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Abstract: Thirteen compounds were isolated from the Canavalia lineata pods and their inhibitory
activities against human monoamine oxidase-A (hMAO-A) and -B (hMAO-B) were evaluated. Among
them, compounds 8 (medicarpin) and 13 (homopterocarpin) showed potent inhibitory activity
against hMAO-B (IC50 = 0.45 and 0.72 µM, respectively) with selectivity index (SI) values of 44.2
and 2.07, respectively. Most of the compounds weakly inhibited MAO-A, except 9 (prunetin) and
13. Compounds 8 and 13 were reversible competitive inhibitors against hMAO-B (Ki = 0.27 and
0.21 µM, respectively). Structurally, the 3-OH group at A-ring of 8 showed higher hMAO-B inhibitory
activity than 3-OCH3 group at the A-ring of 13. However, the 9-OCH3 group at B-ring of 13 showed
higher hMAO-B inhibitory activity than 8,9-methylenedioxygroup at the B-ring of 12 (pterocarpin).
In cytotoxicity study, 8 and 13 showed non-toxicity to the normal (MDCK) and cancer (HL-60) cells
and moderate toxicity to neuroblastoma (SH-SY5Y) cell. Molecular docking simulation revealed
that the binding affinities of 8 and 13 for hMAO-B (−8.7 and −7.7 kcal/mol, respectively) were
higher than those for hMAO-A (−3.4 and −7.1 kcal/mol, respectively). These findings suggest that
compounds 8 and 13 be considered potent reversible hMAO-B inhibitors to be used for the treatment
of neurological disorders.

Keywords: Canavalia lineata; medicarpin; homopterocarpin; selective human monoamine oxidase-B
inhibitor; docking simulation

1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in
the elderly, regardless of gender, race, or social status, and affects about 1.5 to 2.0% of
people over 60 years of age and 4% of people over 80 years of age [1]. The main cause
of PD is loss of dopaminergic neurons in the substantia nigra, and PD patients show
major motor symptoms such as tremor and stiffness along with anxiety, depression, and
dementia. Increasing dopamine (DA) level and targeting the DA-related serotonin system
have been expected as anticipating areas for the treatment of PD [2]. DA levels within
substantia nigra pars compacta (SNpc) neurons are maintained through synthesis of DA,
synaptic vesicle loading, uptake from the extracellular space, and catabolic degradation.
DA catabolism, on the other hand, begins with oxidative deamination, a reaction mediated
by mitochondrial monoamine oxidase (MAO, EC 1.4.3.4) that also produces H2O2 and
ammonia [3]. Therefore, increasing the concentration of DA through MAO inhibitors can be
expected to relieve the symptoms by maintaining the lost DA concentration in PD patients.
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Alzheimer’s disease (AD), a leading cause of dementia, is a progressive neurodegen-
erative disease [4]. AD affects more than 50 million people, and its main symptoms are
memory and cognitive declines [5]. Various inhibitors have been being studied for the drugs
of AD treatment. As one of the inhibitors, MAO inhibitors are used to treat neurological
and psychiatric disorders by increasing levels of neurotransmitter such as DA, serotonin (or
5-hydroxytryptamine, 5-HT), and norepinephrine, thereby reducing MAO activity, which
can cause neurological disorders [6]. On the other hand, cholinesterase (ChE) inhibitors
have been studied as important tools for the treatment of AD. Acetylcholine (ACh) is
a neurotransmitter in the central and peripheral nervous systems, and thus, a decrease
in ACh by acetylcholinesterase (AChE) has been identified as a major cause of AD, and
therefore many researches about ChE inhibitors are ongoing [7]. In addition, aggregation
of beta-amyloid (Aβ) produced by beta-site amyloid precursor protein cleaving enzyme 1
(BACE1) was also studied as a cause of AD [8,9].

