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Abstract: Microwave-assisted synthesis in combination with flow synthesis offers an interesting
approach to develop faster and more sustainable procedures for the preparation of homogeneous
nanomaterials. Recently, solid-state generators of microwaves appeared as a tool with improved
control over power and frequency. Cerium oxide, despite its excellent catalytic activity, has not been
prepared before using solid-state generators or microwave-assisted flow chemistry. We report a
procedure for the preparation of nanoparticulated CeO2 (around 4 nm) under 2.45 GHz microwaves
in only 30 s. The materials are further calcined at 800 ◦C to increase particle size, with a better
defined particle size and crystallinity. The procedure was tested in batch at pH 11 and 12 and diverse
potencies, and the products were characterized by TEM, XRD, DLS, and N2 adsorption–desorption
isotherms. The materials were similar at the diverse pH values and potencies. XRD confirms the
crystallinity of the CeO2 material with a fluorite-like structure. They are composed of particles around
40 nm that aggregate as structures of around 100 nm. The procedure was successfully adapted to flow
synthesis, obtaining materials with structure and properties equivalent to batch synthesis. The batch
and flow materials offer peroxidase properties, opening the door for their use as ROS scavengers.

Keywords: CeO2; nanoparticle; microwave-assisted synthesis; solid-state generator; flow chemistry

1. Introduction

Nanomaterials have attracted broad attention in recent decades due to their high sur-
face/volume ratio and novel properties derived from nanoscale. Among them, nanoscopic
cerium oxide offers interesting catalytic properties due to the unique electronic configura-
tion of the lanthanide atom, the reduction potentials, the reversible conversion between
the oxidation states of Ce3+ and Ce4+, and its oxygen buffering capacity. The close ther-
modynamic stability of CeO2 and Ce2O3 favors an easy and reversible transition between
these two compounds, giving rise to a range of partially reduced CeO2−x phases that
serve as oxygen reservoirs by creating or eliminating oxygen vacancies. The use of ceria
has been explored in hydrogen production [1], as an oxygen capacitator in automotive
three-way catalysts [2], as a chemosensor and photocatalyst [3–5], and in ion conducting
membranes [6].

Reactive oxygen species (ROS) include compounds such as singlet oxygen, superox-
ide, hydrogen peroxide, and hydroxyl radical. Although these substances are naturally
produced in cells as a consequence of oxidation metabolism in the mitochondria, they are
highly reactive and potentially harmful to living organisms. An excess of ROS induces
oxidative stress, damages biomolecules such as proteins, lipids, and nucleic acids, and
finally induces apoptosis. Thus, living organisms limit the concentration of ROS at a cellular
level by producing enzymes (for example, superoxide dismutase, glutathione peroxidase
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or catalase) or antioxidants [7]. Recently, in biological applications, CeOx was explored as a
scavenger of reactive oxygen species, mimicking diverse enzymatic reactions [8].

Microwaves (MWs) are a source of electromagnetic radiation lying between infrared
and radiofrequencies that have shown interesting properties in chemical reactions. In com-
parison with conventional synthesis, MWs offer a higher synthesis rate and shorter reaction
times (typically reduces the reaction time from hours to minutes), more homogeneous
products, smaller particle size, narrower particle size distribution, higher purity, higher
yields due to minimization of side products, selective heating, lower power consumption
(environmentally friendly), etc. [9] Considering these advantages, it is not surprising that
microwaves have been used previously for the synthesis of cerium oxide. Depending on the
reagents and the synthesis conditions, the size and shape of the materials vary. They have
been prepared as aggregates of particles in the nanometric to micrometric range in less than
1 h of irradiation [10,11]. They could be prepared even as 2 nm particles in the presence of
PEG in only 10 min [12]. Other shapes include nanorods/nanowires [13,14] or microplates
through the calcination of Ce(OH)CO3 [15]. Further advances in the microwave-assisted
synthesis of ceria include the preparation of a mesoporous material departing from a
CMK-3 carbon structure as a template [16] or the preparation of mixed oxides such as
CexSm1−xO2 [17]. In all cases, the materials were prepared in batch using magnetrons as a
source of microwave energy.

