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Abstract: Recently, the development of composite materials composed of magnetic materials and
MXene has attracted significant attention. However, the thickness and microwave absorption per-
formance of the composite is still barely satisfactory. In this work, the C-N@NiFe2O4@MXene/Ni
nanocomposites were successfully synthesized in situ by hydrothermal and calcination methods.
Benefiting from the introduction of the carbon-nitrogen(C-N) network structure, the overall di-
electric properties are improved effectively, consequently reducing the thickness of the composite
while maintaining excellent absorption performance. As a result, the minimum reflection loss of
C-N@NiFe2O4@MXene/Ni can reach −50.51 dB at 17.3 GHz at an ultralow thickness of 1.5 mm,
with an effective absorption bandwidth of 4.95 GHz (13.02–18 GHz). This research provides a novel
strategy for materials to maintain good absorption performance at an ultralow thickness level.

Keywords: electromagnetic wave absorption; MXene; NiFe2O4

1. Introduction

With the development of telecommunication and microelectronic technologies, the
problems of electromagnetic interference and radiation gradually become more serious.
Excess electromagnetic waves can not only disrupt the operation of other electronic de-
vices, but also cause harm to human health [1–4]. In order to reduce the negative effects
of electromagnetic waves, microwave absorption materials (MAMs) are applied widely.
MAMs can absorb microwave and electromagnetic energy. In general, the ideal MAMs
should have the characteristics of light weight, thin thickness, strong absorption, and wide
frequency band [5–7].

Two-dimensional transition metal carbides (MXene), as new emerging layered mate-
rial, are widely used in various fields such as electrochemical energy storage [8], electro-
magnetic shielding [9], biomedical [10], etc. MXene is produced by etching and stripping
its precursor MAX, where M is a transition metal element, A is a main group element,
usually Al or Si, and X denotes C or N [11]. The MX layer has a strong bonding and is
in a stable chemical state. The A-layer group, as a reactive site, is susceptible to selective
etching by hydrofluoric acid, hydrochloric acid/lithium fluoride, molten salt, etc., which
breaks its chemical bonds with M and X layers. The MAX layer spacing is significantly
increased after etching, and the MXene sheet layer is obtained. Because of its outstanding
electrical conductivity, abundant functional groups, and high polarization anisotropy [12],
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MXene can be used to manufacture microwave absorbing materials. However, a single loss
mechanism limits its performance.

At present, many investigations have proved that combining dielectric materials (MX-
ene, graphene, and SiC) with magnetic materials (Ni [13], Fe2O3 [14], Fe3O4 [15], and
NiFe2O4 [16,17]) is an effective way to improve absorption performance. The synergistic
effect of the composites not only enhances magnetic and dielectric losses, but also improves
impedance matching [18]. For instance, Zhang et al. [19] prepared Fe3O4@Ti3C2Tx nano-
composites by the solvothermal process. The prepared composite has a minimum reflection
loss (RLmin) value of−57.2 dB(15.7 GHz) and an effective absorption bandwidth of 1.4 GHz
at a thickness of 4.2 mm. Sandwich-like CoFe@Ti3C2Tx composite was successfully syn-
thesized by in situ reduction by Zhou et al. [20], the RLmin value of −36.29 dB at 8.56 GHz
could be achieved with a thickness of 2.2 mm. Xiao et al. [21] fabricated MXene-CNTs/Ni
hybrid, which had an RLmin performance of −56.4 dB at 2.4 mm thickness. Although
the composites formed by combining magnetic materials with MXene have good absorp-
tion properties, it is a great challenge for the composites to maintain excellent absorption
performance at an ultralow thickness.

In order to obtain MAMs at ultralow thickness level, the factors that affect the thickness
have been discussed. According to the theory of transmission lines, the following equation
is obtained [22,23].