More specifically, MAO catalyzes the oxidative deamination of monoamines during
neurotransmission with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer
membranes [10]. MAO is a pharmacological target because it is involved in catecholamine
and 5-HT inactivation pathways. In fact, selective reversible inhibitors of MAO-A have
been targeted for anti-depression treatment, while selective reversible inhibitors of MAO-B
are targets of therapeutic agents for AD and PD. Typically, selegiline, rasagiline, pargyline,
and clorgyline are used as selective MAO inhibitors to reduce the symptoms of neurode-
generative and neurological diseases [11,12]. On the other hand, it was reported that MAO
is also associated with the formation of amyloid plaques, which is a main cause of AD [13].
In addition, serious side effects of non-selective MAO inhibitors have been reported [14].
For this reason, selective MAO-B inhibitors based on diverse scaffolds have been actively
researched (for reviews see [15–17]) and recently reported [18,19].

AChE (EC 3.1.1.7) shows therapeutic efficacy by increasing synaptic ACh levels in
the cerebral cortex of AD patients, thereby improving cholinergic transmission [20]. As
an AChE inhibitor, tacrine was used as a first drug for AD treatment. However, tacrine
has been found to have a severe hepatotoxicity and is not currently used. Since then,
donepezil, rivastigmine, and galantamine have been used as AChE inhibitors for therapeu-
tic agents [11]. Like AChE, butyrylcholinesterase (BChE) is a serine hydrolase that rapidly
affects the hydrolysis of the neurotransmitter ACh. The main catalytic activity of BChE
is the hydrolysis of the neurotransmitters such as ACh and butyrylcholine (BCh) with a
preference of BCh [21,22]. BChE is also involved in the development of the nervous system,
detoxification, hydrolysis of drugs such as cocaine, heroin and aspirin, fat metabolism,
and the interaction and functional modification of other proteins such as polyproline and
trypsin [23]. In addition, inhibition of BACE1 related to the accumulation of Aβ for the
treatment of AD patients is regarded as one of the important factors. Although many
studies about BACE1 inhibitors have been reported, no one has been successful [24]. How-
ever, recently aducanumab is found to be effective to reduce Aβ plaques approved as a
drug for AD by FDA [25]. Therefore, it is judged that BACE1 inhibitors are deserved to be
extensively studied to reduce Aβ plaques.

Furthermore, multitargeting therapeutic strategies have been developed to target
MAO-B, AChE, and/or BACE1 [26,27]. It has been reported MAO and AChE inhibitors
may improve cognitive functions and alleviate symptoms in AD by elevating levels of
monoamines and choline esters [28,29].

During our on-going efforts to identify potent compounds in an herbal extract li-
brary, rhamnocitrin isolated from the leaves of Prunus padus var. seoulensis was found to
potently and selectively inhibit human MAO-A (hMAO-A) [30], and calycosin and 8-O-
methylretusin isolated from Maackia amurensis were identified as selective human MAO-B
(hMAO-B) inhibitors [31]. In addition, ellagic acid isolated from Castanopsis cuspidata var.
sieboldii showed inhibition of hMAO-B and BACE1 as a multi-target inhibitor [32].

Canavalia lineata is a tendril perennial plant that blooms from June to August and bears
fruit in October, rarely growing on the beach. C. lineata grows on Jeju Island in Korea and is
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also distributed in China, Japan, and Taiwan. It is mainly used as feed for livestock, but
because of its toxicity, it was also used for abortion in the past [33]. A few physiological
activities of C. lineata have been reported about anti-inflammation [34], and proteinase
inhibition [35]. However, no study has been reported about MAO inhibitory activity of C.
lineata. In the present study, we isolated thirteen compounds from the pods of C. lineata by
activity-guided screening for hMAO inhibition, and evaluated their inhibitory effects on
hMAO-A, hMAO-B, AChE, BChE, and BACE1, including kinetic studies and molecular
docking simulation.

