukey plot.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27072213/s1, Figure S1: A schematic showing gradient conditions for LC-MS/MS
analysis, Table S1: Basic information on samples analyzed in this study, participant demography and
disease conditions are provided.
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