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Abstract: Benzylic alcohols are among the most important intermediates in organic synthesis. Re-
cently, the use of abundant metals has attracted significant attention due to the issues with the
scarcity of platinum group metals. Herein, we report a sequential method for the synthesis of ben-
zylic alcohols by a merger of iron catalyzed cross-coupling and highly chemoselective reduction of
benzamides promoted by sodium dispersion in the presence of alcoholic donors. The method has
been further extended to the synthesis of deuterated benzylic alcohols. The iron-catalyzed Kumada
cross-coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)–C(sp3)
cross-coupling with alkyl Grignard reagents that are prone to dimerization and β-hydride elimination.
The subsequent sodium dispersion promoted reduction of carboxamides proceeds with full chemose-
lectivity for the C–N bond cleavage of the carbinolamine intermediate. The method provides access
to valuable benzylic alcohols, including deuterium-labelled benzylic alcohols, which are widely used
as synthetic intermediates and pharmacokinetic probes in organic synthesis and medicinal chemistry.
The combination of two benign metals by complementary reaction mechanisms enables to exploit
underexplored avenues for organic synthesis.

Keywords: sequential catalysis; amides; iron; sodium; cross-coupling; chemoselective reduction;
N–C cleavage; iron catalysis; benzylic alcohols; deuterated compounds

1. Introduction

Iron catalysis has found a major interest in organic synthesis owing to the issues
associated with the limited supply and toxicity of platinum group metals [1–24]. The high
abundance of iron as the most abundant transition metal in the Earth’s crust combined
with the low biotoxicity is particularly attractive for the reaction development from the
point of view of sustainability and global economy. Among cross-coupling catalysis, iron
is one of the few metals that have found large scale industrial applications owing to
the complementary reaction scope and compatibility to the palladium catalysis [25]. In
this context, iron catalysis is a particularly attractive platform for the cross-coupling of
alkyl Grignard reagents that feature β-hydrogens that are challenging using palladium
catalysis [26–28].

Simultaneously, reduction of carboxamides represents one of the most important
processes in organic synthesis [29–32]. This process uses amides as bench-stable precursors
to afford downstream reduction products with high utility in medicinal chemistry, organic
materials and agrochemistry [33–35]. Mechanistically, after the formation of the carbino-
lamine intermediate, C–O collapse leads to the formation of amine products, while C–N
bond cleavage results in the formation of alcohols. In contrast to the typical metal hydrides,
such as Al–H, B–H, which produce amines, amide reduction by C–N bond scission is much
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less common [36,37]. Furthermore, most reductants that lead to C–N collapse, give low
chemoselectivity of the C–N scission [29–32,36,37], which is a major limitation considering
a significant role of amides as bench-stable intermediates in organic synthesis.

Benzylic alcohols are among the most important intermediates in organic synthesis.
and valuable target compounds in their own right due to potent antimicrobial activity [33–35].
Selected synthetic applications of benzylic alcohols are presented in Figure 1.
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Figure 1. Synthetic applications of benzylic alcohols.

Herein, we report a sequential method for the synthesis of benzylic alcohols by a
merger of iron catalyzed cross-coupling and highly chemoselective reduction of benzamides
promoted by sodium dispersion in the presence of alcoholic donors (Scheme 1). The
following features of our study are noteworthy: (1) the iron-catalyzed Kumada cross-
coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)–
C(sp3) cross-coupling with alkyl Grignard reagents that are prone to dimerization and
β-hydride elimination. (2) The subsequent sodium dispersion promoted reduction of
carboxamides proceeds with full chemoselectivity for the C–N bond cleavage (cf. C–O)
of the carbinolamine intermediate. (3) The method has been extended to the synthesis of
deuterated benzylic alcohols with high deuterium incorporation (<90% D2). (4) The method
is operationally simple, uses cheap, commercially available reagents and proton donors,
and is performed with sustainable metals. Overall, the method provides access to valuable
benzylic alcohols and deuterium-labelled benzylic alcohols, which are widely used as
synthetic intermediates and pharmacokinetic probes in organic synthesis and medicinal
chemistry. In a broader context, the combination of two abundant metals, Fe and Na, by
complementary reaction mechanisms bodes significant potential for exploring new avenues
in organic synthesis.
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Scheme 1. Sequential iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of chlorobenzamides/
chemoselective reduction and reductive deuteration to benzylic alcohols (this study).

