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Abstract: To utilize excess glycerol produced from the biodiesel industry, researchers are developing
innovative methods of transforming glycerol into value-added chemicals. One strategy adopted is
the conversion of glycerol into acetins, which are esters of glycerol that have wide applications in
cosmetics, pharmaceuticals, food and fuel additives, and plasticizers and serve as precursors for
other chemical compounds. Acetins are synthesized either by traditional chemical methods or by
biological processes. Although the chemical methods are efficient, productive, and commercialized,
they are “non-green”, meaning that they are unsafe for the environment and consumers. On the
other hand, the biological process is “green” in the sense that it protects both the environment and
consumers. It is, however, less productive and requires further effort to achieve commercialization.
Thus, both methodologies have benefits and drawbacks, and this study aims to present and discuss
these. In addition, we briefly discuss general strategies for optimizing biological processes that could
apply to acetins production on an industrial scale.
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1. Introduction

All chemical compounds or substances used for commercial purposes are either
natural (produced by plants, animals, and microbes) or synthetic (produced by chemists
and engineers) [1]. The extraction of natural products from their native source is regarded
as cleaner and more sustainable as compared to chemical synthesis, especially when
green process concepts and principles are followed and utilized [2,3]. Advanced effective
and selective approaches make it simple to extract or isolate a specific natural product
from its natural host [2–4]. However, there is no such shortcut available for non-natural
products, which need to be synthesized either by traditional chemical methods or by
biological processes. Even a natural product may require synthesis because of its inefficient
extraction from a natural source, prolonged extraction time, low-quality extraction, unit
operations under harsh conditions, higher energy consumption, economical costs, or high
quantity of waste generation. Additionally, chemical or biotechnological synthesis is often
required to convert surplus industrial byproducts into value-added compounds such as
the transformation of surplus glycerol generated during biodiesel production into value-
added chemicals. Generally, products of interest are synthesized by traditional chemical
methods because these methods have some advantages, such as scalability and economic
feasibility. However, environmental pollution due to the employment of toxic solvents and
chemical reagents and the release of hazardous byproducts are serious consequences of
this approach.
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Mono-, di-, and triacetin are non-natural compounds and therefore require synthe-
sis [5–9]. Due to their great importance in a range of industrial applications, several
methods have been described for their production. The synthetic methods are presented
here as “green and non-green” (Figure 1). Both green and non-green methods have their
benefits and limitations. The traditional chemical method, which is a non-green synthetic
method of creating acetins, is based on the esterification of glycerol with carboxylic acid or
acetic anhydride [10–15]. A high rate of conversion of glycerol to acetins is achieved, and
the process is productive and has been commercialized. Nevertheless, there are several
drawbacks associated with this approach. The conventional chemical routes for acetins
synthesis suffer from the need for hazardous substances such as acetic anhydride and acetic
acid, a high reaction temperature and pressure, and the release of toxic intermediates. These
can cause environmental problems [16–19]. Moreover, the acetins generated by traditional
chemical methods contain toxic contaminants such as reaction solvents and radicals, which
limits their applications in the pharmaceutical, food, and cosmetic industries due to them
being unsafe for consumers. Due to the aforementioned issues, researchers have instigated
a search for an eco-friendly, renewable method of acetins production, often termed “green”
or biological synthesis (Figure 1). When using a green route, acetins are produced either
with enzymes [20,21] or microbial cells as biocatalysts [22]. Biocatalysis is a mature and
widely used green technology for the eco-friendly production of valuable metabolites and
commodity chemicals [23]. Lipases are one of the most common biocatalysts for acetins
synthesis via the trans-esterification reaction of glycerol with alkyl acetate at a moderate
temperature [20]. Alkyl acetate is used as an acetate donor for the trans-esterification
reaction and the most commonly used acetate donor is methyl acetate, a well-known stable
material for lipase activity [24]. An alcoholic byproduct, methanol, is produced during the
lipase-catalyzed trans-esterification reaction of glycerol with methyl acetate, which is less
harmful to the environment [20]. Using enzymes as biocatalysts for acetins production is a
safe alternative to conventional chemical synthesis. The disadvantages of this method are
that the enzymes are expensive, not easily available, unstable, and sometimes depend upon
expensive cofactors (colipase) [25]. Moreover, the trans-esterification reaction catalyzed
by commercial lipase is reversible and the co-substrate, alkyl acetate, incurs additional
cost [26]. Therefore, this method cannot support the feasible and economical production
of acetins and is unfavorable for commercialization without further efforts being made.
The second route of acetins biosynthesis is microbial production, which could be a highly
sustainable and environmentally favorable approach. Recently, we developed a biological
method of acetins production by engineering E. coli as a cell factory [22]. A titer of more
than 25 g/L was achieved in E. coli using glycerol as a sole substrate [22]. Further efforts are
required to improve the existing host strain or find other robust strains for high yield and
productivity. Fermentation process optimization will guarantee a higher yield of acetins
and may even reach the commercialization scale.
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Figure 1. Acetins synthesis by “green” and “non-green” methods. The non-green synthesis of 
acetins involves traditional chemical methods that use inorganic catalysts (upper panel). The green 
synthesis of acetins involves enzymatic and microbial methods (middle and lower panel). The ab-
breviations are as follows: OAc, acetate group; Maa, maltose O-acetyltransferase; Cat, Chloram-
phenicol O-acetyltransferase. 
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biodiesel industry [15]. Due to the exponential growth in the production of biodiesel in 
recent years, glycerol has been oversupplied, and its production has surpassed two mil-
lion metric tons, which could cause environmental issues. In addition, its value has de-
creased steadily. For the economic competitiveness of the biodiesel industry, increasing 
interest has been stimulated by research on the conversion of glycerol into value-added 
chemicals. One such strategy adopted is the transformation of glycerol into acetins. 
Acetins, also called glycerol acetates, exist in three forms: monoacetin (glycerol monoace-
tate), diacetin (glycerol diacetate), and triacetin (glycerol triacetate). The acetin form given 
is dependent on the number of the hydroxyl group of glycerol substituted with the acetyl 
group. Mono- and diacetin typically exist in two isomeric forms—1-monoacetin and 2-