Zin = Z0

√
µr

εr
tanh

(
.
J

2πh
λ

√
µrεr

)
(1)

RL(dB) = 20log10

(∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣) (2)

where Z0 is free space wave impedance; Zin is the input impedance; εr represents the
relative complex permittivity; µr represents the complex permeability; h represents the
thickness of absorber; λ is the wavelength of electromagnetic wave and RL is the reflectivity.
According to the above two formulas, the conditions of general matching absorption are
discussed. In an atmospheric environment, the dielectric constant of magnetic material is
greater than magnetic conductivity. When |ε| > |u|, the optimal absorption thickness is
as follows:

λ

h
= kRe

√
εu− c (3)

Re
√

εµ =

√
ε′µ′

2

√(
1− tgδstgδµ

)
+
√

1 + tg2δstg2δµ + tg2δs + tg2δµ (4)

where k and c are constant. The results show the critical factors of optimal thickness are the
product of the real part of the complex permittivity of the material and the real part of the
complex permeability of the material (ε′µ′) and the ratio of dielectric loss to magnetic loss
(tanδε/tanδµ). When the value of ε′µ′ is big and tanδε/tanδµ is greater than or less than 1,
the minimum thickness can be obtained.

Accordingly, in this work, the C-N network structure is employed to change the overall
dielectric properties of the MAMs. C-N@NiFe2O4@MXene/Ni was prepared in situ by
hydrothermal and calcination methods. Due to the adjustment of dielectric properties, the
value of ε′µ′ increases and tanδε/tanδµ further away from 1 to achieve optimal absorption
thickness value. In addition, the introduction of C-N network structure is conducive for
enhancing dielectric loss. The multicomponent three-dimensional structure composed
of C-N network structure, NiFe2O4 and MXene/Ni can generate dipole polarization and
multiple scattering [24]. The result verifies that the synergistic effect of C-N network
structure, NiFe2O4 and MXene/Ni can effectively improve the electromagnetic wave
absorption performance and reduce its the thickness.

2. Results Discussion

The X-ray diffraction (XRD) patterns of NiFe LDH@MXene/Ni and C-N polymer@NiFe
LDH@MXene/Ni are shown in Figure 1a. The characteristic diffraction peak of (002) indi-
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cates the successful preparation of MXene [25]. MXene was prepared by using Lewis acidic
etching route. When immersing Ti3AlC2 MAX precursor in molten NiCl2 at 750 ◦C, the Al
atoms weakly bonded to Ti in the Ti3AlC2 are oxidized into Al3+ cations by the Lewis acid
Ni2+, resulting in the formation of AlCl3 phase and concomitant reduction of Ni2+ to nickel
metal [26]. After reacting with dilute hydrochloric acid, the great mass of nickel on MXene
was removed. A small amount of nickel that grows in the crystal lattice still remained. The
diffraction peaks at 44.3◦, 51.6◦, and 76.1◦ belong to the (111), (200), and (220) crystalline
planes of Ni (PDF#89-7128), respectively [22]. Obviously, nickel ions have been successfully
converted into nickel metal. The diffraction peaks at 11.4◦, 22.9◦, 34.5◦, and 59.9◦ belong to
the (003), (006), (012), and (113) crystalline planes of NiFe LDH (PDF#40-0215), respectively,
which illustrates the successful synthesis of NiFe LDH based on MXene/Ni substrate
as expected. From NiFe LDH@MXene/Ni to C-N polymer@NiFe LDH@MXene/Ni, the
diffraction peak of (003) crystalline plane shifts to a small angle (Figure S1), indicating
that the introduction of C-N polymer makes the interlayer spacing of NiFe LDH increase.
Furthermore, as shown in Figure 1b, the NiFe LDH has been successfully transformed
into NiFe2O4 after thermal treatment in a nitrogen atmosphere. The diffraction peaks at
35.7◦, 43.6◦, and 62.9◦ belong to the (311), (400), and (440) crystalline planes of NiFe2O4
(PDF#10-0325) [27]. Notably, the XRD plot of C-N@NM has an additional carbon peak
(PDF#12-0212), obtained from the C-N polymer after thermal treatment at a high temper-
ature. In addition, X-ray photoelectron spectroscopy (XPS) was used to characterize the
surface elemental composition and chemical state of the experimental samples. As shown
in Figure S2, the XPS survey spectra of both NM and C-N@NM exhibit the existence of
Ni, Fe, Ti, C, and O elements. Compared with the NM, the wide-scan XPS spectrum of the
C-N@NM has an extra peak (N 1s). The high-resolution XPS spectra of C 1s of C-N@NM
(Figure 1c) can be deconvoluted into three peaks. The binding energies at 284.8 eV, 285.7 eV
and 287.6 eV are assignable to the graphitized C-C/C=C, C-O and C=O, respectively [28].
For the high-resolution XPS spectra of N 1s (Figure 1d), the peaks at 398.3 eV and 399.7 eV
are assigned to sp3 C-N and sp2 C-N. During the formation of C-N@NM, nitrogen atoms
replace the carbon atoms in sp2 and sp3 C-C bonds, and consequently, the prepared C-N
network contains sp2 and sp3 C-N bonds [29,30]. In the spectra of Ni 2p (Figure 1e), the
binding energies at 854.6 and 871.1 eV are assigned to Ni 2p3/2 and Ni 2p1/2. The divalent
(Ni2+ 2p3/2 and Ni2+ 2p1/2) oxidative states are at 856.4 eV and 874.8 eV peaks. Moreover,
the binding energies located at 860.6 and 878.5 eV are ascribed to shake-up satellite peaks
(marked as “Sat.”) [31,32]. The spectrum of Fe 2p is exhibited in Figure 1f. The two large
peaks at 710.7 and 724.5 eV are ascribed to Fe 2p3/2 and Fe 2p1/2, respectively. Furthermore,
the peaks of Fe 2p3/2 and Fe 2p1/2 can be deconvoluted into two peaks, both corresponding
to Fe3+. Meanwhile, the peaks at 719.2 and 732.6 eV are satellite peaks.