2. Results and Discussion
2.1. Preparation and Identification of Compounds 1–13

Constituents in C. lineata pod MeOH extract were separated by reverse phase column
chromatography as described previously [34]. Compounds were purified by bioactivity-
guided fractionation using MPLC for EtOAc and BuOH fractions and HPLC for their
sub-fractions (Figure S1). Phytochemicals profile analysis of the C. lineata pod extract was
carried out using UPLC-QTOF/MS and -PDA (Figure S2). Structures of the compounds iso-
lated were elucidated by comparison with NMR and MS data (Figures S3–S15) as rutin (1),
(2R,3R)-3-hydroxy-7-O-β-D-glucopyranoside-6-methoxyflavanone (2), (–)-syringaresinol-
4-O-β-D-glucopyranoside (3), ononin (4), (+)-syringaresinol (5), (2R,3R)-3,7-dihydroxy-
6-methoxyflavanone (6), cajanin (7), medicarpin (3-hydroxy-9-methoxypterocarpan, 8),
prunetin (9), 7,4′-dimethyl-3′-hydroxygenistein (10), 7,4′-dimethoxyisoflavone (11), ptero-
carpin (3-methoxy-8,9-methylenedioxypterocarpan, 12), and homopterocarpin (3,9-
dimethoxypterocarpan, 13) (Figure 1). Compounds 6 (a flavonoid, 15.4 mg), 8 (a pte-
rocarpan, 22.5 mg), and 13 (a pterocarpan, 31.9 mg) were detected as major metabolites of
C. lineata pods. Compounds 8 and 13 were pterocarpans, derivatives of the isoflavonoid.
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Figure 1. Chemical structures of compounds 1–13 isolated from the Canavalia lineata; rutin
(1), (2R,3R)-3-hydroxy-7-O-D-glucopyranoside-6-methoxy-flavanone (2), (–)-syringaresinol-4-O-β-D-
glucopyranoside (3), ononin (4), syringaresinol (5), (2R,3R)-3,7′-dihydroxy-6-methoxy-flavanone
(6), cajanin (7), medicarpin (8), prunetin (9), 7,4′-dimethyl-3′-hydroxygenistein (10), 7,4′-
dimethoxyisoflavone (11), pterocarpin (12), and homopterocarpin (13).
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2.2. MAO Inhibitory Activities

A primary screening for MAO inhibition was performed using MeOH extract of C.
lineata pods, and its EtOAc and BuOH fractions. The MeOH extract showed high MAO-B
inhibition with residual activity of 53.5%. However, inhibition of MAO-A, AChE, BChE, and
BACE1 inhibitions were weak (residual activities of 76.1, 78.2, 98.9, and 76.1%, respectively).
After second additional extraction, MAO-B residual activity of EtOAc fraction (41.4%) was
higher than that of BuOH fraction (85.9%) (Table 1). During the isolation of compounds
from the extracts, thirteen compounds were identified and evaluated for their hMAO-
A, hMAO-B, AChE, BChE, and BACE1 inhibitory activities. Four compounds showed
MAO-A residual activities of less than 50%, and two compounds showed MAO-B residual
activities of less than 10% (Table 2). In IC50 determination, compound 8 (medicarpin)
showed the highest inhibitory activity against MAO-B with an IC50 value of 0.45 µM
(Table 2, Figure S16), followed by 13 (homopterocarpin, IC50 = 0.72 µM) (Table 2, Figure
S17). However, compound 12 (another pterocarpan) showed 7.47 times lower MAO-B
inhibition (IC50 = 3.36 µM) than compound 8. Compound 13 showed highest MAO-A
inhibitory activity with an IC50 value of 1.49 µM, followed by 9 (prunetin, IC50 = 2.49
µM). Other compounds showed higher IC50 values for MAO-A, near 10 µM. Regarding
selectivity index (SI), compounds 8 and 13 had selectivity index (SI) values of 44.2 and 2.07
for MAO-B over MAO-A, respectively (Table 2). However, most of the compounds showed
low inhibitory activity against AChE, BChE, and BACE1 (Table 1).

Table 1. Inhibitions of hMAO-A, hMAO-B, AChE, BChE, and BACE1 by the MeOH extract of C.
lineata pods and its EtOAc and BuOH fractions a.

