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Abstract: The detection of nitrophenolic explosives is important in counterterrorism and environmen-
tal protection, but it is still a challenge to identify the nitroaromatic compounds among those with
a similar structure. Herein, a simple tetraphenylethene (TPE) derivative with aggregation-induced
emission (AIE) characteristics was synthesized and used as a fluorescent sensor for the detection of
nitrophenolic explosives (2, 4, 6-trinitrophenol, TNP and 2, 4-dinitrophenol, DNP) in water solution
and in a solid state with a high selectivity. Meanwhile, it was found that only hydroxyl containing
nitrophenolic explosives caused obvious fluorescence quenching. The sensing mechanism was in-
vestigated by using fluorescence titration and 1H NMR spectra. This simple AIE-active probe can
potentially be applied to the construction of portable detection devices for explosives.

Keywords: fluorescence probe; aggregation-induced emission; trinitrophenol; explosives

1. Introduction

The effective detection of nitroaromatic compounds (NACs) is of great importance in
modern society owing to their threats to both national security and environmental safety.
Different nitroaromatic explosives such as 2, 4, 6-Trinitrophenol (TNP, picric acid) and 2,
4-dinitrophenol (DNP) are broadly utilized in the assembling of rocket fills, firecrackers,
matches, etc. Additionally, TNP and its derivatives are also used in the field of medical
formulation as an antiseptic agent, as well as being used as a yellow pigment in dye and
leather industries, which will cause environmental pollution and health hazards [1,2].
Consequently, the development of highly selective and sensitive sensors with a quick
response for discriminating TNP and DNP is imperative for natural remediation, regular
citizen security, and military tasks.

Presently, several analytical techniques have been developed for the detection of
nitroaromatic explosives, such as trained canines [3], mass spectrometry [4], gas chromatog-
raphy [5,6], liquid chromatography [7], ion mobility spectrometry [8], electrochemical
assay [9], high performance liquid chromatography [10], X-ray imaging, Raman spec-
troscopy [11], and so on. In contrast to the above-mentioned methods, fluorescent probes
with the merits of high sensitivity, selectivity, easy visualization, and a short response
time have attracted great attention in various areas [12–16]. To date, numerous fluorescent
sensors based on polymers [17,18], metal–organic frameworks [19], fluorescent quantum
dots [20,21], and organic small molecules [13] have been designed and developed. De-
spite these advances, most of the traditional fluorophores have often encountered the
aggregation-caused quenching (ACQ) problem in the aggregated state, which has been a
hurdle to fluorescence sensing. Moreover, selective detection of nitroaromatic explosives
remains difficult due to their similar electron affinity.
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Since aggregation-induced emission (AIE) was termed by Tang in 2001 [22], a large
number of AIE luminogens (AIEgens) have been developed for photoelectric devices,
biomaterials and fluorescent probes [23–27]. Thanks to their high sensitivity and solid-state
emission efficiency, detection of explosives based on AIE-active probes has received a lot
of interest [28–32]. Among these AIEgens, tetraphenylethene (TPE) is the most popular
building block for the construction of fluorescence sensors due to its high photostability,
simple synthesis, and easy structure modification. For example, Tang and their co-workers
reported that a series of TPE-based polymers can serve as highly sensitive sensors for
TNP through a mode of emission quenching with this substrate [33–36]. To provide the
fluorescence sensors with better selectivity, the Zheng group designed several TPE-based
macrocycles showing a high selectivity for NACs, alongside the excellent sensitivity by
virtue of the encapsulation [37–39]. Throughout the course of our continuous effort to
develop an excellent fluorescence probe for explosives, herein a simple TPE-based AIEgen
was synthesized to detect TNP from a series of NACs. Such material showed highly
sensitive fluorescence quenching to TNP in aqueous solution and in a solid state by virtue
of photo-induced electron transfer. This simple AIE-active probe can potentially be applied
to the construction of portable detection devices for explosives.