Figure 1. Acetins synthesis by “green” and “non-green” methods. The non-green synthesis of acetins
involves traditional chemical methods that use inorganic catalysts (upper panel). The green synthesis of
acetins involves enzymatic and microbial methods (middle and lower panel). The abbreviations are as
follows: OAc, acetate group; Maa, maltose O-acetyltransferase; Cat, Chloramphenicol O-acetyltransferase.

2. Importance and Applications of Acetins

Approximately 10% of the crude glycerol produced globally is recovered from the
biodiesel industry [15]. Due to the exponential growth in the production of biodiesel in
recent years, glycerol has been oversupplied, and its production has surpassed two million
metric tons, which could cause environmental issues. In addition, its value has decreased
steadily. For the economic competitiveness of the biodiesel industry, increasing interest
has been stimulated by research on the conversion of glycerol into value-added chemicals.
One such strategy adopted is the transformation of glycerol into acetins. Acetins, also
called glycerol acetates, exist in three forms: monoacetin (glycerol monoacetate), diacetin
(glycerol diacetate), and triacetin (glycerol triacetate). The acetin form given is dependent
on the number of the hydroxyl group of glycerol substituted with the acetyl group. Mono-
and diacetin typically exist in two isomeric forms—1-monoacetin and 2-monoacetin—and,
similarly, 1,2-diacetin and 1,3-diacetin. Acetins have garnered the most interest among the
glycerol derivatives because of their extensive commercial applications (Figure 2). Their
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unique physiochemical properties such as stability, biodegradability, and water miscibility
make them attractive for industrial applications. They are used as plasticizers, emulsifiers,
stabilizers, solvents, space foods, cosmetics, pharmaceuticals, medicines, food additives,
humectants, and vehicles for drug delivery systems [5,7,27]. They are also used as biofuel
additives to improve viscosity and cold flow properties [8]. Monoacetin is used as a
tanning agent in leather and for the production of explosives and smokeless powders [8].
Diacetin is used as a solvent for various dyes. Among the three products, triacetin is
considered the most valuable and has been widely used in versatile applications. Therefore,
the price of triacetin is comparatively high and stable, with demand growing by 5–10%
yearly [28]. Triacetin is mostly used as a fuel additive due to its positive influences on
fuel properties. A blending of 10% triacetin with biodiesel improves its viscosity and cold
flow properties, enhances its octane rating, significantly improves engine performance,
and reduces greenhouse gas emissions. Triacetin is also used as a solvent and as the acyl
donor in isoamyl acetate synthesis [29,30], as well as in the synthesis of cinnamyl acetate
from cinnamaldehyde [31]. The global demand for triacetin is more than 110,000 tons per
annum [28]. It has been forecasted that the triacetin market will grow from 234.5 million
USD to 309.9 million USD in 2022 and is expected to reach 362.1 million USD by 2026, with
a CAGR (compound annual growth rate) of 4.8% during the forecast period [32,33]. Many
chemical companies, such as Alfa Aesar; Lemon-Flex; Hefei TNJ Chemical Industry Co.,
Ltd.; Atanor S.C.A.; Spectrum Chemical Mfg. Corp.; Jiangsu Ruichen Chemical Co., Ltd.;
Eastman Chemical Company; Lanxess AG; Yixing Kaixin Chemical Co., Ltd.; BASF SE; KLK
OLEO; Polynt Group; Mosselman; and ReAct Chemical Co., Ltd., are involved around the
world in manufacturing triacetin [14,34]. According to the “Triacetin Market Report 2021”,
the key players in the triacetin market are North America (USA and Canada), Europe (UK,
Germany, France, and the rest of Europe), Asia Pacific (China, Japan, India, and the rest of
the Asia Pacific region), Latin America (Brazil, Mexico, and the rest of Latin America), and
the Middle East and Africa (GCC and the rest of the Middle East and Africa) [35].
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3. Non-Green Synthesis of Acetins