Additionally, the as-synthesized materials were further characterized by scanning
electron microscopy (SEM). As shown in Figure 2a, the Ti3AlC2 MAX raw material features
an aggregated block. After Lewis acidic etching, the molten NiCl2 removed the Al atoms of
MAX. The raw material obviously changes to layered MXene/Ni (Figure 2b). Figure S3
and Figure 2c,d are the NiFe LDH@MXene/Ni and C-N polymer@NiFe LDH@MXene/Ni,
respectively. The morphology of NiFe LDH growing on MXene/Ni is lamellar. The growth
mechanism of NiFe LDH is as follows. With the increase of reaction temperature, urea
gradually hydrolyzes to OH− and CO3

2− (CO(NH2)2 + H2O→ 2NH3 + CO2, NH3·H2O
→ NH4

+ + OH−, CO2 + H2O→ CO3
2− + H+). The Ni2+ and Fe3+ react preferentially with

OH− to form monomeric nickel-iron hydroxide. Meanwhile, the monomers nucleate and
aggregate on the surface of MXene/Ni. As the heating time increases, the hydrolysis of urea
provides more OH− ions, which promotes the continued growth of nickel-iron hydroxide
particles. Eventually, nickel-iron hydroxide gradually formed NiFe-LDH nanosheets. It
should be noted that the reason why NiFe-LDH can grow on MXene/Ni is that MXene has
abundant surface groups (-OH, -O and/or -F, etc.) [33], that have hydroxyl linkage with
NiFe-LDH. For C-N polymer@NiFe LDH@MXene/Ni, after calcination at 900 ◦C in N2,
the NiFe-LDH nanosheets were in situ converted to spherical NiFe2O4 particles (Figure
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S4 and Figure 2e,f), and the C-N polymer simultaneously was calcined to C-N network
structure. Compared with NM (Figure S4), the NiFe2O4 particles of C-N@NM are denser
and more homogeneous. This is because the C-N network structure protects NiFe-LDH
from excessive collapse during calcination. It can be seen that C-N polymer is not only a
precursor of the C-N network structure, but also has a positive modulating effect on the
dispersion of NiFe2O4 nanoparticles.
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Figure 2. SEM images of (a) Ti3AlC2 MAX, (b) MXene/ Ni; (c,d) C-N polymer@NiFe LDH@ MX-
ene/Ni; (e,f) C-N@NM.