2. Results and Discussion

The synthetic procedure of the target compound 3 was designed and presented in
Scheme 1. The known tetraphenylethene derivative 1 was utilized as the starting material.
It was then nitrated by concentrated nitric acid and acetic acid in dichloromethane to afford
molecule 2. By a reduction of 2 with hydrazine hydrate and Pd/C in ethanol, the target
molecule 3 was obtained in a good yield of 87%. The molecule 3 was fully characterized by
1H NMR, 13C NMR, high resolution mass spectra (HRMS), and infrared (IR) spectra in the
Supporting Information (Figures S1–S4).
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Scheme 1. Synthetic route of compound 3.

The photophysical properties of compound 3 were then investigated. The UV/Vis
absorption spectra of 3 responding to TNP were measured in dimethylsulfoxide (DMSO).
The molecule 3 showed absorption bands at 342, 292 and 261 nm. When adding TNP to
3, the absorption intensity largely increased, but the algebraic sum of spectrum of 3 and
the spectrum of TNP is similar to the spectrum of the mixture of 3 + TNP, implying that
there were weak interactions in the solution state (Figure S5). From the photoluminescence
(PL) spectra we can see that compound 3 was non-emissive in THF (Figure 1). Upon the
addition of poor solvent water to THF, the solution remained weak in fluorescence from
0 to 80% water fraction. Upon further enhancing the water fraction to 92%, compound
3 emitted bright blue fluorescence at 478 nm. The 58-fold enhancement of PL intensity
indicated that compound 3 is an AIE-active compound. The scanning electron microscope
(SEM) images revealed that the turbid solution of 3 in 92% water fraction was composed of
many rod-like aggregates with the length of micrometers (Figure S6).
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Figure 1. (A) Fluorescence spectra of compound 3 (5.0 × 10−5 M) in THF with different water
fractions. λex = 340 nm, ex/em slit widths = 5/5 nm. (B) PL intensity ratio of I/I0 in different
THF/H2O mixtures. (C) Fluorescent images of compound 3 (5.0 × 10−5 M) with changing water
fractions from 0 to 92% in THF under a 365 nm UV lamp.

The fluorescence response of molecule 3 to NACs was then studied in H2O/THF (9: 1,
v/v). As shown in Figure 2A, molecule 3 (20 µM) fluoresced strongly in 90% water fraction
without NACs. When different nitrophenolic explosives (40 µM) were added into the solution,
such as 2,4,6-trinitrophenol (TNP), 2,4-dinitrophenol (DNP), p-nitrophenol (PNP), o-nitrophenol
(ONP), 2,4,6-trinitromethylbenzene (TNT), 2,4-dinitrotoluene (DNT), p-nitrotoluene (PNT), o-
nitrotoluene (ONT), nitrobenzene (NB), 1,3-dinitrobenzene (DNB), 1-fluoro-2,4-dinitrobenzene
(DNFB), 4-hydroxyisophthalonitrile (HPN), 2,4-dinitrochlorobenzene (DNCB), 3-cyanopheno
(CP), phenol, 3,5-dinitrobenzoic acid (DNA), and 2-Hydroxybenzonitrile (HBN), the sharp
quenching caused by TNP and DNP was observed under a 365 nm UV light. Meanwhile, it
was found that only hydroxyl containing nitrophenolic explosives caused obvious fluorescence
quenching, while other NACs showed a minor influence on the emission of molecule 3. The
quenching efficiency of PNP, ONP, DNP, and TNP increased with the enhancement of acidity.
Therefore, it is inferred that the existence of electrostatic interactions led to the high selectivity of
molecule 3 to TNP and DNP. The quenching efficiency ((1 − I/I0) × 100%) of compound 3 for
TNP and DNP were 95% and 79%, respectively (Figures 2B and S7).
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Figure 2. (A) Fluorescent images of compound 3 with various nitrophenolic explosives under a
365 nm UV lamp. (B) The Fluorescence quenching efficiencies ((1 − I/I0) × 100%), where I and I0

denote the fluorescence intensity of compound 3 with and without analytes, respectively. 1: TNP,
2: DNP, 3: PNP, 4: ONP, 5: TNT, 6: DNT, 7: PNT, 8: ONT, 9: NB, 10: DNB, 11: DNFB, 12: HPN,
13: DNCB, 14: 3−Cyanopheno, 15: Phenol, 16: DNA, 17: HBN. Solvent: H2O: THF = 9: 1, [3] =
[explosives]/2 = 2 × 10−5 M. λex = 340 nm, ex/em slit widths = 5/5 nm.

