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Abstract: Eight naphtho-gamma-pyrones (NγPs) (1–8), together with four known biosyntheti-
cally related coumarin derivatives (9–12), were isolated from the potato dextrose agar media of
a marine-derived fungus Aspergillus niger S-48. Among them, natural compounds 1 and 2 were
tentatively subjected to benzohydrazide reaction to evaluate the importance of pyran rings in NγPs.
Their structures were elucidated by extensive 1D and 2D NMR spectroscopic data and MS spectra.
Compounds 1–4 showed obvious activity for reducing cholesterol absorption verging on ezetimibe.
This work highlighted the potential of natural NγPs as NPC1L1 inhibitors.

Keywords: Aspergillus niger; natural products; naphtho-gamma-pyrones (NγPs); Niemann-Pick
C1-Like 1; cholesterol

1. Introduction

Marine fungi with unique metabolic mechanisms under hypersaline, hyperbaric, and olig-
otrophic conditions have provided structurally diverse and pharmacologically active secondary
metabolites [1–3]. Among them, Aspergillus niger was one of the most-found marine fungal
species [4], and biosynthesized a number of specialized small molecules, such as naphtho-
gamma-pyrones (NγPs), ochratoxins, fumonisins, bicoumarins, malformins, and asperazines [5].
Particularly, NγPs pigments were extensively isolated as antimicrobial, antiviral, and antioxidant
agents, attracting a lot of attention from chemists and biologists [6–10].

In our continuing isolation on marine-derived fungi [3], an Aspergillus species, A. niger
S-48, was obtained, and was subjected to chemical investigation to pursue biologically
active NγPs pigments. As expected, twelve secondary metabolites (Figure 1), including
eight known NγPs, were finally isolated from A. niger S-48. Following the established
bioassay approaches in our laboratory, these isolates were evaluated for antibacterial,
antifungal, cytotoxic, and quorum-sensing inhibitory activity, and cholesterol absorption
inhibition activities. In order to tentatively evaluate the importance of pyran ring in
NγPs for bioactivity, two compounds with enough amounts were modified for bioassay.
Herein, the detailed isolation, identification, and bioactivities of natural or semisynthetic
compounds are described.
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Figure 1. Structures of compounds 1–14.

2. Experimental Section
2.1. General Experimental Procedures

HRESIMS data were obtained on an LTQ-Orbitrap spectrometer (Thermo Fisher Scien-
tific, Waltham, MA, USA) equipped with an ESI source. NMR spectra were measured on
Bruker Advance 500 MHz and JEOL JNM-ECP 600 MHz spectrometers. Optical rotations
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were measured on a PerkinElmer 241MC polarimeter (PerkinElmer Instruments, Norwalk,
CT, USA) in MeOH at 20 ◦C. Electronic circular dichroism (ECD) spectra were acquired
on a Chirascan spectropolarimeter (Applied Photophysics, Leatherhead, UK). Column
chromatography (CC) was equipped with silica gel (200−300 mesh; Qingdao Haiyang
Chemical Co., Ltd., Qingdao, China). Thin-layer chromatography (TLC) was performed
with silica gel GF254 plates (Qingdao Haiyang Chemical Co., Ltd., China). Flash chromatog-
raphy was performed on a Teledyne ISCO CombiFlash Rf 200 system equipped with a C18
spherical column (20–35 µm, 100 Å, 80 g). The semi-preparative high-performance liquid
chromatography (HPLC) system (Agilent 1260 Infinity II; Agilent technologies, Böblingen,
Germany) was equipped with a 1260 Quat Pump VL, a 1260 Vialsampler, a 1260 MCT, a
1260 DAD WR, and a ZORBAX SB-C18 column (5 µm, 9.4 × 250 mm), a C18 YMC-Pack
ODS-A column (5 µm, 10.0 × 250 mm), and a π NAP COSMOSIL Packed Column (5 µm,
10.0 × 250 mm).

2.2. Strain and Culturing Conditions

The fungal strain A. niger S-48 was isolated from the root of the mangrove plant, K.
candel (L.) Druce, collected from the Beibu Bay of Guangxi Province, China. The fungus was
identified according to its morphological characteristics and 18S rRNA sequences (Figure S1
from Supplementary Materials; GenBank No. MZ573243). The fungus was deposited at
the School of Pharmacy, Qingdao University, China, and was maintained at −80 ◦C. For
large-scale fermentation, the fresh mycelia of A. niger S-48 were cultured on potato dextrose
agar (PDA) media at 28 ◦C for 4 days. The agar plugs were cut into small pieces under
aseptic conditions and 100 pieces were used to inoculate 100 flasks (1L) of PDA media,
each containing potato extract powder 0.9 g, glucose 3.0 g, sea salt 4.5 g, agar 3.0 g, and
distilled water 0.15 L at pH 5.6. The cultures were grown under static conditions at 28 ◦C
for 40 days.