In order to further reveal microstructure of as-prepared C-N@NiFe2O4@MXene/Ni,
the transmission electron microscopy (TEM) was employed. The TEM image of C-N@NM
(Figure 3a) again clearly demonstrates that C-N@NM consists of three parts: C-N net-
work structure, NiFe2O4, and MXene/Ni. The C-N network structure tends to be an
amorphous structure, contributing to dielectric and conductivity losses. Meanwhile, the
high-resolution TEM image of C-N@NM is shown in Figure 3b. The 0.28 nm lattice fringe
matches the (220) lattice plane of NiFe2O4. The lattice fringe of 0.36 nm belongs to MXene.
Furthermore, the scanning TEM and corresponding elemental mapping images (Figure 3c)
further indicate the distribution of C, N, Fe, Ni and Ti. It can be seen that the Ni and Fe
elements are distributed in the interior of the sphere structure. Meanwhile, C is wrapped
around the outside. Combining the result of TEM with the above analysis of XRD and
SEM, it can be determined that the NiFe2O4 spheres are grown with MXene/Ni as the
substrate and wrapped by C-N network structure. The C-N@NiFe2O4@MXene/Ni has
a three-dimensional interconnected multi-interface structure, which facilitates multiple
interfacial polarizations.
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To investigate the electromagnetic wave absorbing performance of NM and C-N@NM,
the RL was evaluated. The calculation formulas are as follow [34,35]:

Zin = Z0

√
µr

εr
tanh

(
.
J

2πh
λ

√
µrεr

)
(5)

Z =

∣∣∣∣Zin
Z0

∣∣∣∣ = √|µr/εr|tan h
[

j
(

2π f d
c

)
√

µrεr

]
(6)

RL(dB) = 20log10

(∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣) (7)

where d represents the thickness of absorber; f represents the frequency of the microwave;
c is the velocity of light. Figure 4b, d separately show the RL of NM and C-N@NM with a
thickness of 1–5 mm in the range of 2–18 GHz and its corresponding three-dimensional
projection diagrams (Figure 4a,c). According to the previous literature [36], if the RL value
is less than −10 dB, 90% of incident electromagnetic waves can be completely absorbed,
the corresponding frequency width is called the effective absorption bandwidth (EAB).
Based on the criterion, the absorbing properties of NM and C-N@NM are discussed. For
NM (Figure 4b), when the thickness is 5 mm, the RLmin value is −25.78 dB with the EAB
of 4.87 GHz (3.59–8.46 GHz). Surprisingly, C-N@NM (Figure 4d), at an ultra-thin level of
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1.5 mm, exhibits dramatically microwave absorbing performance. The RLmin value can
reach −50.51 dB at 17.3 GHz, and the EAB is slightly increased to 4.95 GHz (13.02–18 GHz),
which is superior to that of NM, indicating that the multi-component C-N@NM has better
electromagnetic wave absorbing performance at an ultralow thickness level due to the
introduction of the C-N network structure.
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For further determining the microwave absorption performance, there are two im-
portant parameters, which are relatively complex permittivity (εr = ε′ − jε′′ ) and relative
complex permeability (µr = µ′ − jµ′′ ). The real part (ε′ and µ′) is related to the ability to
store electromagnetic wave energy, and the imaginary part (ε′′ and µ′′ ) represents the ability
of consuming the electromagnetic wave energy [37,38]. As can be seen from Figure 5a,b,
the ε′ and ε′′ values of C-N@NM are significantly larger than those of NM, indicating that
C-N@NM has stronger energy storage capacity and dielectric loss capability. In addition,
the polarization peaks of C-N@NM appear in Figure 5b, demonstrating the existence of
multiple polarization relaxation and conductance loss in C-N@NM. Figure 5c,d show that
both µ′ and µ′′ of C-N@NM are smaller than NM, indicating that the magnetic loss is re-
duced from NM to C-N@NM. In general, compared with NM, although the introduction of
C-N conductive network slightly reduces the magnetic loss of C-N@NM, it greatly enhances
the dielectric constant of the material, thereby increasing the dielectric loss and resulting
in enhanced overall absorbing performance. Additionally, the degrees of dielectric and
magnetic dissipation were separately measured by dielectric loss tangent (tanδε = ε′′/ε′)
and magnetic loss tangent (tanδµ = µ′′/µ′) [39–41]. Figure 5e shows that the tanδε value of
C-N@NM is greater than that of NM. It can be seen from Figure 5f that the tanδµ value of
C-N@NM is smaller than that of NM. The tanδµ/tanδµ ratio of C-N@NM is further away
from 1 in the 2–18 GHz range (Figure 5g), proving that dielectric loss plays a dominant
role in microwave losses. Meanwhile, the ε′µ′ value of C-N@NM is significantly greater
than NM (Figure 5h). The result indicates that C-N@NM possesses perfect impedance
matching conditions at an optimal thickness value. Thus, the RL value of C-N@NM can
reach −50.51 dB when the thickness is just 1.5 mm.
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According to the Debye theory, the Cole-Cole curve (ε′′-ε′) can be used to study the
mechanism of dielectric loss. The relationship between ε′ and ε′′ is shown in the following
equation [42]: (