Despite all the advantages mentioned in the previous paragraph, conventional microwave-
assisted procedures of synthesis based on the use of magnetrons as an energy source offer
some restrictions. The combination of solid-state microwave generators with flow synthesis
offers an interesting approach to overcome such restrictions. Solid-state generators offer
greater simplicity in the implementation and power management, with a longer duration
of the power source in comparison to magnetrons [18]. On the other hand, one of the main
limiting factors of microwave application is the small amount of material obtained in each
batch due to the MW properties and the design of the reactors. The use of flow synthesis
strategies can allow achieving large amounts of product as the materials are produced
continuously [19]. So far, neither of the two strategies (the use of solid-state generators or
flow synthesis) has been applied for the preparation of nanomaterials based on cerium
oxide. In this work, the possibilities offered by batch and flow synthesis using solid-
state microwave generators for the preparation of nanoscale cerium oxide were evaluated.
Considering the possibility of using CeO2 as a nanozyme with ROS-scavenging properties,
the peroxidase activity was evaluated and verified.

2. Results and Discussion
2.1. Synthesis Procedure

The synthesis was carried out using static (batch) and dynamic (flow) reactors powered
by microwave solid-state generators (see Scheme 1). In batch, diverse values of pH, power,
and irradiation time were tested (see Table 1). The notation used for the materials was B or
F depending on whether the synthesis was in batch or flux, 11 or 12 as a function of the pH,
and L, M, or H for low (50 W), medium (100 W), or high (200 W) power. NC was added
before the name for the non-calcined materials.

The solid-state generator allowed us to tune finely the power. In all cases, the temper-
ature of the solution reached temperatures around 90 ◦C. As expected, when the power
is increased, the time necessary to reach this temperature is reduced. To our knowledge,
30 s is the shortest time reported for CeO2 synthesis in solution [10–15]. Considering the
nominal power and irradiation time and the temperature reached by the solution, approx-
imately 50% of the energy delivered by the solid-state source is transformed into heat
in the solution. Part of the energy returns to the solid-state microwave generator and is
dissipated as heat in the energy source. The percentage increases when the time is reduced
in agreement with a lower heat transfer to the reaction flask and the preferential heating of
the water in comparison with glass under microwave irradiation [20]. In agreement with
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the resemblance in the composition, the dielectric properties of the solutions and, therefore,
the absorption of microwaves were similar at pH 11 and 12.
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Scheme 1. Scheme describing the setup for the synthesis in batch and flow.

Table 1. Summary of synthesis conditions.

Material Reactor pH Power (W) Time (min)

B11L Batch 11 50 2:30
B11M Batch 11 100 1:00
B11H Batch 11 200 0:30
B12L Batch 12 50 2:30
B12M Batch 12 100 1:00
B12H Batch 12 200 0:30

NCB12H 1

F12H
Batch
Flow

12
12

200
200

0:30
0:30

NCF12H 1 Flow 12 200 0:30
1 Non-calcined materials.

Furthermore, a non-calcined material prepared at pH 12 with irradiation at 200 W
for 30 s was dried and collected to evaluate the effect of the calcination in the structure
and morphology of the cerium oxide (NCB12H). Regarding flow synthesis, in agreement
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with the similarity of the materials obtained in batch at diverse synthesis conditions (see
below), the fastest synthesis at pH 12 was selected. The properties of the material prepared
in batch and flow synthesis were characterized by X-ray diffraction (XRD), transmission
electron microscopy (TEM), dynamic light scattering (DLS), and N2 adsorption–desorption
isotherms. Additionally, the as-made materials were characterized to evaluate the effect of
calcination at 800 ◦C.

2.2. Crystallinity of the Materials

XRD was used to determine the chemical structure of the materials obtained during
the synthesis. As can be seen in Figure 1a, the peak assignment of the B11M diffractogram
corresponded to typical CeO2 in a cubic fluorite-like structure. The most intense peaks
at 2θ values of 28.7◦, 47.6◦, and 56.5◦ could be assigned to the (111), (220), and (311) hkl
planes, respectively, with a cell parameter of a = 5.403 Å. No peak corresponding to Ce2O3
was found. The XRD of the remaining materials showed peaks in the same position and
with similar full width at half maximum (FWHM) (Figure 1b), indicating that, under our
experimental conditions, the phase formed and crystallinity of the materials were similar.
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Figure 1. XRD studies. (a) XRD of B11M, with the hkl index of each plane indicated between brackets;
(b) detailed XRD 111 peak of the six batch materials (BXXX) prepared under batch conditions, with
the peaks normalized for comparison purposes.

The yellow material obtained directly from the microwave NCB12H (dried but not
treated at 800 ◦C) was also characterized, revealing the peaks characteristic of CeO2
(Figure 1a). This result suggests that a fast treatment in the microwave is enough to
obtain Ce(IV) oxide material with a crystalline structure. However, the full width at half
maximum was significantly higher than in the case of the calcined materials, suggesting a
lower crystallinity or lower particle size. In the case of the material prepared under flow
conditions, XRD peaks were in the same positions with the same relative intensity as the
materials prepared in batch. This result confirms that flow synthesis can be applied for the
preparation of CeO2 nanomaterials.