2.3. Extraction and Purification

The fermented cultures were extracted by ethyl acetate (EtOAc) three times. The
merged organic phase was dried in vacuo to yield the crude extract (5.6 g). The crude extract
was subjected to column chromatography on silica gel with a gradient of MeOH/CH2Cl2
system (0/100, 1/99, 2/98, 3/97, 4/96, 5/95, 1/10, 1/9, 1/8 and 1/6, v/v) to obtain six
fractions (Fr.A−Fr.F) based on TLC technology. Fr.C (1.5 g) was fractionated through a
CombiFlash Rf 200 purification system, eluting with MeOH-H2O (50% MeOH for 40 min,
70% MeOH for 40 min, 100% MeOH for 40 min) to obtain four subfractions (Fr.C1−Fr.C4).
Fr.C2 (170.0 mg) was separated by semi-preparative HPLC system (MeOH/H2O, 50/50,
2 mL/min) using a ZORBAX SB-C18 column to give compounds 9 (9.5 mg, tR 12.5 min),
10 (2.5 mg, tR 14.7 min), 11 (3.3 mg, tR 22.2 min), and 12 (14.0 mg, tR 32.8 min). Fr.C3
(500.0 mg) was purified by a semi-preparative HPLC system (MeOH/H2O, 90/10,
2 mL/min) using a C18 YMC-Pack ODS-A column to afford compounds 6 (27.0 mg, tR
17.0 min) and 7 (20.0 mg, tR 18.4 min). Fr.C4 (350.0 mg) was loaded onto Sephadex LH-20
column eluting with MeOH/CH2Cl2 (2/1) to obtain four fractions (Fr.C41−Fr.C44). Fol-
lowing a similar measure, the Fr.C42 (300.0 mg) was further purified by a semi-preparative
HPLC system (CH3CN/H2O, 65/35, 2 mL/min) using a π NAP COSMOSIL Packed Col-
umn to obtain compounds 1 (7.2 mg, tR 26.2 min), 2 (21.5 mg, tR 29.8 min), 3 (5.4 mg, tR
31.6 min), 4 (3.5 mg, tR 37.9 min), 5 (2.6 mg, tR 24.5 min), and 8 (8.0 mg, tR 18.3 min).

2.4. Structural Modification

Hydrazine monohydrate (3.75 µL, 0.12 mmol) was joined in a solution of compound
1 (7 mg, 0.012 mmol) in absolute ethanol (5 mL), and then the mixture was stirred for
eight hours under 90 ◦C reflux, with TLC analysis indicating the consumption of the
starting material. After reaction, water (5 mL) was added to terminate the reaction. The
solution was evaporated slowly in vacuo and was further extracted with ethyl acetate
(3 × 5 mL). The organic phase was washed with brine and dried with sodium sulfate,
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filtered, and concentrated slowly using rotary evaporation. The mixture was purified by a
semi-preparative HPLC system (CH3CN/H2O, 80/20, 2 mL/min) using a C18 YMC-Pack
ODS-A column to obtain semisynthetic compound 13 (2.1 mg, 30.0% yield, ≥98%). A
similar reaction approach was applied to compound 2 to obtain the derivative 14 (Figure S2
from Supplementary Materials).

Compound 13: brown powder; 1H NMR (DMSO-d6, 600 MHz), and 13C NMR (DMSO-
d6, 150 MHz), see Table S1 from Supplementary Materials; positive HRESIMS m/z [M + H]+

585.1865 (calcd for C32H29N2O9, 585.1868) see Figure S11 from Supplementary Materials.
Compound 14: brown powder; 1H NMR (DMSO-d6, 600 MHz) and 13C NMR (DMSO-

d6, 150 MHz) see Table S2 from Supplementary Materials; positive HRESIMS m/z [M + H]+

585.1870 (calcd for C32H29N2O9, 585.1868) see Figure S16 from Supplementary Materials.

2.5. Molecular Docking Methods

The molecular docking was carried out according to the previously described ap-
proach [11]. In general, it was carried out by SYBYL-X 2.0. The ligand molecule was drawn
using the standard parameters of SYBYL-X. Their geometric conformations were energy-
minimized further by employing the Tripos force field for 1000 steps, and Gasteiger–Hückel
charges were calculated. The protein receptor was prepared using the standard method.
PyMOL was used as a viewer for interaction between ligands and the protein receptor.