2. Results

As a part of our program in amide bonds [38–41] and iron catalysis [42–52], we consid-
ered a merger of the iron-catalyzed cross-coupling of amides with the subsequent chemos-
elective amide bond reduction. We hypothesized that the high stability of amide bonds
would enable operationally simple access to the historically challenging C(sp2)–C(sp3)
Kumada cross-coupling with alkyl Grignard reagents [26–28]. Furthermore, we became cog-
nizant of the recent progress in chemoselective amide reduction by SET processes [53–57].
The method enables to exploit high stability of the N–C(O) amide bond by amidic reso-
nance in iron-catalyzed cross-coupling, and chemoselectively tune the amide bond for SET
reduction. The usage of sequential processes permits to generate value-added benzylic
alcohols with high atom economy under sustainable and benign reaction conditions.

Our study commenced with an evaluation of the reaction conditions for the cross-
coupling of a model 4-chloro-N,N-dimethylbenzamide with n-hexylmagnesium chloride. To
date, the most synthetically useful system for iron-catalyzed cross-coupling has been established
by Fürstner using NMP as an additive (NMP = N-methyl-2-pyrrolidone) [58–67]. However,
due to mutagenicity of NMP and a major concern for the future use [68], several alternative
and more benign promoters have been developed that feature similar arrangement of the
O-coordination through Nlp → π* delocalization [1–24,42–52]. After experimentation, we
found that although no reaction took place in the absence of iron catalyst (Table 1, entry 1)
and the reaction was inefficient in the absence of additives (Table 1, entry 2), the addition of
DMI (DMI = 1,3-dimethyl-2-imidazolidinone) resulted in 90% yield of the cross-coupling
product (Table 1, entry 3). It is worthwhile to note that this reaction proceeded at low
catalyst loading (0.10 mol%) in renewable 2-MeTHF as a solvent [69,70]. This solvent
is slightly preferred over THF, most likely due to improved solubility of the reagents
under these reaction conditions (Table 1, entry 4). Furthermore, we established that the
cross-coupling is very facile, proceeding even at −78 ◦C. This is rare in iron-catalyzed cross-
coupling and highlights the activating effect of the amide bond on cross-coupling. Finally,
we determined that the yield could be further improved by changing the stoichiometry
of the Grignard reagent, resulting in close to quantitative yield under these conditions
(Table 1, entry 6).
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Table 1. Optimization of Iron-Catalyzed Cross-Coupling 1.
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Entry Fe(acac)3
(mol%) Ligand Ligand

(mol %)
Time

(h)
Yield 2

(%)

1 - - - 18 <2
2 0.10 - - 18 48
3 0.10 DMI 200 18 90

4 3 0.10 DMI 200 18 88
5 4 0.10 DMI 200 18 76
6 5 0.10 DMI 200 18 95

1 Conditions: 1 (0.50 mmol), Fe(acac)3 (0.10 mol%), 2-MeTHF (1.0 M), C6H13MgCl (1.20 equiv, 2.0 M, THF), 0 ◦C,
18 h. C6H13MgCl added dropwise over 1–2 s. 2 Yield determined by 1H NMR and/or GC-MS. 3 THF instead of
2-MeTHF. 4 C6H13MgCl added at −78 ◦C. 5 C6H13MgCl (1.05 equiv).

With the optimized conditions in hand, we next evaluated the scope of this Kumada
C(sp2)–C(sp3) cross-coupling (Table 2). With regard to the amide bond component, the
reaction is very broad and accommodates various amides as activating groups. As such,
cyclic amides, such as N-morpholinyl (2a), N-piperidinyl (2b), N-pyrrolidinyl (2c) and even
highly strained N-azetidinyl (2d) are readily compatible (Table 2, entries 1–4). These exam-
ples demonstrated that the iron-catalyzed conditions can accommodate various amides,
such as chelating N-morpholinyl (Table 1, entry 1) and reactive amides, such as N-azetidinyl
(Table 1, entry 4), without addition of the Grignard reagent to the C(acyl)–N bond or cleav-
age of the alternative N–C bond. Furthermore, aliphatic amides with variable sterics,
such as N,N-dimethyl (2e), N,N-diethyl (2f) and even highly hindered N,N-diisopropyl
(2g) were compatible and afforded the corresponding products in high yields (Table 1,
entries 5–7). Moreover, anilides featuring decreased amide N–C(O) conjugation due to
Nlp delocalization onto the N-aromatic ring, such as 2h, are compatible (Table 1, entry 8),
attesting to the mild conditions of the present approach. Furthermore, benzylic amides
also undergo cross-coupling in high yields (2i) (Table 1, entry 9), while the cleavage of the
weak N–Bn bond is not observed under these mild iron-catalyzed conditions. Next, we
briefly evaluated the scope of Grignard reagents. Importantly, we found that Grignard
reagents featuring sterically demanding secondary substitution, such as cyclohexyl (2j) and
isopropyl (2k) are compatible (Table 2, entries 10–11). The latter example is particularly
noteworthy as the isomerization to the linear product was not observed, attesting to the fast
cross-coupling vs. isomerization. Note that isomerization of secondary Grignard reagents
is commonly observed using other iron-catalyzed cross-coupling methods, highlighting
the mild nature of the present protocol. Finally, the reaction is also compatible with meta-
chlorobenzamides (2l) (Table 2, entry 12). At present, the method is not compatible with
ortho-chlorobenzamides, which are recovered unchanged due to the steric demand of the
amide bond (not shown). At this stage, bulky Grignard reagents are not tolerated. An
ongoing project is aimed at cross-coupling of bulky Grignards. At present, heteroaromatic
substrates are not tolerated. An ongoing project addresses cross-coupling of heterocyclic
substrates. These studies will be published in due course.
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Table 2. Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides with Alkyl Grignards 1.
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Table 2. Cont.