Numerous industrially relevant compounds are produced from glycerol via common
synthetic approaches. In planning the chemical route for the conversion of glycerol into
high value-added products, several factors are considered, such as the cost and availability
of co-reactants, the amount of energy needed, and the cost of purifying the end products.
Glycerol is converted into high-value products generally through esterification [34,36],
etherification [37,38], oligomerization [39,40], hydrogenolysis [41,42], oxidation [43,44], ac-
etalization [45,46], reforming [47,48], pyrolysis and gasification [49,50], dehydration [51,52],
and carboxylation [53,54]. In recent years, researchers have paid great attention to the
acetylation (esterification) of glycerol into acetins using various kinds of chemical catalysts.
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Based on catalytic acetylation reactions, which require acetate donors, several chemical
methods have been described for acetins synthesis [7,15,55,56]. Most commonly, acetic acid
or acetic anhydride is used as an acetate donor. In addition to catalysts and solvents, the
synthesis of acetins by the acetylation reaction involves glycerol as a substrate and acetic
acid or acetic anhydride as a co-substrate. The acetylation of glycerol to produce acetins
proceeds either through homogeneous catalysts, which involve mostly mineral acids such
as hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, p-toluene-
sulfonic acid, pyridinium p-toluene-sulfonate, etc. [15,27,57–60], or heterogeneous solid
acid catalysts such as ion-exchange and functionalized resins, activated carbon, functional-
ized biomass-derived carbon, metal oxides (mixed oxides and supported mixed oxides),
silica (mesoporous or functionalized), zeolites and functionalized zeolites, heteropoly acids,
and supported heteropoly acids [19,59,61–73]. A series of heterogeneous solid acid cata-
lysts, including graphene oxide, Amberlyst-70, SnO2-based acid catalysts (MoO3/SnO2,
SO4/SnO2), zirconia-based catalysts (WO3/TiO2-ZrO2, HSiW/ZrO2, HPW/ZrO2, and
HPMoO3/TiO2-ZrO2), and silver-exchanged phosphortungstic acid (Ag1PW), have re-
cently been reported for glycerol acetylation to acetins [74–80]. The product selectivity
towards mono-, di-, or triacetin depends on the nature of the catalyst surface and the
density and strength of the catalytic sites [81]. Like other chemical reactions, the acetylation
of glycerol can be influenced by certain experimental parameters, such as reaction time,
temperature, reactants, their molar ratios (acetic acid/acetic anhydride over glycerol),
catalyst amount (load), surface acidity, and the stability of the catalyst [17].