Extract/Fraction
Residual Activity at 25 µg/mL (%)

hMAO-A hMAO-B AChE BChE BACE1

MeOH 76.1 ± 3.07 53.5 ± 8.60 78.2 ± 3.01 98.9 ± 0.50 76.1 ± 3.07
EtOAc 60.9 ± 1.54 41.4 ± 2.86 64.9 ± 0.75 99.6 ± 0.50 60.9 ± 1.54
BuOH 90.8 ± 0.77 85.9 ± 1.43 72.9 ± 5.27 97.9 ± 1.00 90.8 ± 0.77

a Results are expressed as the means ± SDs of two or three experiments.

Table 2. Inhibitions of hMAO-A, hMAO-B, AChE, BChE, and BACE1 by the 13 compounds isolated
from C. lineata pod extracts a.

Compound
Residual Activity at 10 µM (%) IC50 (µM)

SI b

hMAO-A hMAO-B AChE BChE BACE1 hMAO-A hMAO-B

1 96.79 ± 1.52 75.22 ± 6.76 92.4 ± 7.16 99.2 ± 0.88 82.56 ± 3.77 >40 >40 -
2 98.28 ± 2.01 69.57 ± 2.46 84.8 ± 0.00 97.5 ± 0.42 163.67 ± 2.96 >40 >40 -
3 80.00 ± 2.02 93.63 ± 3.47 95.22 ± 0.08 98.91 ± 1.54 76.68 ± 4.92 >40 >40 -
4 98.28± 1.64 63.48 ± 1.23 86.1 ± 1.79 96.7 ± 1.68 85.90 ± 0.08 >40 28.5 ± 1.55 >1.40
5 80.36 ± 6.57 63.24 ± 6.24 84.49 ± 0.75 99.41 ± 0.83 81.70 ± 4.01 >40 24.32 ± 2.20 >1.64
6 94.83 ± 1.90 94.64 ± 4.21 84.3 ± 1.31 91.8 ± 1.35 95.72 ± 0.86 >40 >40 -
7 56.90 ± 0.92 31.55 ± 4.21 70.8 ± 7.20 86.9 ± 2.11 83.25 ± 0.45 13.1 ± 0.23 5.18 ± 0.11 2.53
8 64.18 ± 0.53 4.17 ± 0.84 80.6 ± 2.62 98.4 ± 1.00 111.42 ± 0.52 19.9 ± 0.85 0.45 ± 0.032 44.2
9 24.75 ± 1.22 30.81 ± 0.82 83.2 ± 4.76 93.0 ± 0.65 87.73 ± 0.59 2.49 ± 0.32 5.18 ± 0.059 0.48

10 41.02 ± 1.09 16.86 ± 2.47 78.4 ± 3.40 98.1 ± 1.98 78.86 ± 0.56 8.05 ± 0.10 3.47 ± 0.055 2.32
11 49.15 ± 2.25 62.02 ± 1.09 82.7 ± 5.44 98.7 ± 0.66 91.96 ± 0.59 9.80 ± 0.27 13.7 ± 0.10 0.72
12 60.34 ± 0.90 13.01 ± 0.72 84.9 ± 0.61 93.6 ± 2.11 102.36 ± 0.40 12.5 ± 0.33 3.36 ± 0.090 3.72
13 11.59 ± 2.60 4.05 ± 1.91 81.0 ± 2.44 88.5 ± 1.96 101.48 ± 0.01 1.49 ± 0.021 0.72 ± 0.028 2.07

Toloxatone - - - 1.080 ± 0.025 -
Lazabemide - - - - 0.110 ± 0.016
Clorgyline - - - 0.007 ± 0.001 -
Pargyline - - - - 0.140 ± 0.006
Tacrine * 0.270 ± 0.019 0.060 ± 0.0022 - - -

Donepezil * 0.010 ± 0.002 0.180 ± 0.0038 - - -
Quercetin * - - 13.420 ± 0.035 - -