Entry 2 Product Yield (%)

10 3 2j
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The reduction proceeds via a SET mechanism with single electrons as reductants,
and the first electron transfer as the rate determining step. Benzaldehyde is typically not
detected in these reactions since its reduction is faster than amide reduction [53–57].

With the optimized reduction conditions in hand, we next evaluated the scope of
the benzamide reduction using alkyl-benzamides prepared by the iron-catalyzed cross-
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coupling (Table 4). We found that this amide reduction is very general and accommodates
various amide substrates in high yields. As shown, cyclic alkyl-benzamides, such as N-
morpholinyl (2a), N-piperidinyl (2b), N-pyrrolidinyl (2c) and N-azetidinyl (2d) furnished
the reduction products in 80-90% yields. Furthermore, aliphatic amides, such as N,N-
dimethyl (2e), N,N-diethyl (2f) and N,N-diisopropyl (2g) were well-compatible, despite
larger hindrance of the amide bond. Furthermore, anilides (2h) and N-benzylic amides (2i)
can be successfully reduced. Finally, different substitution on the para (2j–2k) and meta
position (2l) of the aromatic ring is compatible. Overall, this reduction processes tolerates a
variety of substrates prepared by the iron-catalyzed cross-coupling, providing alkylated-
benzylic alcohols with substantial utility as synthetic intermediates and antimicrobial
agents [71].

Table 4. Chemoselective Sodium Dispersion Mediated Reduction of Aromatic Amides to Benzyl
Alcohols 1.
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Table 5, these conditions are compatible with a range of alkyl-benzamides prepared by the
iron-catalyzed cross-coupling to afford deuterated benzyl alcohols with > 90% deuterium
incorporation. The yields obtained in the reductive deuteration are comparable with the
efficiency of the reduction. As such, this process is equally effective for N-cyclic benzamides,
N-morpholinyl (2a), N-piperidinyl (2b), N-pyrrolidinyl (2c) and N-azetidinyl (2d) as well
as N-aliphatic benzamides, N,N-dimethyl (2e), N,N-diethyl (2f) and N,N-diisopropyl (2g),
affording the products in 59–97% yields with 93–96% D2-incorporation. Similarly, anilides
(2h), N-benzylic amides (2i) and different substitution (2j–2l) is tolerated, affording the
products in 50–90% yields with 93–95% D2-incorporation. Overall, the reaction represents
an operationally simple and cost-effective synthesis of deuterated benzylic alcohols, which
are of interest as labelled probes. It is important to note that these reductions typically do
not show significant isotope effect. SET is typically rate determining step [53–57].

Table 5. Chemoselective Sodium Dispersion Mediated Reductive Deuteration of Aromatic Amides to
[D2]-Benzyl Alcohols 1.
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hexane, 0 ◦C, 20 min. Na dispersion added dropwise to a solution of 2 and EtOH-d1. [D2]-incorporation is shown
in brackets.

Finally, to demonstrate the utility of this iron-catalyzed cross-coupling/chemoselective
amide reduction, we performed a one-pot sequential process (Scheme 2). As shown, the
iron-catalyzed cross-coupling under standard conditions, followed by solvent exchange,
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and sodium dispersion mediated chemoselective reduction enables the synthesis of ben-
zylic alcohols in the same pot. This reaction highlights the utility of completing the tandem
cross-coupling/reduction process by combining two sustainable metals in a one-pot pro-
cedure. Work is currently in progress to develop in situ sequential processes involving
iron-catalyzed cross-coupling as a key step. These studies will be published in due course.
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3. Discussion

In summary, we have reported a sequential synthesis of benzylic alcohols by a merger
of iron catalyzed cross-coupling and highly chemoselective reduction of benzamides pro-
moted by sodium dispersion in the presence of alcoholic donors. Important aspects of
this approach include iron-catalyzed Kumada cross-coupling that exploits the high sta-
bility of benzamide bonds, enabling challenging C(sp2)–C(sp3) cross-coupling with alkyl
Grignard reagents that are prone to dimerization and β-hydride elimination and highly
chemoselective, sodium dispersion promoted reduction of carboxamides that proceeds
with full selectivity for the C–N bond cleavage. Moreover, this approach has been further
extended to the synthesis of deuterated benzylic alcohols with high D2 incorporation. This
study clearly indicates that the combination of abundant metals by complementary reaction
mechanisms provides an attractive method for modular construction of important building
blocks and pharmaceutical labels in organic synthesis. Our future studies are focused
on developing sequential approaches for catalysis that would address the global issue of
limited resources of transition metals.