ε′ − εs + ε∞

2

)2
+ =

(
εs − ε∞

2

)2
(8)
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where εs and ε∞ are the static permittivity and relative permittivity in higher frequency
regions, respectively. The Cole–Cole curves of NM and C-N@NM are exhibited in Fig-
ure 6a,b, which both have multiple semicircles in the curves. Each semicircle represents
a Debye dipolar relaxation process [43]. Moreover, it is clear that each Cole–Cole curve
consists of semicircles and straight tails, indicating that in addition to Debye relaxation,
other dielectric loss mechanisms also make contributions to dielectric loss, such as dipole
polarization and electron polarization [44]. Potential differences exist at multiple interfaces
of the C-N network structure, NiFe2O4 and MXene/Ni, leading to the accumulation of free
electrons at the interfaces, and causing additional polarization loss.
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The attenuation constant (α) is a crucial parameter used to evaluate the absorption
capacity of a material. The calculation equation is as follows [45]:

α =

√
2πf
c

√
µ′′ ε′′ − µ′ε′ +

√
(u′′ ε′′ − u′ε′)2 + (u′ε′′ + u′′ ε′)2 (9)

If the attenuation constant is larger, the ability to dissipate electromagnetic waves will
be stronger. The attenuation constant of NM and C-N@NM are displayed in Figure 6c.
Although in the 2–7.5 GHz range, the NM has a slightly higher attenuation constant than
C-N@NM, the attenuation constant of C-N@NM is significantly greater than that of NM
in the range of 7.5–18 GHz, indicating that the introduction of C-N network structure is
beneficial to improve the absorption performance of the material in high frequency band.
Additionally, for C-N@NM, the fluctuation of the attenuation constant in the high frequency
range indicates that the polarization relaxation plays a good role in the attenuation process
of electromagnetic waves at a specific frequency. The presence of multiphase interfaces
enhances interface polarization and dipole polarization so that electromagnetic waves have
better conduction losses as they pass through more interfaces.

On the basis of the above discussion, the reasonable microwave absorption mech-
anism of C-N@NM material is described. Firstly, the introduction of C-N conductive
network structure not only contributes to enhancing the conductive loss, but also can
effectively improve and optimize the impedance matching of the material, thus achiev-
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ing higher microwave absorption performance at an optimal thickness. Secondly, the
three-dimensional interconnected multi-interface structure can cause the multi-interface
reflection of electromagnetic waves. The multiple reflections of electromagnetic waves will
increase the transmission distance, resulting in more energy dissipation. Meanwhile, due
to the existence of multiple components, amounts of heterogeneous interfaces can generate
interfacial polarization, which is essential to wave absorption. Thirdly, the synergistic
effect of C-N network structure, NiFe2O4 and MXene/Ni contributes to the attenuation
ability of the material to electromagnetic waves. With the combined effect of the above
factors, the C-N@NM can exhibit excellent wave absorption performance at an ultralow
thickness level.

3. Materials and Methods
3.1. Materials

The materials required, namely Fe(NO3)3·9H2O, Ni(NO3)2·6H2O, NiCl2, NH4F, urea,
p-toluenesulfonic acid(PA), and metanilic acid(MA), were all obtained from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Ti3AlC2 (MAX) was obtained
from 11 Technology Co., Ltd. (Changchun, China). All reagents were analytical grade and
used without any further purification.

3.2. Synthesis of MXene

MXene was synthesized by using a molten salt etching method [26]. 1 g of Ti3AlC2
MAX and 2.1 g of NiCl2 were mixed and ground for 10 min. Then, 0.76 g of KCl and 0.6 g of
NaCl were added to the above mixture. The mixture was continued to be ground for 20 min
to make it homogeneous. In an argon atmosphere, the powder mixture was heated at 750 ◦C
for 24 h to obtain MXene/Ni. The MXene/Ni was then washed by 0.1 M HCl solution to
remove the residual Ni particles. The resulting solution was filtered with a microfiltration
membrane. Finally, the powder was dried under vacuum at room temperature for 24 h.