2.3. Particle Size and Morphology

TEM analysis was used to determine the morphology and organization of the particles.
As can be seen in Figure 2, in the batch (Figure 2a) and flow synthesis (Figure 2b) regimes,
we obtained individual particles together with aggregates, even after applying ultrasound
to disaggregate the material. It seems that the particles tended to aggregate during the
synthesis in solution and filtration, and the aggregates were consolidated during calcination
at high temperature (800 ◦C) over several hours. At higher magnification, TEM images
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illustrate that the materials prepared under batch conditions BXXX (Figure 2c–h) were
similar. They were composed of nanometric CeO2 particles with irregular shapes (from
spherical to cubic). Measurements of particle size show that the materials were composed
of particles around 40 nm, and a distribution in the range of 20 to 60 nm could be found
(see Table 2). The shape and size of the particles were similar to the values reported in
microwave-assisted synthesis using magnetrons [10,11]. To evaluate if the variation in
the synthesis conditions was able to induce significant differences in the particle size, the
particle size distribution was analyzed with statistical tools. The particle distribution did
not follow a normal distribution; thus, the Kruskal–Wallis test was applied. In this case, the
main differences were observed upon variation of the pH. At a lower pH (11), the particles
were statistically bigger than at pH 12; thus, a growth of the particles was observed. Power
offered only a minor effect; however, at 50 W and pH 12, it was observed that the particles
were smaller in comparison with the irradiation at higher power. In studying the size
and morphology of the material prepared under flow synthesis in comparison with batch
conditions, TEM imaging showed a morphology and size similar to the materials prepared
in batch (Figure 2j). Data analysis of the particle size distribution revealed that the material
was assigned to the same group as the batch materials prepared at pH 12; thus, we were
able to reproduce batch synthesis under flow conditions.

Table 2. Measurement of particle size using TEM photographs.

Material 1 n2 Particle Size
(
¯
x ± SD nm)

Particle Size
Median (nm)

B11L a 146 45 ± 14 44.3
B11M a 158 43 ± 15 42.0
B11H a 78 46 ± 15 43.6
B12L b 117 30 ± 10 28.4
B12M c 107 40 ± 20 33.3
B12H c 159 37 ± 11 35.8

F12H b,c 80 34 ± 15 32.3
1 Formation of groups using the Kruskal–Wallis test (p = 0.05), where the same letter indicates the same group.
2 Number of particles measured.

Regarding the effect of the calcination step on the morphology of the material, by
contrast to the calcined materials that offered defined dense particles, the material obtained
directly from the microwave reactor was mainly composed of smaller nanoparticles (ca.
4 nm) (Figure 2i,k). These primary nanoparticles were consolidated during the treatment
at high temperature to form the final particles. In agreement with the data obtained from
XRD, the non-calcined material was crystalline in nature. Since a reduced crystal size could
explain the wide XRD signal observed, the Scherrer equation was applied to evaluate the
crystallite size from the full width at half maximum of the XRD peaks. A crystallite size
of 4.9 was calculated. Although a particle can be formed by several crystals, in our case,
the fact that the size of the crystallites determined from the XRD data and the application
of the Scherrer equation was similar to the size of the nanoparticles observed by TEM
suggests that, under our preparative conditions, a very fast nucleation step occurred,
generating crystalline ceria from the beginning of the process. As expected, under relatively
homogeneous conditions with rapid heating under microwave, the initial steps in the
formation of materials from molecular sources consisted of the formation of small primary
nanoparticles (ca. 4 nm and even some smaller), which grew by aggregation/coalescence
and evolved to larger crystalline nanoparticles when subsequent calcination treatments
were applied.
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(e) B11H, (f) B12L, (g) B12M, (h) B12H, (i) NCB12H, (j) F12H, and (k) NCF12H. B (batch); F (flow);
11 or 12 indicates the pH; L, M, or H for low (50 W), medium (100 W), or high (200 W) power. NC is
added before the name for the non-calcined materials.

The textural porosity formed by the aggregation of the little particles was also con-
firmed by N2 gas adsorption (see Supplementary Figure S1). In the case of the material
NCB12H, an area of 144 m2·g−1 was found, in agreement with the presence of a textu-
ral porosity due to the 4 nm particles observed in TEM. The N2 adsorption–desorption
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isotherm of the NCB12H sample showed a gradual nitrogen adsorption over the entire
pressure range. The application of the Barrett–Joyner–Halenda model (BJH) model allowed
determining a pore volume of 0.1 cm3·g−1. However, there were no well-defined pores. As
mentioned before, the porosity (irregular) at both the micro- and the mesoscopic scales of a
textural type was related to the voids between the primary nanoparticles. The nanoparticle
aggregates observed through TEM for the non-calcined sample usually generated some
cage-like pores that were responsible for the hysteresis loop observed in the isotherm. On
the contrary, when the material was calcined, the specific surface was drastically reduced
to 0.11 m2·g−1, confirming the complete loss of textural-type porosity. Thus, in the calcined
material, the low measured area was due solely to the outer surface of isolated or poorly
aggregated crystalline nanoparticles.