4. Materials and Methods

General Procedure for Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chloroben-
zamides. An oven-dried vial equipped with a stir bar was charged with an amide substrate
(neat, typically, 0.50 mmol, 1.0 equiv) and Fe(acac)3 (0.1 mol%), placed under a positive
pressure of argon and subjected to three evacuation/backfilling cycles under vacuum.
2-Methyltetrahydrofuran (1.0 M) and DMI (neat, 200 mol%) were sequentially added with
vigorous stirring at room temperature, the reaction mixture was cooled to 0 ◦C, a solution
of Grignard reagent (typically, 1.05 equiv) was added dropwise with vigorous stirring and
the reaction mixture was stirred for 18 h at 0 ◦C. After the indicated time, the reaction
mixture was diluted with HCl (1.0 N, 1.0 mL) and EtOAc (1× 30 mL), the organic layer was
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extracted with HCl (1.0 N, 2 × 10 mL), dried and concentrated. The sample was analyzed
by 1H NMR (CDCl3, 400 MHz) to obtain conversion, yield and selectivity using internal
standard and comparison with authentic samples. Analytical sample was purified by
chromatography on silica gel (EtOAc/hexanes). Note that all reactions have been carried
out using new glassware. Control reactions have been carried out using new glassware, stir
bars, spatulas. It is worthwhile to note that palladium cannot easily catalyze the Kumada
cross-coupling with alkyl Grignards due to fast β-hydride elimination [27,28]. All products
are oils. Spectra are provided in the Supplementary Materials.

Characterization Data of Cross-Coupling Products (Supplementary Materials)

(4-Hexylphenyl)(morpholino)methanone (Table 2, 2a). Prepared according to the
general procedure using (4-chlorophenyl)(morpholino)methanone (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 92% (126.5 mg). Colorless oil. 1H
NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 3.93–3.36 (m,
8H), 2.62 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.37–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H).
13C NMR (100 MHz, CDCl3) δ 170.7, 145.1, 132.5, 128.5, 127.2, 77.4, 77.1, 76.8, 66.9, 48.3,
42.6, 35.8, 31.7, 31.3, 28.9, 22.6, 14.1. Spectroscopic properties matched those described
previously [45].

(4-Hexylphenyl)(piperidin-1-yl)methanone (Table 2, 2b). Prepared according to the
general procedure using (4-chlorophenyl)(piperidin-1-yl)methanone (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 92% (125.9 mg). Colorless oil. 1H
NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 3.69 (brs, 2H),
3.36 (brs, 2H), 2.61 (t, J = 7.7 Hz, 2H), 1.71–1.44 (m, 8H), 1.37–1.24 (m, 6H), 0.88 (t, J = 6.7 Hz,
3H). 13C NMR (100 MHz, CDCl3) δ 170.6, 144.5, 133.7, 128.4, 126.9, 77.4, 77.1, 76.8, 48.8,
43.2, 35.8, 31.7, 31.3, 29.0, 26.6, 25.7, 24.7, 22.6, 14.1. Spectroscopic properties matched those
described previously [45].

(4-Hexylphenyl)(pyrrolidin-1-yl)methanone (Table 2, 2c). Prepared according to
the general procedure using (4-chlorophenyl)(pyrrolidin-1-yl)methanone (0.50 mmol),
Fe(acac)3 (0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF,
1.20 equiv). The reaction mixture was stirred for 18 h at 0 ◦C. Yield 88% (114.1 mg). Colorless
oil. 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 3.64 (t,
J = 7.0 Hz, 2H), 3.45 (t, J = 6.6 Hz, 2H), 2.62 (t, J = 7.7 Hz, 2H), 2.00–1.91 (m, 2H), 1.90–1.82
(m, 2H), 1.64–1.56 (m, 2H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz,
CDCl3) δ 169.9, 144.9, 134.5, 128.2, 127.2, 77.2, 77.1, 76.7, 49.6, 46.2, 35.8, 31.7, 31.2, 28.9, 26.4,
24.4, 22.6, 14.1. Spectroscopic properties matched those described previously [77].