2.6. Inhibition of Cholesterol Absorption

Cholesterol uptake in Caco-2 cells was performed according to a previously reported
method [12,13]. Caco-2 cells were received from the American Type Culture Collection
(Rockvill, MD) (ATCC®-HTB-37TM). Samples in DMSO were dissolved in cell-culture
medium and diluted to a concentration of 100 µM. Ezetimibe (100 µM) was used as a
positive control for this study. The fluorescence was measured at the excitation wavelength
of 485 nm and emission wavelength of 535 nm. BCA kit (Thermo Fisher Scientific, Waltham,
MA, USA) was used to determine protein concentration with bovine serum albumin as
standard. The whole protein represented the total number of cells used for normalization.
The effects were expressed as the percentage of cholesterol uptake corresponding to the
control values.

2.7. Antimicrobial Activities

Bacterial and fungal pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus
subtilis, Escherichia coli, Candida albicans, Fusarium foetens, F. solanum, F. mangiferae, F. oxyspo-
rum f. sp. cubense, F. graminearum, Colletotrichum musae (ACCC 31244), C. coccodes (ACCC
36067), C. asianum, Cucumber fusarium wilt, Cowpea wilt, Nectria sp., and Alternaria solani)
were used to assess the antimicrobial activities of compounds. Antimicrobial activity was
carried out by the paper-agar disk diffusion assay as in the previously reported method [14].
Samples were dissolved in MeOH and diluted to a concentration of 4 mg/mL. Next, 10 µL
of the sample solutions was dropped into 6 mm sterile filter paper disks, and the filter
paper disks were placed evenly on the solid media with test strains [14]. Streptomycin,
actidione, and fluconazole were used as the positive controls, and MeOH was used as the
blank control. Antimicrobial activity was evaluated by the diameter of inhibitory zones in
the solid media.

3. Results and Discussion
3.1. Identification of Metabolites

The structures of compounds 1–12 (Figure 1), including eight known NγPs, fonseci-
none A (1) [15], aurasperone A (2) [15], asperpyrones B and C (3 and 4) [16], rubasperone
B (5) [17], aurasperone E (6) [18], fonsecinone C (7) [18], and flavasperone (8) [19], as well
as four known coumarins, orlandin (9) [16], 4,7-dimethoxy-5-methylcoumarin (10) [20],
7-hydroxy-4-methoxy-5-methylcoumarin (11) [21], and desmethylkotanin (12) [22], were
identified by comparing their NMR data and MS spectra with previously reported data.
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The ECD spectra of compounds 1–4 (see Figures S53 and S54) indicated that the absolute
configurations of compounds 1–4 were (R), which was consistent with the previously re-
ported data [18]. Specifically, compounds 1–8 are NγPs compounds, which were previously
isolated from Aspergillus spp. The structures of NγPs consist of both naphthalene and
γ-pyrone moiety, and there are monomeric and dimeric forms [23]. Moreover, compounds 1
and 2 displayed antibacterial activities against Helicobacter pylori [16]. The biological activity
of NγPs is inextricably linked to its structure. The radical scavenging potential of NγPs is
related to the number of hydroxyl substitutes on the skeleton [8], and the phytotoxicity of
NγPs is connected to the γ-pyrone ring [24]. Compounds 9–12 are coumarin derivatives,
and they had shown antibacterial and antifungal activities [7].

3.2. Modification and Identification of Semisynthetic NγPs

In order to evaluate the importance of the pyran ring in NγPs on bioactivity, com-
pounds 1 and 2 were tentatively modified based on a benzohydrazide reaction [25]. Nucle-
ophilic attack of hydrazine at C-2 of the NγP, followed by ring opening, further nucleophilic
attack of the second nitrogen atom at the carbonyl carbon, and subsequent dehydration
led to the formation of the pyrazole ring (Figure S3 from Supplementary Materials). Fi-
nally, compounds 13 and 14 were obtained as the corresponding semisynthetic products
consisting of the partial NγP and the pyrazole ring (Figure 1).

Compound 13 was obtained as a brown powder. Its molecular formula was deter-
mined to be C32H28N2O9 on the basis of HRESIMS analysis, indicating twenty degrees
of unsaturation. Compared to compound 1, the molecular weight of compound 13 went
up by 14 amu. Therefore, only one pyrone site of bis-NγPs was subjected to reaction.
Specifically, the unreacted pyrone was confirmed by detailed analysis of 1H and 13C NMR
data, such as C-9 (δC 119.7), together with the key HMBC correlation signals (Figure S4 from
Supplementary Materials) from H-7 (δH 7.24) to C-9/C-10a (δC 107.4), from H-6 (δH 7.10)
to C-4a (δC 108.3)/C-7 (δC 101.7), and from H-3 (δH 6.52) to C-2 (δC 168.1)/C-4a. The key
HMBC correlation signals (Figure S4 from Supplementary Materials) of 3H-14′ (δH 2.35)
with C-4′ (δC 105.9)/C-5′ (δC 138.7), and of H-4′ (δH 6.93) with C-3′ (δC 148.5)/C-5′, indi-
cated compound 13 was a pyrazole-type compound. Thus, the structure of semisynthetic
compound 13 was determined.