3.3. Synthesis of NiFe LDH@MXene/Ni and C-N polymer@NiFe LDH@MXene/Ni

The materials were synthesized in an autoclave by a solvothermal route. 0.116 g
of Ni(NO3)2·6H2O, 0.116 g of Fe(NO3)2·9H2O, 0.48 g of urea, 0.13 g of NH4F, and 0.2 g
MXene/Ni were magnetically stirred in 60 mL of deionized water for 1 h to obtain a
homogeneous solution A. The solution A was transferred to a 100 mL Teflon-lined stainless-
steel autoclave and heated at 120 ◦C for 3 h. Subsequently, the resulting precipitate was
collected by centrifugation, washed with deionized water for several times, and dried
at 60 ◦C for 6 h to obtain NiFe LDH@MXene/Ni. For producing C-N polymer@NiFe
LDH@MXene/Ni, the additional 50 mmol of PA and 50 mmol of MA were slowly added
to the above solution A and stirred constantly to obtain a homogeneous solution B. The
pH of solution B was adjusted to 7.0. The neutral solution was then transferred to Teflon-
lined stainless-steel autoclave, and heated 3 h at 120 ◦C. The precipitate obtained by
centrifugation was washed and dried to receive C-N polymer@NiFe LDH@MXene/Ni.

3.4. Synthesis of NiFe2O4@MXene/Ni and C-N@NiFe2O4@MXene/Ni

The obtained NiFe LDH@MXene/Ni and C-N polymer@NiFe LDH@MXene/Ni pow-
ders were separately put into a tubular furnace, raised to 900 ◦C with a heating rate
(5 ◦C min−1) and kept for 2 h in nitrogen. The NiFe2O4@MXene/Ni and C-N@NiFe2O4
@MXene/Ni calcined powders were collected and marked as NM and C-N@NM, respectively.

3.5. Characterization

The microscopic morphology and particle size of the samples were characterized using
scanning electron microscopy (SEM, Helios 5 CX, Thermo Scientific, Waltham, MA, USA)
and transmission electron microscopy (TEM, Talos, F200S, Thermo Scientific, Waltham,
MA, USA G2). The crystal structure and phase composition were analyzed using X-ray
diffraction (XRD, Empyrean, Panalytical B.V., Almelo, The Netherlands) with Cu Kα
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radiation between 5◦ and 80◦ (40 kV; 40 mA; 5◦ min−1). Additionally, X-ray photoelectron
spectroscopy (XPS, K-Alpha, Thermo Scientific, Waltham, MA, USA) was obtained using a
Thermo Scientific Kα energy spectrometer paired with an X-ray source of monochromatic
Al-Kα. The NM (50 wt%) or C-N@NM (50 wt%) were uniformly mixed with paraffin wax
(50 wt%) and pressed into a concentric ring with an outer diameter of 7.0 mm, and an
inner diameter of 3.04 mm. The electromagnetism parameters of NM and C-N@NM, in
the frequency range of 2–18 GHz, were obtained using a vector network analyzer (Agilent
N5234A, Santa Clara, CA, USA) using the coaxial method.

4. Conclusions

The three-dimensional interconnected multi-interface C-N@NM structure was success-
fully synthesized in situ by hydrothermal and calcination methods. Compared with NM,
the introduction of C-N network structure not only changes the overall dielectric properties
of the material, thereby reducing the thickness of the material, but also facilitates interfacial
polarization. This is the reason why the C-N@NM achieves excellent absorption perfor-
mance at an ultralow thickness level. The RLmin of C-N@NM absorber reaches −50.51 dB
at the thickness of only 1.5 mm. The proposed strategy in this work can provide a guidance
and possibility for the preparation of absorbers with low thickness and highly efficient
electromagnetic wave absorption performance in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010233/s1, Figure S1: The partially enlarged detail
of XRD patterns; Figure S2: The wide-scan XPS spectrum of NM and C-N@NM; Figure S3: SEM
image of NiFe LDH@MXene/Ni; Figure S4: SEM image of NM.
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