Azetidin-1-yl(4-hexylphenyl)methanone (Table 2, 2d). Prepared according to the
general procedure using azetidin-1-yl(4-chlorophenyl)methanone (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 73% (89.6 mg). Colorless oil. New
compound. 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 4.31
(t, J = 7.5 Hz, 2H), 4.22 (t, J = 7.7 Hz, 2H), 2.62 (t, J = 7.7 Hz, 2H), 2.37–2.29 (m, 2H), 1.64–1.56
(m, 2H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.4,
146.1, 130.6, 128.3, 127.9, 77.4, 77.1, 76.7, 53.4, 48.9, 35.9, 31.7, 31.2, 28.9, 22.6, 16.1, 14.14.
HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C16H23NONa 268.1677 found 268.1673.

4-Hexyl-N,N-dimethylbenzamide (Table 2, 2e). Prepared according to the general
procedure using 4-chloro-N,N-dimethylbenzamide (0.50 mmol), Fe(acac)3 (0.1 mol%), DMI
(200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). The reaction
mixture was stirred for 18 h at 0 ◦C. Yield 95% (110.9 mg). Colorless oil. 1H NMR (400 MHz,
CDCl3) δ 7.33 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 3.10 (brs, 3H), 2.99 (brs, 3H), 2.61
(t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.37–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR
(100 MHz, CDCl3) δ 171.8, 144.5, 133.5, 128.2, 127.1, 77.4, 77.1, 76.7, 39.6, 35.7, 35.3, 31.6,
31.2, 28.8, 22.5, 14.0. Spectroscopic properties matched those described previously [45].
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N,N-Diethyl-4-hexylbenzamide (Table 2, 2f). Prepared according to the general pro-
cedure using 4-chloro-N,N-diethylbenzamide (0.50 mmol), Fe(acac)3 (0.1 mol%), DMI
(200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.20 equiv). The reaction
mixture was stirred for 18 h at 0 ◦C. Yield 98% (128.3 mg). Colorless oil. New compound. 1H
NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 3.54 (brs, 2H),
3.28 (brs, 2H), 2.61 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.36–1.06 (m, 12H), 0.88 (t, J = 6.8
Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 171.5, 144.1, 134.5, 128.3, 126.3, 77.4, 77.1, 76.7, 43.3,
39.2, 35.8, 31.7, 31.3, 28.9, 22.6, 14.2, 14.1, 12.9. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd
for C17H27NONa 284.1990 found 284.1985.

4-Hexyl-N,N-diisopropylbenzamide (Table 2, 2g). Prepared according to the general
procedure using 4-chloro-N,N-diisopropylbenzamide (0.50 mmol), Fe(acac)3 (0.1 mol%),
DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.20 equiv). The reaction
mixture was stirred for 18 h at 0 ◦C. Yield 98% (141.7 mg). Colorless oil. New compound. 1H
NMR (400 MHz, CDCl3) δ 7.22 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 4.11–3.27 (m,
2H), 2.60 (t, J = 7.7 Hz, 2H), 1.65–1.07 (m, 20H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz,
CDCl3) δ 171.3, 143.6, 136.2, 128.4, 125.7, 50.8, 45.8, 35.8, 31.7, 31.3, 28.9, 22.6, 20.8, 14.1.
HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C19H31NONa 312.2303 found 312.2295.

4-Hexyl-N-methyl-N-phenylbenzamide (Table 2, 2h). Prepared according to the
general procedure using 4-chloro-N-methyl-N-phenylbenzamide (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 85% (125.7 mg). Colorless oil.
New compound. 1H NMR (400 MHz, CDCl3) δ 7.24–7.18 (m, 4H), 7.15–7.09 (m, 1H), 7.06–7.01
(m, 2H), 6.95 (d, J = 8.3 Hz, 2H), 3.49 (s, 3H), 2.49 (t, J = 7.7 Hz, 2H), 1.55–1.46 (m, 2H),
1.28–1.20 (m, 6H), 0.85 (t, J = 6.9 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.7, 145.1, 144.7,
133.0, 129.0, 128.8, 127.6, 126.8, 126.2, 77.4, 77.1, 76.7, 38.4, 35.6, 31.5, 30.9, 28.7, 22.5, 14.0.
HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C20H25NONa 318.1834 found 318.1825.

N-Benzyl-4-hexyl-N-methylbenzamide (Table 2, 2i). Prepared according to the gen-
eral procedure using N-benzyl-4-chloro-N-methylbenzamide (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 95% (147.2 mg). Colorless oil.
New compound. 1H NMR (400 MHz, CDCl3) δ 7.42–7.13 (m, 9H), 4.75 (brs, 1H), 4.54 (brs,
1H), 3.10–2.80 (m, 3H), 2.60 (brs, 2H), 1.59 (brs, 2H), 1.29 (brs, 6H), 0.87 (t, J = 6.8 Hz, 3H).
13C NMR (100 MHz, CDCl3) (mixture of two rotamers) δ 172.6, 171.8, 144.7, 137.1, 136.7,
133.3, 128.7, 128.4, 128.1, 127.5, 127.1, 126.9, 126.7, 77.4, 77.1, 76.7, 55.2, 50.8, 37.1, 35.8, 33.2,
31.7, 31.2, 28.9, 22.6, 14.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C21H27NONa
332.1990 found 332.1975.