The particle size was also determined through DLS. This technique measures a wide
number of particles and informs us about the degree of aggregation and the size of the
aggregates in solution. As can be seen in Figure 3, B11M exhibited a peak in the number of
particles around 122 nm (other peaks could be calculated in the deconvolution at 173 nm),
while B12M exhibited a peak at 91 nm (with a tail calculated by deconvolution at 137 nm).
Conversely, F12H offered two peaks at 91 nm and 314 nm. In agreement with TEM, at
pH 12, the particles offered a lower size than at pH 11, and the change in the particle size at
both pH values measured with DLS was proportional to the values measured with TEM.
In the case of F12H, in addition to the peak at 91 nm found for the batch synthesis, a peak
at larger size (314 nm) was also identified, indicating a higher aggregation possibly due
to synthesis conditions in the flow reactor. DLS measured a greater hydrodynamic radius
than measured with TEM; however, in this case, the wide difference suggests that the
material could have been formed by a relevant number of little aggregates conformed by
few particles. In any case, the resulting material remained in the nanometric range, well
below 1 µm.
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Figure 3. Dynamic light scattering spectra: B11M, straight line; B12M, dashed line; F12H, dotted line.

2.4. ROS Scavenging Properties

As noted above, cerium oxide offers interesting redox properties that have been
used for catalytic application. In our case, we were interested in the ROS-scavenging
properties with future biological applications in mind. We studied the peroxidase activity
of the materials prepared under batch and flow conditions (Figure 4). The peroxidase-like
activities of the materials were studied by the catalytic oxidation tests toward 3,3′,5,5′-
tetramethylbenzidine (TMB) with the assistance of H2O2. Upon oxidation, TMB develops a
blue color; thus, higher absorbances correspond to higher peroxidase activity. In our case,
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we found a reaction rate of approximately 8 × 10−3 min−1. The equivalent activity found
for the materials prepared under batch and flow conditions was in agreement with the
similarities found for both type of materials during the characterization, confirming that
our flow synthesis strategy allowed us to obtain cerium oxide materials with properties
similar to batch synthesis.
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2.5. Energy Efficiency

Currently, there is a strong tendency toward the development of synthesis processes
that are more sustainable and have a lower carbon footprint. One of the advantages
of microwaves is the significant reduction in the reaction time. In comparison with a
conventional microwave reactor, solid-state microwave generators allow the modulation of
power and frequency. A low reaction time, together with the use of low potencies, affords
a synthesis process with very low energy consumption. In our case, the reaction time
was only 30 s. This procedure is much faster than other microwave-assisted processes
previously reported in the literature and conventional methods. The energy consumed in
our case was 0.010 kWh (7 g equivalent of CO2) per synthesis and 0.14 W·h·mg−1 (98 mg
equivalent of CO2 per mg of CeO2). This amount is almost two orders of magnitude lower
than the 0.55 kWh (392 g equivalent of CO2) used by an 800 W magnetron in 30 min,
conditions found in previously reported procedures [11].

3. Materials and Methods
3.1. Chemicals

Cerium(III) acetate hydrate (Ce(CH3CO2)3·xH2O), 99% metal basis (Sigma-Aldrich,
St. Louis, MO, USA), sodium hydroxide (NaOH) >98% (Sigma-Aldrich), and hydrochloric
acid solution 1 N (Scharlau, Barcelona, Spain) were used to synthesize the nanoparticles of
this work. Water used in this investigation was deionized. Hydrogen peroxide (H2O2) 35%
(Panreac) and 3,3′,5,5′-tetramethylbenzidine (TMB) (Sigma-Aldrich, St. Louis, MO, USA)
were used to determine peroxidase activity.