Inhibitor IV * 0.440 ± 0.064

a Results are expressed as the means ± SDs of two or three experiments. b SI values for hMAO-B selectivity were
calculated by dividing IC50 values of hMAO-A by those of hMAO-B. * Values were represented as IC50 values of
reference compounds against AChE, BChE, and BACE1.
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Regarding structure–activity relationships (SAR) for hMAO-B inhibitory activities,
3-OH group at A-ring of 8 showed 1.6 times higher hMAO-B inhibitory activity than
3-OCH3 group at the A-ring of 13. However, 9-OCH3 group at B-ring of 13 showed 4.7
times higher hMAO-B inhibitory activity than 8,9-methylenedioxy group at the B-ring of 12
(pterocarpin) (Table 2, Figure 2). Interestingly, compound 8 exhibited similar, but slightly
higher (1.5 times) hMAO-B inhibition than maackiain, containing 8,9-methylenedioxy
group (IC50 = 0.68 µM [36]) (Figure 2). When comparing 12 to maackiain, 3-OCH3 group
instead of 3-OH group at the A-ring decreased hMAO-B inhibition but increased hMAO-
A inhibition, and, additionally, 4-OH group at the A-ring of 4-hydroxy-3-methoxy-8,9-
methylenedioxypterocarpan (HMMDP) [36] decreased hMAO-B inhibition as well as
hMAO-inhibition.
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Figure 2. SAR analysis of pterocarpans for hMAO-A and hMAO-B inhibitions. Data of
maackiain and HMMDP were from a reference [36]. HMMDP, 4-Hydroxy-3-methoxy-8,9-
methylenedioxypterocarpan.

These inhibitory activities of 8 and 13 were similar to that of an isoflavone calycosin
(0.24 µM) [31], flavones acacetin (0.17 µM) [37] and acacetin 7-methyl ether (0.20 µM) [38], a
pterocarpan maackiain (0.68 µM) [36], an isoflavone genistein (0.65 µM) [39]. On the other
hand, 8 has been reported to have efficacy in the recovery of memory loss in scopolamine-
induced mice [40], antioxidant [41], and protection of cerebral microvascular endothelial
cells [42], and anti-cancer [43]. In addition, compound 13 (homopterocarpin) has been
reported to have anti-cancer [44], hepatoprotective [45] and antioxidant effects [45].

2.3. Analysis of the Reversibility of hMAO-A and hMAO-B Inhibitions

Reversibilities of hMAO-A and hMAO-B inhibitions by compounds 8 and 13 were
investigated by dialysis. Inhibition of hMAO-A by 13 was substantially recovered from
25.4% (AU) to 75.8% (AD), and these values by 13 were similar to those by the reversible in-
hibitor toloxatone (22.7 to 84.6%). Little recovery was observed for the irreversible inhibitor
clorgyline (23.7 to 32.1%) (Figure 3). Inhibitions of hMAO-B by 8 and 13 were substantially
recovered from 29.8% (AU) to 72.7% (AD), and from 32.0% to 73.5%, respectively, and these
values were similar to those observed for the reversible inhibitor lazabemide (31.6 to 83.3%)
(Figure 4). Besides, the irreversible inhibitor pargyline did not show activity recovery at all
(34.4 to 29.1%). These results indicated compound 8 was a reversible inhibitor of hMAO-B
and 13 was a reversible inhibitor of hMAO-A or hMAO-B.
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Figure 3. Recovery of hMAO-A inhibition by 13 after dialysis. Toloxatone and clorgyline were used
as reference reversible and irreversible MAO-A inhibitors, respectively. The concentrations of the
inhibitors used were as follows: 13, 3.0 µM; toloxatone, 2.16 µM; and clorgyline, 0.014 µM. Results
are the averages of experiments performed in duplicate.
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Figure 4. Recoveries of hMAO-B inhibitions by 8 and 13 after dialysis. Lazabemide and pargyline
were used as reference reversible and irreversible MAO-B inhibitors, respectively. The concentrations
of the inhibitors used were as follows: 8 and 13, 0.90 and 1.44 µM, respectively; lazabemide, 0.22 µM;
and pargyline, 0.28 µM. Results are the averages of experiments performed in duplicate.