(4-Cyclohexylphenyl)(morpholino)methanone (Table 2, 2j). Prepared according to
the general procedure using (4-chlorophenyl)(morpholino)methanone (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and c-C6H11MgCl (1.0 M in 2-MeTHF,
2.00 equiv). The reaction mixture was stirred for 18 h at 0 ◦C. Yield 80% (109.5 mg). White
solid. 1H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H),
3.89–3.40 (m, 8H), 2.58–2.46 (m, 1H), 1.92–1.80 (m, 4H), 1.80–1.71 (m, 1H), 1.48–1.32 (m, 4H),
1.32–1.17 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 170.6, 150.1, 132.6, 127.2, 127.0, 77.4, 77.1,
76.7, 66.9, 48.4, 44.4, 42.6, 34.2, 26.7, 26.0. Spectroscopic properties matched those described
previously [45].

(4-Isopropylphenyl)(morpholino)methanone (Table 2, 2k). Prepared according to
the general procedure using (4-chlorophenyl)(morpholino)methanone (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and i-PrMgBr (0.6 M in THF, 2.0 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 56% (65.4 mg). Colorless oil. 1H
NMR (400 MHz, CDCl3) δ 7.34 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.85–3.44 (m,
8H), 2.99–2.85 (m, 1H), 1.25 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 170.7, 151.0,
132.7, 127.3, 126.6, 77.4, 77.1, 76.7, 66.9, 34.1, 23.8. Spectroscopic properties matched those
described previously [78].
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(3-Hexylphenyl)(morpholino)methanone (Table 2, 2l). Prepared according to the
general procedure using (3-chlorophenyl)(morpholino)methanone (0.50 mmol), Fe(acac)3
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv).
The reaction mixture was stirred for 18 h at 0 ◦C. Yield 68% (93.5 mg). Colorless oil.
New compound. 1H NMR(400 MHz, CDCl3) δ 7.34–7.28 (m, 1H), 7.25–7.16 (m, 3H), 3.90–3.37
(m, 8H), 2.62 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.35–1.24 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H).
13C NMR (101 MHz, CDCl3) δ 170.7, 143.4, 135.2, 129.9, 128.3, 127.0, 124.2, 77.4, 77.1, 76.7,
66.9, 48.1, 42.5, 35.7, 31.6, 31.2, 28.9, 22.5, 14.0. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd
for C17H25NO2Na 298.1783 found 298.1777.

Optimization Studies for the Reduction of Amides. To a solution of (4-cyclohexylph-
enyl)(morpholino)methanone (0.30 mmol) in solvent (2.5 mL), EtOH (4.5–15 mmol) was
added, followed by sodium dispersions in oil (1.5–3.0 mmol) under Ar at 0 ◦C and the
resulting solution was stirred vigorously. After 20 min the reaction mixture was quenched
by an aqueous solution of NaHCO3 (5.0 mL, saturated) and the reaction mixture was
diluted with EtOAc (10 mL) and brine (10 mL). The aqueous layer was extracted with
EtOAc (2 × 10 mL), the organic layers were combined, dried over MgSO4, filtered and
concentrated. Then, the sample was analyzed by 1H NMR (CDCl3, 300 MHz) to obtain
the deuterium incorporation and yield using internal standard and comparison with
authentic samples.

General Procedure for the Reduction of Amides by Na/EtOH. To a solution of amide
substrate (0.30 mmol) in hexane (2.5 mL), EtOH (9.0 mmol) was added, followed by sodium
dispersions in oil (34 wt%, 3.0 mmol) under Ar at 0 ◦C and the resulting solution was
stirred vigorously. After 20 min, the reaction mixture was quenched by an aqueous solution
of NaHCO3 (5.0 mL, saturated) and the reaction mixture was diluted with EtOAc (10 mL)
and brine (10 mL). The aqueous layer was extracted with EtOAc (2 × 10 mL), the organic
layers were combined, dried over MgSO4, filtered and concentrated. The crude product
was purified by flash chromatography on silica gel (EtOAc/petroleum ether).