The fluorescence titration of 3 (20 µM) with different equivalents of TNP was measured
to verify their complexation ratio. As shown in Figure 3A, the PL intensity of molecule
3 at 460 nm gradually decreased when the TNP concentration was increased to 40 µM.
The stoichiometry between compound 3 and TNP was calculated from Job’s plot to be
1: 2 (Figure 3B). Based on the data presented in Figure S8, the association constant was
estimated to be 3.4 × 108 from linear curve fitting using Origin software [40,41]. Similar
results were obtained from the fluorescence titrations of 3 with DNP (Figure 3C). The
stoichiometry from Job’s plot was estimated to be 1:2 also (Figure 3D) and the association
constant was calculated to be 7.4 × 107 (Figure S9). From the association constants we can
conclude that molecule 3 has much a stronger affinity to TNP than DNP. Due to the higher
number of electron-withdrawing nitro groups in TNP, it exhibited much more acidity than
other nitrophenolic compounds. Thus, it is easy to form complexes with molecule 3 to occur
photo-induced electron transfer within the complex resulting in fluorescence quenching.
Then fluorescence lifetimes of compound 3, TNP, and the mixture of compound 3 + TNP
were measured in an aqueous solution to verify their interactions. As illustrated in Figure
S10, compound 3 gave a lifetime of 4.52 ns. Upon the addition of TNP to the system, the
lifetime reduced to 0.35 ns, indicating the existence of static fluorescence quenching.
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Figure 3. (A) The PL spectra of compound 3 with different amounts of TNP. Solvent: H2O: THF = 9:
1, [3] = 2 × 10−5 M, [TNP] = 0–1.6 × 10−4 M. Inset: the PL change was observed at 460 nm when
compound 3 was combined with TNP. (B) The Job’s plot of compound 3 (2 × 10−5 M) with TNP at
460 nm. (C) The PL spectra of compound 3 with different amounts of DNP. Solvent: H2O: THF = 9: 1,
[3] = 2 × 10−5 M, [DNP] = 0–3 ×1 0−4 M. Inset: compound 3 fluorescence intensity variation with
TNP content at 460 nm. (D) The Job’s plot of compound 3 (2 × 10−5 M) with DNP at 460 nm. λex =
340 nm, ex/em slit widths = 5/5 nm.

1H NMR titration in d6-DMSO was performed again to gain a deeper understanding of
the bond formation between compound 3 and TNP. In fact, we made an attempt to record
the NMR titration in the mixture of deuterated water and THF with 90% deuterated water
fraction. Unfortunately, the compound 3 and TNP could not dissolve in the mixed solvents.
Thus, we carried out 1H NMR titration in d6-DMSO. As shown in Figure 4A, when two
equivalents of TNP were added, the chemical shift Ha of compound 3 showed a downfield
shift from 6.26 to 7.01 ppm. Upon further addition of TNP, the chemical shift was only
slightly altered. Additionally, there was also an obvious downfield shift of Hb in compound
3 from 6.58 to 7.02 ppm. These results proved that the electrostatic interaction between
amino groups and hydroxyl group mainly contributes to the binding between TNP and
compound 3. 1H NMR titration indicated that a 1:2 binding ratio was obtained between
compound 3 and TNP as shown in Figure S11. It is worth noting that this binding ratio was
obtained from a d6-DMSO concentrated solution (5 mM) in 1H NMR titration and it is not
clear if this will also be true with its diluted solution in H2O: THF (90% water fraction), with
concentration of the order 10−5 M. However, from the results of 1H NMR and fluorescence
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titration we can see that they obtained the same complexation ratio. Additionally, Figure 4B
illustrates a possible binding mode between compound 3 and TNP.
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Figure 4. (A) Changes of 1H NMR spectra of compound 3 (5 mM) in d6-DMSO with the addition of
TNP. (B) The possible binding mode of compound 3 with TNP.