2.4. Analysis of Inhibitory Patterns

Enzyme kinetics of compounds 8 and 13 were investigated using Lineweaver–Burk
plots. Plots of hMAO-B inhibition by 8 were linear and intersected the y-axis (Figure 5A,B),
indicating compound 8 is a competitive inhibitor of MAO-B. Secondary plots of the slopes
of Lineweaver–Burk plots against inhibitor concentration showed the Ki value of 8 was
0.197 ± 0.004 µM (Figure 5B). Similarly, compound 13 was found to be a competitive
inhibitor of hMAO-A or hMAO-B with Ki values of 0.617 ± 0.023 (Figure 6A,B) and 0.212
± 0.008 µM (Figure 6C,D), respectively. These Ki values of 8 and 13 for MAO-B were
slightly higher than those of the potent fluorinated chalcones f1 and f2 (0.027 and 0.020 µM,
respectively) [46], 1-methyl, 5-phenyl substituted thiosemicarbazones MT5 (6.58 µM) [47].
These results indicate compounds 8 was a potent competitive inhibitor of hMAO-B and
compound 13 was an effective competitive inhibitor of hMAO-A and a more effective
competitive inhibitor of hMAO-B.
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Figure 5. Lineweaver-Burk plots of hMAO-B inhibitions by 8 and their respective secondary plots
(A,B) of slopes of Lineweaver–Burk plots versus inhibitor concentrations. Substrate concentrations
ranged from 0.03 to 0.6 mM. Experiments were carried out at three inhibitor concentrations, that is,
~0.5, 1.0, and 2.0 times IC50 values. Initial velocity was expressed as an increase in absorbance per min.
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2.5. Cytotoxicity Test

The effects of 8 and 13 on the viabilities of MDCK, HL-60, and SH-SY5Y cells were
investigated using the CCK-8 assay. Compounds 8 and 13 showed no effects on the
viabilities of MDCK (normal cell line) or HL-60 (cancer cell line) cells at 50 µM, the highest
concentration tested (Figure 7A,B). However, 8 and 13 showed moderate toxicity (74.05%
and 71.12% viability, respectively) to SH-SY5Y (neuroblastoma) cells at 30 µM, which is
66.7- and 41.7-times higher, respectively, than IC50 values of 8 and 13 (Figure 7C). These
results suggest that 8 and 13 are non-toxic to the cells tested with a moderate toxicity to
SH-SY5Y cells.
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2.6. Molecular Docking Simulation

Major compounds 8 and 13, two pterocarpans, were docked to hMAO-A and hMAO-B.
Compound 12 was also included in docking simulation, because it was a pterocarpan
derivative, though it was not a potent hMAO-B inhibitor. The docking simulations showed
that the chemicals were located properly within the active region of hMAO-A (PDB: 2Z5X)
and hMAO-B (PDB ID:4A79) (Figure 8). The compounds were docked in similar locations
hMAO-A or hMAO-B, based on the surrounded amino acid residues: the compounds were
located near FAD cofactor in hMAO-A, whereas they were located far from the FAD site
(Figure 8). Three compounds showed higher binding affinities to hMAO-B than hMAO-
A, representing they are selective hMAO-B inhibitor. Compound 8 showed the highest
binding affinity (−8.7 kcal/mol) for hMAO-B as compared to other docking complexes,
and formed a hydrogen bond interaction with Cys172 residue at a distance of 3.328Å
(Figure 8A,B, Table 3). Compound 13 also displayed similar results, but relatively lower
binding affinities for both of MAO-A (−7.1 kcal/mol) and hMAO-B (−7.7 kcal/mol) by
hydrogen bond interactions with Tyr444 (hMAO-A at a distance of 3.588 Å) and Cys172
(hMAO-B at a distance of 3.333 Å), respectively (Figure 8E,F, Table 3). Compound 12,
which differs in only substituent of the B-ring of compound 13, was predicted to have
no hydrogen bond interaction with hMAO-A and hMAO-B and showed lower binding
affinities (−2.4 and −7.5 kcal/mol, respectively) to both hMAO-A and hMAO-B than 8
and 13 (Figure 8C,D, Table 3). hMAO-B has relatively narrow ‘gate’ (defined by Ile199 and
Tyr326) in the cavity, although hMAO-B has high sequence identity ≥70% to hMAO-A [48].
In this aspect, it might be suggested that 3-hydroxy group in 8 was more favored to hMAO-
B than 3-methoxy group in 13, and 8,9-methylenedioxy group in 12 decreased the affinity
to hMAO-B compared to 9-methoxy group in 8 and 13 (Figure 8C,D). In addition, docking
scores using AutoDock Vina are calculated based on considerations of various factors
such as hydrogen bonding, electrostatic bonding, van der Waals forces, and dissolvent
effects [49]. These scores obtained in this study were coincided well to the IC50 values of
the compounds determined experimentally. These results suggest that compound 8 would
be the most selective inhibitor against hMAO-B and compound 13 have effective inhibition
activity against both hMAO-A and hMAO-B.