Characterization Data of Reduction Products (Supplementary Materials)

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of (4-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3a, 51.9 mg, 90% yield as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 7.27 (d,
J = 7.9 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 4.62 (s, 2H), 2.59 (t, J = 7.7 Hz, 2H), 1.89 (br, 1H),
1.60 (m, 2H), 1.37–1.23 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 142.6,
138.2, 128.7, 127.2, 65.4, 35.8, 31.8, 31.6, 29.1, 22.7, 14.2. Spectroscopic properties matched
those described previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of (4-hexylphenyl)(piperidin-1-yl)methanone (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3a, 46.7 mg, 81% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of (4-hexylphenyl)(pyrrolidin-1-yl)methanone (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3a, 51.9 mg, 90% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of azetidin-1-yl(4-hexylphenyl)methanone (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3a, 46.2 mg, 80% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the reac-
tion of 4-hexyl-N,N-dimethylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na dispersion
in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether), afforded 3a,
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43.3 mg, 75% yield as a colorless oil. Spectroscopic properties matched those described
previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of N,N-diethyl-4-hexylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na dispersion
in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether), afforded 3a,
42.1 mg, 73% yield as a colorless oil. Spectroscopic properties matched those described
previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of 4-hexyl-N,N-diisopropylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na dis-
persion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether), afforded
3a, 42.2 mg, 73% yield as a colorless oil. Spectroscopic properties matched those described
previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of 4-hexyl-N-methyl-N-phenylbenzamide (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3a, 46.7 mg, 81% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the
reaction of N-benzyl-4-hexyl-N-methylbenzamide (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3a, 36.9 mg, 64% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Cyclohexylphenyl)methanol (Table 4, 3b). According to the general procedure, the
reaction of (4-cyclohexylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol)
and Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum
ether), afforded 3b, 49.7 mg, 87% yield as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.29
(m, 2H), 7.20 (m, 2H), 4.64 (s, 2H), 2.49 (m, 1H), 1.93–1.60 (m, 7H), 1.49–1.33 (m, 4H); 13C
NMR (75 MHz, CDCl3) δ 147.8, 138.4, 127.2, 127.1, 65.4, 44.4, 34.6, 27.0, 26.3. Spectroscopic
properties matched those described previously [80].

(4-Isopropylphenyl)methanol (Table 4, 3c). According to the general procedure, the
reaction of (4-isopropylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3c, 33.8 mg, 75% yield as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.29 (m,
2H), 7.22 (m, 2H), 4.62 (s, 2H), 2.90 (m, 1H), 1.98 (br, 1H), 1.24 (d, J = 6.9 Hz, 6H); 13C
NMR (75 MHz, CDCl3) δ 148.5, 138.4, 127.3, 126.7, 65.3, 34.0, 24.1. Spectroscopic properties
matched those described previously [81].

(3-Hexylphenyl)methanol (Table 4, 3d). According to the general procedure, the
reaction of (3-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 3d, 30.6 mg, 53% yield as a colorless oil. New compound. 1H NMR (400 MHz,
CDCl3) δ 7.30–7.25 (m, 1H), 7.21–7.15 (m, 2H), 7.14–7.10 (m, 2H), 4.67 (s, 2H), 2.61 (t,
J = 7.7 Hz, 2H), 1.69–1.57 (m, 3H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR
(100 MHz, CDCl3) δ 143.4, 140.8, 128.5, 127.8, 127.1, 124.3, 77.4, 77.1, 76.7, 65.5, 36.0, 31.8,
31.5, 29.1, 22.6, 14.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C13H20ONa 215.1412
found 215.1403.

General Procedure for the Reductive Deuteration of Amides by Na/EtOD-d1. To a
solution of an amide substrate (0.30 mmol) in hexane (2.5 mL), EtOH (9.0 mmol) was added,
followed by sodium dispersions in oil (34 wt%, 3.0 mmol) under Ar at 0 ◦C and the resulting
solution was stirred vigorously. After 20 min, the reaction mixture was quenched by an
aqueous solution of NaHCO3 (5.0 mL, saturated) and the reaction mixture was diluted with
EtOAc (10 mL) and brine (10 mL). The aqueous layer was extracted with EtOAc (2× 10 mL),
the organic layers were combined, dried over MgSO4, filtered and concentrated. The crude
product was purified by flash chromatography on slica gel (EtOAc/petroleum ether).