Furthermore, fluorescence detection of TNP was also estimated in the solid state (Figure 5).
Compound 3 was dripped onto the TLC plate and dried under a vacuum. The TLC plate with
pure compound 3 showed bright fluorescence. When different concentrations of TNP solution
were dripped on the spot of compound 3, the fluorescence was quickly quenched. From the
picture we can see that 0.2 µM of compound 3 can cause obvious fluorescence quenching on the
TLC plate. The data verified that compound 3 is an excellent sensor for TNP not only in the
solution, but also in the solid state.
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Figure 5. Fluorescent photographs of compound 3 with and without TNP solution on the TLC plate
under 365 nm UV light.

3. Materials and Methods

Materials: All reagents and solvents were chemical pure (CP) grade or analytical
reagent (AR) grade and were used as received.

Measurements: 1H and 13C NMR were measured on 400 MHz Bruker Advanced III
(Bremen, Germany). Mass spectrum was measured on Waters instrument (Framingham,
MA, USA). IR was measured on Bruker VERTEX70 (Bremen, Germany). Fluorescent spectra
were collected on Hitachi F-4500 spectrophotometer (Tokyo, Japan).
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3.1. Synthesis of 2

The mixture of 30 mL dichloromethane, 2.85 mL (40.9 mmol) concentrated nitric acid,
and 2.34 mL (20.8 mmol) acetic acid was added to a 100 mL drying flask. The flask was
placed in a low temperature reaction bath at –15 ◦C, 2 g 4, 4’-dimethoxytetraphenylethene
(5 mmol) was added to the mixture under stirring for 0.5 h. The reaction mixture was taken
out of the low-temperature reaction bath and returned to room temperature. The product
was quenched by adding 20 mL of water. The organic phase was separated and washed
with water several times until the pH was 7. Compound 2 was obtained as a yellow solid
by evaporating the solvent using a rotary evaporator (1.95 g, 81%).

3.2. Synthesis of 3

Compound 2 (1 g, 2.1 mmol), 30 mL of absolute ethanol, hydrazine hydrate (1 mL,
21 mmol), and Pd/C (87 mg, 0.42), respectively, were added to the flask. After two hours of
refluxing, the mixture was cooled to room temperature. The organic phase was obtained
after filtration and then concentrated with a rotary evaporator. An ethyl acetate/petroleum
ether 1/1 eluent was used to purify the crude product with a silica gel column. Compound
3 was obtained as a yellow powder with an 87% yield (0.77 g). Mp 216.4–218.6 ◦C; IR (KBr)
ν 3460, 3414, 3363, 3024, 2835, 1605, 1508, 1443, 1238, 1172, 1026, 833 cm−1; 1H NMR (400
MHz, DMSO) δ 6.46 (d, J = 8.4 Hz, 4H), 6.63 (d, J = 8.4 Hz, 4H), 6.56 (d, J = 8.0 Hz, 4H), 6.24
(d, J = 8.0 Hz, 4H), 4.92 (s, 4H), 3.64 (s, 6H) ppm; 13CNMR (100 MHz, DMSO) δ: 156.9, 146.7,
139.9, 137.4, 134.6, 132.0, 131.7, 131.6, 113.1, 113.0 ppm; MS m/z calcd for C28H26N2O2
422.5 [M], found 423.2055 [M+].

4. Conclusions

In conclusion, this paper presented the design and synthesis of an aggregation-induced
emission fluorescent sensor for a nitrophenolic explosives in aqueous media, which was
highly effective. The fluorescence quenching of the sensor was observed due to the for-
mation of the 1: 2 complex with TNP/DNP. The binding constants of compound 3 with
TNP and DNP were calculated to be 3.4 × 108 and 7.4 × 107, respectively. This simple
sensor exhibited high potential for the detection of TNP and DNP both in water and in the
solid state.

Supplementary Materials: The following supporting information can be downloaded at: https:
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