The acetylation of glycerol with an acetate donor consists of three simultaneous
consecutive reactions. The glycerol is first acetylated to monoacetin, involving one molecule
of acetate donor; the monoacetin is converted into diacetin by the second acetylation with
the donor, and subsequently, the diacetin is converted into triacetin by obtaining the final
acetate group in the same way. The mechanism of glycerol acetylation depends upon the
type of catalyst (Bronsted or Lewis acid) used for the reaction as well as the nature of the
co-reactants, i.e., acetic acid or acetic anhydride. The reaction mechanism of acetylation
in the case of acetic acid as a co-reactant is generally completed in three consecutive steps.
First, protonation of the carbonyl group of the acetic acid occurs by a strong acid catalyst
that generates a stable intermediate called acylium ion [17]. The resultant acylium ion is
more susceptible to nucleophilic attack; therefore, in the second step the hydroxyl group of
the glycerol, which acts as a nucleophile, attacks the acylium ion, producing a tetrahedral
intermediate called hemiacetal, which affords two isomeric cyclic acetals by different
pathways. Finally, the hemiacetal loses a water molecule, resulting in monoacetin [17]. Two
different monoacetin isomers (1-monoacetin or 2-monoacetin) can be generated during this
step. The monoacetin undergoes two consecutive reactions with acetic acid, producing
di- and triacetin [77,82–85]. The acetylation of glycerol with acetic anhydride proceeds
through two possible mechanisms [17,86–88]. In the first plausible mechanism, a carbonyl
oxygen atom of acetic anhydride is protonated by a strong acid, thereby generating a
positive center, which is attacked by a nucleophile (hydroxyl group of glycerol) to form a
tetrahedral intermediate [17]. In the second plausible mechanism, the acidic site within the
catalyst pores adsorbs acetic anhydride and forms a stabilized intermediate/acylium ion
(acylation) along with the loss of an acetic acid molecule. Monoacetin is produced when the
hydroxyl group of glycerol attacks the carbonyl group of the intermediate. Di- and triacetin
are produced by repeating the same steps [17]. The last conversion reaction, i.e., triacetin
production, is unsatisfactory [89] due to the comparatively lower standard Gibb’s free
energy of the primary and secondary reactions (19.15 and 17.80 kJ/mol) compared to the
tertiary reaction (55.58 kJ/mol) [90], and thus the yield of triacetin is lower than mono- and
diacetin in the reaction mixture. Ionic liquid-based [91] and microwave-assisted acetylation
of glycerol to acetins using activated natural zeolite have also been reported [64]. Due to
more industrial applications and the demand for triacetin over mono and diacetins, several
special methods have been described for its preparation at high yields [7,15]. These methods
involve the acetylation of glycerol into monoacetin with acetic acid and the subsequent
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acetylation of monoacetin into di- and triacetin using acetic anhydride (instead of acetic
acid) [15].

Both homogeneous and heterogeneous catalysts are extensively used for acetins syn-
thesis on an industrial scale [7,15,55–57,59,62,92–94]. Homogeneous catalysts obtain a
higher conversion rate and yield and are thus often preferred [16]. The esterification re-
action of glycerol with acetic acid via homogeneous catalysts is less desirable because it
requires harsh reaction conditions, exorbitant acetic acid consumption, a huge catalyst
concentration, a higher reaction temperature, and a longer reaction time [16]. The electricity
consumption in terms of reaction time demonstrated the highest environmental impact
amongst other operating factors. The use of mineral acids as catalysts is usually limited by
several major technical and environmental drawbacks, including product purity, reactor
corrosion, and large waste amounts [95]. Therefore, due to these disadvantages, efforts
have generally shifted to the use of heterogeneous catalysts that are considered less toxic,
highly selective, easy to separate, relatively more sustainable, and favorable for the envi-
ronment. The major advantage of heterogeneous catalysts is that it affords scientists the
ability to manipulate the surface area and the acid density. In addition, heterogeneous
catalysts are reusable, aiding their industrial applications for acetins synthesis. However,
the active site leaching causes deactivation, instability, poor regeneration ability, and low
turnover frequency. Moreover, undesirable reactions such as oxidation, dehydration, the
inter-esterification occur [96]. Heterogeneous catalysts also suffer from high solubility in
polar media and low specific surface areas.