Characterization Data of Reductive Deuteration Products (Supplementary Materials)
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(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of (4-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 44.3 mg, 76% yield as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 7.26 (d,
J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 2.60 (t, J = 7.7 Hz, 2H), 1.67 (br, 1H), 1.60 (m, 2H),
1.37–1.25 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 142.6, 138.2 (m),
128.7, 127.2, 65.0 (m), 35.8, 31.8, 31.6, 29.1, 22.7, 14.2. Spectroscopic properties matched
those described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of (4-hexylphenyl)(piperidin-1-yl)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 56.5 mg, 97% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of (4-hexylphenyl)(pyrrolidin-1-yl)methanone (0.30 mmol), EtOD-d1 (9.0 mmol)
and Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 50.7 mg, 87% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of azetidin-1-yl(4-hexylphenyl)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 42.6 mg, 73% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure,
the reaction of 4-hexyl-N,N-dimethylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 42.0 mg, 72% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of N,N-diethyl-4-hexylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and Na disper-
sion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether), afforded
4a, 44.9 mg, 77% yield as a colorless oil. Spectroscopic properties matched those described
previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure,
the reaction of 4-hexyl-N,N-diisopropylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 34.4 mg, 59% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of 4-hexyl-N-methyl-N-phenylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 52.5 mg, 90% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the
reaction of N-benzyl-4-hexyl-N-methylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0–25% EtOAc/petroleum ether),
afforded 4a, 39.1 mg, 67% yield as a colorless oil. Spectroscopic properties matched those
described previously [79].

(4-Cyclohexylphenyl)methan-d2-ol (Table 5, 4b). According to the general proce-
dure, the reaction of (4-cyclohexylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1
(9.0 mmol) and Na dispersion in oil (3.0 mmol), after chromatography (0–20% EtOAc/
petroleum ether), afforded 4b, 46.1 mg, 80% yield as a white solid. 1H NMR (300 MHz,
CDCl3) δ 7.28 (m, 2H), 7.20 (m, 2H), 2.50 (m, 1H), 1.93–1.64 (m, 7H), 1.48–1.33 (m, 4H).
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13C NMR (75 MHz, CDCl3) δ 147.8, 138.3, 127.3, 127.1, 64.8 (m), 44.4, 34.6, 27.0, 26.3.
Spectroscopic properties matched those described previously [80].

(4-Isopropylphenyl)methan-d2-ol (Table 5, 4c). According to the general procedure,
the reaction of (4-isopropylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 mmol)
and Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether),
afforded 4c, 32.0 mg, 70% yield as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.29 (m,
2H), 7.22 (m, 2H), 2.91 (m, 1H), 1.70 (br, 1H), 1.25 (d, J = 7.0 Hz, 6H). 13C NMR (75 MHz,
CDCl3) δ 148.6, 138.3, 127.3, 126.7, 65.0 (m), 34.0, 24.1. Spectroscopic properties matched
those described previously [81].

(3-Hexylphenyl)methan- d2-ol (Table 5, 4d). According to the general procedure, the
reaction of (3-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and
Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether),
afforded 4d, 29.3 mg, 50% yield as a colorless oil. New compound. 1H NMR (400 MHz,
CDCl3) δ 7.30–7.25 (m, 1H), 7.21–7.15 (m, 2H), 7.14–7.10 (m, 2H), 2.61 (t, J = 7.7 Hz, 2H),
1.67–1.56 (m, 3H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ
143.4, 140.7, 128.5, 127.9, 127.2, 124.4, 77.4, 77.1, 76.7, 36.0, 31.8, 31.5, 29.1, 22.6, 14.2. HRMS
(ESI/Q-TOF) m/z: [M + Na]+ calcd for C13H18D2ONa 217.1537 found 217.1526.

General procedure for one-pot sequential process. An oven-dried vial equipped
with a stir bar was charged with an amide substrate (neat, 0.25 mmol, 1.0 equiv) and
Fe(acac)3 (0.1 mol%), placed under a positive pressure of argon and subjected to three
evacuation/backfilling cycles under vacuum. 2-Methyltetrahydrofuran (1.0 M) and DMI
(neat, 200 mol%) were sequentially added with vigorous stirring at room temperature, the
reaction mixture was cooled to 0 ◦C, a solution of Grignard reagent (typically, 1.05 equiv)
was added dropwise with vigorous stirring and the reaction mixture was stirred for 18 h at
0 ◦C. After the indicated time, the reaction mixture was diluted with HCl (1.0 N, 0.5 mL)
and EtOAc (1 × 15 mL), the organic layer was extracted with HCl (1.0 N, 2 × 5 mL),
dried and concentrated. The resulting residue was then dissolved in hexane (2 mL), EtOH
(7.5 mmol) was added, followed by sodium dispersions in oil (34 wt%, 2.5 mmol) under
Ar at 0 ◦C and the resulting solution was stirred vigorously. After 20 min, the reaction
mixture was quenched by an aqueous solution of NaHCO3 (4.0 mL, saturated) and the
reaction mixture was diluted with EtOAc (10 mL) and brine (10 mL). The aqueous layer was
extracted with EtOAc (2 × 10 mL), the organic layers were combined, dried over MgSO4,
filtered and concentrated. The crude product was purified by flash chromatography on
silica gel (EtOAc/petroleum ether).

Supplementary Materials: 1H and 13C NMR spectra are available online at https://www.mdpi.
com/article/10.3390/molecules28010223/s1.
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