3.2. Synthesis of the CeO2 Nanomaterials

The reaction was performed in a microwave reactor purchased from Microbiotech
(Valencia, Spain). It consists of a microwave chamber equipped with a 200 W solid-state
generator at 2.45 GHz. For batch synthesis, 0.95 g of cerium acetate and 0.48 g of sodium
hydroxide (1:4 molar ratio) were dissolved in 50 mL of deionized water, and the pH was
adjusted to 11 or 12, depending on the material. Right after, 10 mL was transferred to a
microwave glass vial that was placed in the microwave oven with the power set at 50,
100, or 200 W. Irradiation times were established at 0.5, 1.5, or 2.5 min for 200, 100, or
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50 W, respectively. The resulting yellow precipitate was washed with water and ethanol to
neutral pH. Drying and calcination were performed in a conventional furnace. For drying,
the oven was preheated at 80 ◦C before its use and maintained overnight. The furnace for
calcination was set with a heating ramp at 20 ◦C·min−1 up to 800 ◦C. The temperature
was maintained for 6 h and allowed to cool down until room temperature. The samples
remained inside the furnace throughout the calcination process.

In flow synthesis, 4 g of Ce(AcO)3 and 2 g of NaOH were dissolved in 200 mL of
de-ionized water with a pH of 12. The mixture was pumped into the microwave oven,
so that the sample was irradiated for 30 s at 200W. The resulting yellow precipitate was
washed with water and ethanol to neutral pH. Lastly, the solid was dried overnight at 80 ◦C
and calcined at 800 ◦C for 6 h.

3.3. Characterization of the Materials

The powder X-ray diffraction pattern of the nanoparticles was obtained using a
powder X-ray Diffractometer (Avance A25, Bruker Cooperation, Billerica, MA, USA).
The sample was scanned over the required range for 2θ values (10–80◦). The size and
shape of nanoparticles was obtained by transmission electron microscopy (TEM) using
a HITACHI HT7800 120 KV. The particle size analysis for the sample was carried out
using the particle size analyzer Zetasizer nano series of Malvern Instruments. Nitrogen
adsorption–desorption isotherms were recorded in an automated Micromeritics ASAP2010
instrument. Prior to the adsorption measurements, the samples were outgassed in situ
in vacuum (10−6 Torr) at 110 ◦C for 15 h to remove adsorbed gases. The specific surface
area was determined by applying the Brunauer–Emmett–Teller (BET model) from the
adsorption data within the low-pressure range. Pore volume was calculated following the
Barrett–Joyner–Halenda model (BJH). The UV/visible spectrum for peroxidase activity
was obtained using a Jasco V-770 spectrophotometer.

3.4. Determination of the Peroxidase Activity

The peroxidase activity was measured by mixing the material, H2O2, and TMB, and
the change in color was determined in the UV/visible absorption range following Cao’s
protocol [21]. Briefly, 70 µL of 1.0 mg·mL−1 CeO2 material was added to 400 µL of 50.0 mM
phosphate buffer (pH = 4.0) at room temperature, followed by the addition of 100 µL
of 8.0 mM TMB, 100 µL of 25.0 mM H2O2, and 330 µL of Milli-Q water. Subsequently,
the reaction solutions were incubated at room temperature for 7 min. Afterward, the
UV/visible absorption at 652 nm was measured using a Jasco V-770 spectrophotometer.

3.5. Data Analysis

The Scherrer equation was used for the calculation of the XRD crystals. It relates the
size of crystallites to the broadening of a peak in a diffraction pattern using K = 0.9 [22].
Statistical analysis was performed using the SPSS software. The comparison of the particle
size was performed using the independent-sample Kruskal–Wallis test at a significance
level of 0.05. The significance values were adjusted by Bonferroni correction for multiple
tests. The conversion of kWh to g of CO2 was calculated using the Avoided Emissions and
Generation Tool (AVERT) of the Environmental Protection Agency (EPA) [23].

4. Conclusions

We validated the viability of using a solid-state microwave generator for the synthesis
of cerium oxide. This technology can be applied in batch or in flow synthesis. The flow
microwave-assisted synthesis of CeO2 has not been previously reported. The materials
prepared under microwave irradiation showed a typical fluorite-like structure and were
formed by 4 nm particles. After calcination at 800 ◦C, the particles grew to the 30–45 nm
range with better defined shape and improved crystallinity, which aggregated in conglom-
erates of 80–300 nm. Variations in the power/time did not significantly affect the size
and structure of the materials. Flow synthesis was able to reproduce the particle size,
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morphology, crystallinity, and peroxidase activity of the materials prepared using the batch
synthesis procedure. By contrast, when the pH was reduced from 12 to 11, a slight growth
in the particle size was observed. The materials offered equal peroxidase activity when
prepared under batch and flow conditions. These results open the door toward a wider
use of solid-state generators in the synthesis of materials and confirm their potential of
preparing ceria.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27092712/s1, Figure S1: N2 adsorption-desorption isotherms of
the material NCB12H.
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