The traditional chemical methods are highly efficient [97–100] in terms of their conver-
sion rate, yield, and productivity [79,101,102], but suffer from environmental and technical
drawbacks [103]. As mentioned above, the final products generated contain mostly mono-
and diacetin (low-value product) with remarkably low triacetin (high-value product) levels.
Both acetic acid and acetic anhydride are widely used as co-reactants in chemical synthesis
methods for acetins, but there is no study comparing the economic and environmental
sustainability of the acetic acid–glycerol and acetic anhydride–glycerol acetylation path-
ways. It is thus difficult to conclude which chemical route has better potential for acetins
production on an industrial scale. The price of the co-reactants, acetic acid and acetic anhy-
dride, are 160 and 170 USD per liter, respectively, if purchased from Sigma Aldrich. The
use of these reactants becomes uneconomical for the mass production of acetins. Besides,
the high explosion potential of acetic anhydride makes it unsuitable for manufacturing [28].
Therefore, a sustainable process is needed for acetins production to turn from conventional
non-green synthesis into modern green synthesis to overcome the harmful consequences
of a chemical process. The green synthesis of acetins could have less of a burden on the
environment; thereby making it an economically and environmentally sustainable process.

4. Green Synthesis of Acetins

In modern science, “green synthesis” has gained extensive attention as a sustainable,
reliable, and eco-friendly approach to synthesizing a wide range of platform chemicals
and products. Green synthesis is regarded as an important tool to reduce the destructive
effects associated with traditional chemical methods and thus to avoid the production
of unwanted and harmful materials. Glycerol acts as a precursor for the production of
a large number of commodity chemicals, but the synthesis of value-added compounds
from glycerol by biological methods has recently been considered. As discussed above, the
conventional conversion of glycerol to acetins is performed with common homogeneous or
heterogeneous chemical catalysts. To make the production greener, the biological synthesis
of acetins is of considerable importance over conventional approaches. Biological synthesis,
which involves the use of enzymes and microorganisms, has been widely used for the
production of various kinds of commercial products. The biological production of acetins
has several advantages over the traditional chemical synthetic methods. For example, it
provides high quality and safe products in an environmentally friendly way. Here, we
briefly summarize the current advances in research on the green synthesis of acetins.
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4.1. Enzymatic Synthesis of Acetins

Lipases have been applied for the synthesis of a wide variety of glycerol derivatives,
including glycerol carbonate, etc. Acetins are prepared by the trans-esterification reactions
(the exchange of groups between ester and alcohol) of glycerol or triglyceride catalyzed
by lipases [20,104,105]. An acetate donor is needed for the trans-esterification reaction.
The acetate donor should not affect the lipase stability and should be able to react at a
moderate temperature. A variety of acetate donors are used for the trans-esterification
reaction converting glycerol to acetins, including acetic acid, vinyl acetate, ethyl acetate,
acetic anhydride, and methyl acetate [21]. Among different acetate donors, methyl acetate
is a well-known stable material for lipase activity [106]. An alcoholic byproduct, methanol
is generated during this reaction. The solvent and methyl acetate are reused after removing
the target product (acetins) and the byproduct (methanol) from the reaction medium.
Generally, oil-jacketed columns and molecular sieves are used for the separation of acetins
and methanol, respectively [107,108]. Experimental findings have shown that lipases
catalyze esterification reactions by the ping-pong bi-bi mechanism [109–112]. Thus, the
enzymatic mechanism from methyl acetate and glycerol in the lipase-mediated acetins
synthesis could be proposed as follows: Firstly, methyl acetate [MA] initially binds to
lipase [LI] forming lipase-methyl acetate [LI-MA]. Secondly, the [LI-MA] subsequently
isomerizes to an acetyl-lipase intermediate [LI*] by releasing methanol [MOH]. Thirdly,
glycerol [Gly] binds to the [LI*] forming acetyl-lipase complex [LI*-Gly]. Fourthly, the
[LI*-Gly] forms lipase-acetin complex [LI-AC]. Finally, the [LI-AC] produces acetins [AC]
and free lipase [LI].