Table 3. Docking scores and predicted hydrogen bond(s) of the three compounds with hMAO-A or
hMAO-B *.

Compound
Docking Energy (kcal/mol) H-Bond Predicted

hMAO-A hMAO-B hMAO-A hMAO-B

8 −3.4 −8.7 Cys172 (3.328 Å)
12 −2.4 −7.5
13 −7.1 −7.7 Tyr444 (3.588 Å) Cys172 (3.333 Å)

* Determined by AutoDock Vina.

2.7. In Silico Pharmacokinetics of Medicarpin (8) and Homopterocarpin (13)

The pharmacokinetics of compounds 8 and 13 using SwissADME web tool showed
these two compounds had high GI absorption and BBB permeability (Table 4). However,
drug suitability of two compounds should be investigated in further study, because these
compounds showed CYP450 inhibition including the important enzyme CYP3A4, although
cytotoxicity to three cell lines tested above was low and some of the drugs show CYP3A4
inhibition properties [50]. Lipinski violation is judged by counting the number of violations
in the Lipinski’s rule, i.e., MW < 500, cLog Po/w < 5.00, HBD < 5, HBA < 10, TPSA < 140 Å2,
and RB < 10. For Lipinski parameters of these two compounds, no violations of Lipinski’s
rule of five were predicted (Table 5). These results suggest that compounds 8 and 13 can
used as central nervous system (CNS) drugs.
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Table 4. Pharmacokinetic properties of medicarpin and homopterocarpin.

Compound GI
Absorption

BBB
Permeant

P-gp
Substrate

Inhibitor Log Kp

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 Skin Permeation
(cm/s)

8 High Y Y Y Y N Y Y −5.98

13 High Y Y Y Y N Y Y −5.84

GI, gastrointestinal; BBB, blood–brain barrier; P-gp, P-glycoprotein.
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Table 5. Physicochemical parameters and Lipinski violations.

Compound Mw (g/mol) cLog P HBD HBA TPSA (Å2) RB Lipinski Violations

8 270.28 2.53 1 4 47.92 1 0
13 284.31 2.91 0 4 36.92 2 0

Mw, molecular weight; cLog P, consensus Log P, HBD: H-bond donors; HBA, H-bond acceptors; TPSA, topological
polar surface area; RB, rotatable bonds.

3. Materials and Methods
3.1. General Experimental Procedures

NMR spectroscopic data were recorded by using JEOL ECZ500R [1H NMR at 500
MHz, 13C NMR at 125 MHz, (JEOL, Tokyo, Japan)] and Bruker AVANCE III HD 700
[1H NMR at 700 MHz, 13C NMR at 175 MHz, (Bruker, Billerica, MA, USA)] instruments.
High-resolution electrospray ionization mass (HR-ESI-MS) data were obtained using a
Vion ion mobility spectroscopy-quadrupole time-of-flight (IMS-QTOF) and ACQUITY
ultra-performance liquid chromatography (UPLC) I-Class (Waters, Milford, MA, USA)
system coupled with ACQUITY BEH C18 column (Waters). Optical rotation and CD spectra
were recorded on a Jasco P-1000 polarimeter and J-815 spectrometer (Jasco, Tokyo, Japan),
respectively. Medium-pressure liquid chromatography (MPLC, Spot Prep II System, Armen,
Paris, France), preparative HPLC (Gilson PLC 2020 system, Gilson, Middleton, WI, USA),
and multiple preparative HPLC (LC-Forte/R, YMC, Kyoto, Japan) were applied to obtain
phytochemicals from C. lineata pod MeOH extract using C18 columns, YMC-Triart C18
ExRS (20.0 × 250 mm, 10 µm, YMC) and YMC ODS-AQ (20.0 × 250 mm, 10 µm, YMC).