Compound 14 was obtained as a brown powder and had the same molecular for-
mula C32H28N2O9 as 13 from the HRESIMS analysis. It showed that the semisynthetic
compound 14 contained a pyrazole ring. This was validated by key HMBC correlation
(Figure S5 from Supplementary Materials) signals from 3H-14′ (δH 2.34) to C-4′ (δC 105.9)/C-
5′ (δC 138.7), and from H-4′ (δH 6.92) to C-3′ (δC 148.6)/C-5′. Similarly, the unreacted pyrone
was detected through detailed analysis of 1H and 13C NMR data, such as C-7 (δC 120.1),
together with the key HMBC correlation signals (Figure S5 from Supplementary Materials)
of H-9 (δH 7.27) with C-5a (δC 110.7)/C-7, of H-10 (δH 7.37) with C-5a/C-9 (δC 101.8), and
of H-10 with C-4 (δC 184.1). Therefore, the structure of compound 14 was determined.

3.3. Biological Activities

Niemann-Pick C1-Like 1 (NPC1L1) is a key target involving cholesterol cellar up-
take [13]. Both compounds 1–4 and 9–14 were tested for cholesterol absorption inhibition
activity [26]. Compounds 1–4 showed similar inhibitory activity in 100 µM compared with
ezetimibe, the only FDA-approved NPC1L1 inhibitor (Figure 2) [12]. The results showed
that compound 4 had the highest inhibitory activity for reducing cholesterol absorption
among all compounds, and deserves further evaluation. The reason for the function of NγPs
may be related to the pyrones site. To elucidate the binding mechanism of compound 4 and
NPC1L1, molecular docking was performed to predict the binding mode of compound 4.
Interestingly, Lys1027 and Phe532 were involved in the formation of hydrogen bonds with
NγPs (Figure 3). In addition, compound 4 and Phe532 interacted by π-π stacking, which
further increased the affinity of compound 4 with NPC1L1. Through decreasing cholesterol
absorption with a NPC1L1 inhibitor, ezetimibe was the first and only inhibitor approved
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for the treatment of hypercholesterolemia for nearly 20 years [12]. Natural products from
marine fungi could be assumed to obtain NPC1L1 potential inhibitors.

Figure 2. Compounds 1–4 and 9–14 at the concentration of 100 µM, the rate of inhibition of cholesterol
esterase. Ezetimibe was used as a positive control.

Figure 3. The binding mode of compound 4 with NPC1L1. Compound 4 was shown in cyan. The
figure was produced with PyMOL. The related amino acids were shown in yellow.

The antimicrobial activities of all fourteen compounds, including eight NγPs, four
coumarins, and two semisynthetic compounds, were evaluated by the paper-agar disk-
diffusion methods. However, none of them showed activities against test pathogens,
including Gram-positive and Gram-negative bacteria.
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4. Conclusions

In summary, this study describes the isolation, identification, cholesterol absorption in-
hibition activity, and antimicrobial activity of NγPs and coumarins from the marine-derived
fungus A. niger S-48. Their structures were identified by 1D and 2D NMR spectroscopic
data and MS analysis. In addition, the reaction of natural NγPs with hydrazine afforded
two semisynthetic compounds, containing naphtho-gamma-pyrones and the pyrazole ring.
It has to be noted that benzohydrazide reaction was rarely reported on NγPs. All isolated
or semisynthetic compounds had no effects during the assays of antimicrobial activities.
Notably, compound 4, as one of the isolated NγPs, showed activity for reducing cholesterol
absorption comparable to the positive drug ezetimibe. As far as we know, this is the first
report to curb cholesterol cellar uptake activity using NγPs. Therefore, we obtain NγPs as
potential NPC1L1 inhibitors, which call for further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27082514/s1, Figures S1–S57; Tables S1–S5. NMR data,
NMR spectra, HRESIMS of compounds 13 and 14. NMR data, NMR spectra, HRESIMS or ESIMS of
compounds 1–12. Experimental ECD spectra and optical rotations of compounds 1–4.
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