Lipases used for trans-esterification reactions are either classified according to their
regioselectivity, such as nonspecific lipase, 1,3-selective lipase, and 1,3-specific lipase, or
immobilization [112]. The immobilized lipases are more stable in organic solvents at high
temperatures than non-mobilized lipases; however, the immobilized lipases are more expen-
sive. The regioselectivity of lipase determines the trans-esterification reaction type [113,114].
Lipases such as Novozym 435, Novozym CALB L, Lipase AK, Lipase F-AP15, Lipase
PS-DL, Lipozyme TL IM, and Lipozyme RM IM are potentially active for acetins synthesis.
Novozym 435, a nonspecific lipase, and Lipozyme RM IM, a 1,3-selective lipase, have
been used and conversion rates of 36.11 and 1.93%, respectively, were achieved [115]. By
optimizing the reaction conditions for Novozym 435, conversion rates of 95.0% and 85.2%
for pure and crude glycerol, respectively, were achieved [20]. Using Triticum aestivum lipase,
a 65.93% glycerol conversion rate was achieved after 15 h [105]. Lipases from Candida rugosa
OF; Mucor javanicus, LMJ, LOF; porcine pancreas, LPP; Pseudomonas cepacea, LPsC; Pseu-
domonas sp., LPs; Candida antarctica, LCA; and Candida cylindracea, LCC were screened for
acetins synthesis in their immobilized forms on acrylic resin [104]. The immobilized lipase
from Candida antarctica resulted in the highest efficiency by producing a mixture of fatty
acid esters and triacetin with a conversion rate of 80% [104]. The highest conversion rate
was achieved with Novozym 435 from Candida antarctica immobilized on acrylic resin [21].
Unlike traditional chemical synthesis, there are several advantages to using lipases for
acetins synthesis, such as lower energy requirements, less waste generation, higher quality
and purer products, higher stability of catalysts (Novozym 435 can be reused more than
100 times), eco-friendliness, and no hazardous chemicals [104,116–118].

The lipase-based synthesis of acetins has a promising future. However, there are
certain limitations to this approach, including a relatively high cost and a limited supply
of lipases. Moreover, the final reaction mixture containing reactants, alcohol byproducts,
and the target acetins increases the cost of the downstream process for the purification of
acetins. Methyl acetate (co-substrate) incurs an extra cost in the lipase-based approach.
Some lipases are sensitive to impurities, whereas crude glycerol contains various impurities
such as salts, ashes, etc. Little work has been conducted on the development of robust lipase
for acetins synthesis, and the production of acetins on an industrial scale is currently less
effective. More novel lipases are still to be identified for the efficient production of acetins.
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Another issue is the inhibition of lipase-catalyzed reactions by short-chain alco-
hols [119]. Since lipase has a considerably higher affinity toward short-chain alcohols
than water, the alcohols molecules generated as a by-product in the acetins production
could gradually replace water molecules on the lipase surface [119,120]. This could disrupt
intra-protein hydrophobic interactions, resulting in the collapse of the enzyme structure
following the irreversible deactivation of lipase. Moreover, alcohols have been regarded
as reversible inhibitors by competitive binding to lipase. Thus, an improvement of li-
pase against short-chain alcohols inhibition is required by mining alcohol stable lipases,
mutagenesis of existed enzymes, or process engineering. In addition to the kinetic and
molecular inhibition, short-chain alcohol could also deactivate lipase by releasing it from
solid support [119].

Immobilization of lipase using solid support could improve the enzyme stability,
reuse, and recovery. Inorganic oxides such as silicon oxide, aluminum oxide, titanium
oxide, and zirconium oxide have been widely applicated with high stability and sorption
capacities [121]. However, the inorganic oxides have some limitations, such as lipase
immobilization, including low affinity toward the enzymes; rigidity to a geometrical shape;
and restricted biocompatibility resulting in lipase deactivation [122]. To improve lipase
activity, hybrid and composite materials have been developed [109]. Magnetic particles,
nanoparticles, mesoporous materials, ceramic materials, carbon nanotubes, and graphene
are promising in the production of acetins using lipase [122,123].

4.2. Microbial Production of Acetins

Microorganisms grow in a wide variety of habitats and conditions and can utilize
a broad range of substrates. Many bacteria, including Escherichia, Klebsiella, Lactobacillus,
Clostridium, and others, efficiently metabolize glycerol [124,125]. In recent years, researchers
have discovered a way to monetize extra crude glycerol from biodiesel manufacturers by
converting it into value-added compounds through microbial fermentation [126,127]. Glyc-
erol is extensively utilized for the microbial production of a variety of chemicals and
products ranging from fuel additives to commodity chemicals, including 1,3-propanediol,
1,2-propanediol, docosahexaenoic acid, 1,3-dihydroxyacetone, citric acid, lactic acid, bio-
ethanol, hydrogen, single cell oil, etc. [128,129]. The number of studies on the metabolic
engineering of microbes for the preparation of chemicals and fuels from glycerol is increas-
ing all the time, but the number of methods for the microbial engineering of glycerol into
acetins is still limited. Several microorganisms, including Klebsiella oxytoca, Enterobacter
aerogenes, and some Enterobacter species, have been reported to produce monoacetin in
trace amounts [130]. The construction of novel pathways for target products is one of the
most difficult tasks encountered by metabolic engineers. New enzymes must be developed
for non-natural products such as acetins, which is a difficult task, but recent advances
in synthetic biology and metabolic engineering are highly helpful. For instance, E. coli
was recently metabolically engineered to produce acetins from glycerol as a substrate [22].
The acetins biosynthesis pathway was successfully constructed via the overexpression of
enzymes, maltose-O-acetyltransferase (MAA), and chloramphenicol-O-acetyltransferase
(CAT) (Figure 1). The titer of acetins in that study was stepwise increased from 0.04 g/L
to more than 27 g/L using a variety of strategies, including heterologous gene expression,
metabolic engineering, and culture optimization [22]. Acetins production via the microbial
method does not require any co-substrate, while all other methods reported for acetins pro-
duction are exclusively dependent on co-substrates (acetic acid, acetic anhydride, methyl
acetate, etc.) as well as specific solvents for reactions. The successful construction of a
microbial pathway for the green synthesis of acetins was reported for the first time; how-
ever, the conversion rate needs to be improved for commercial production. To achieve a
successful transition from the laboratory-scale demonstration to the large-scale commercial
production of acetins, three major performance parameters, the product yield (g/g of the
substrate), the productivity (g/L/h), and the product titer (g/L), must be addressed. As
acetins are one of the bulk chemicals, profit margins are razor-thin, so it is vital to optimize
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these three parameters to compete with traditional chemical synthesis. Here, we briefly
explore the prospects for acetins production via microbial fermentation.

4.2.1. Glycerol Utilization Engineering

The microbial host must be able to efficiently utilize the substrate to produce the
desired product in high quantitates. The E. coli engineered to produce acetins utilized 4.1%
out of 10% glycerol in the production medium [22]. It has been reported that glycerol is
inefficiently utilized by E. coli and is known to trigger the carbon stress response, therefore
rewiring glycerol metabolism in E. coli is highly successful in producing the high titer of the
target metabolites [131,132]. Overexpression of genes involved in the glycerol utilization
pathway aid in improving production. For example, the overexpression of the glpK gene
improves the production of shikimic acid in E. coli from glycerol [133].

4.2.2. Engineering Strain for Acetins Tolerance

Acetins seem to be inhibitory to the production host at high concentrations (our unpub-
lished data). Industrial strains must be resistant to product accumulation in the production
medium to achieve a high titer. The rational engineering strategy for improving the acetins
tolerance is to express efflux pumps that could enhance the export of acetins. E. coli has
been engineered by expressing efflux pumps for improving tolerance against inhibitory
biofuels and carotenoids [134,135]. To boost acetins production, the same strategies might
be helpful.

4.2.3. Selection of Microbial Strain

One of the most critical components of the microbial production process is choosing
the right host strain. To date, only E. coli has been engineered for acetins biosynthesis
because it is a familiar model organism, relatively well studied, and easy to genetically
manipulate. Several other robust microbial hosts that could be employed for the bioproduc-
tion of acetins include Corynebacterium glutamicum, Bacillus sp., Clostridium sp., Pseudomonas
sp., and S. cerevisiae. A variety of methods have been implemented for genetic manipu-
lations that optimize production. Recent developments in computational tools are very
helpful for designing optimal and robust microbial strains that can produce acetins on a
commercial scale.

5. Conclusions

Glycerol is transformed into acetins via two methods: the traditional chemical or the
biological method. Glycerol is a byproduct of the biodiesel industry. It is preferable to
convert it into value-added compounds in an environmentally friendly and sustainable
manner rather than using a method that could harm the environment and be unsafe for
consumers. When compared to non-green, traditional chemical synthesis methods, the
green synthesis of acetins using biocatalysts or microbial fermentation is a very attrac-
tive proposition (Figure 3 and Table 1). The biosynthesis of acetins using crude glycerol
from the biodiesel industry is mostly unknown, and consumer supply is largely reliant
on chemical synthesis, which is hazardous to the environment and consumers. Further
research into green synthesis is required to extend the current laboratory-based work to the
industrial scale.
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