3.2. Plant Materials and Preparation of Compounds 1–13

The plant materials were collected from Gujwa-eup, Jeju-do, Republic of Korea, in 2019.
C. lineata was authenticated by National Institute of Biological Resources (NIBR, Dr. Min Ha
Kim) and a voucher specimen (NIBRVP0000634114) was deposited at NIBR. In the previous
study, the preparation of C. lineata pods extracts and the identification of phytochemicals
isolated were reported by Hong et al. [34]. Briefly, the dried C. lineata pods (1.2 kg) were
extracted with methanol (MeOH) (20 L × 3 times), then the concentrated MeOH extracts
(152 g) were suspended in distilled water (1 L) and partitioned sequentially into ethyl
acetate (EtOAc)- and butanol (BuOH)-soluble fractions. EtOAc and BuOH fractions were
isolated by the MPLC using reverse-phase open-column (YMC ODS-AQ, 10 µm, 220 g)
eluting with a gradient system of a mixture H2O and MeOH (5–100% MeOH, 50 mL/min)
to yield 30 (CLPE1–CLPE30) and 25 fractions (CLPB1–CLPB25), respectively. Compounds
2 and 4–13 were purified from EtOAc sub-fractions (CLPE9, 14, 18, 21, 22, 24, 27, 28, and
30) using the preparative HPLC (YMC-Triart C18 ExRS, YMC). The preparative HPLC
(YMC ODS-AQ, YMC) was used to separate compounds 1 and 3 from BuOH sub-fractions
(CLPB15 and CLPB16) (Figure S1). All isolates were identified using mass fragmentation
pattern and accurate mass acquired by Waters ACQUITY UPLC system equipped with
QTOF mass spectrometry (Vion IMS-QTOF/MS) with ESI source and NMR spectroscopy.
UPLC chromatographic condition and mass spectrometric parameters were described by
Jang et al. [51].

3.3. Chemicals and Enzymes

Recombinant hMAO-A and hMAO-B, kynuramine, benzylamine, AChE from Elec-
trophorus electricus, BChE from equine serum, 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB),
acetylthiocholine iodide (ATCI), butyrylthiocholine iodide (BTCI), BACE1 activity de-
tection kit (fluorescent) and the reversible inhibitors (toloxatone, lazabemide, donepezil,
quercetin) were purchased from Sigma-Aldrich (St. Louis, MO, USA) [30,31]. The reference
irreversible inhibitors (clorgyline and pargyline) were obtained from Bioassay Systems
(Hayward, CA, USA) [52]. All other chemicals were of reagent grade.
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3.4. Enzyme Assays

hMAO-A and -B activities were determined using a continuous spectrophotometric
method, as described previously [53,54]. The Km values of hMAO-A for kynuramine and
hMAO-B for benzylamine were 0.043 and 0.14 mM, respectively. The concentrations of
kynuramine (0.06 mM) and benzylamine (0.3 mM) used were 1.4- and 2.1-times Km values,
respectively. AChE and BChE activities were assayed as described by Ellman et al. [55],
with slight modification [40]. Reactions were performed using AChE and BChE in the
0.5 mL reaction mixtures including 0.5 mM substrate (ATCI and BTCI, respectively) and
color reagent (DTNB). Absorbance measurements were continuously monitored for 10 min
at 412 nm. Reaction rates are expressed as changes in absorbance per min. [56]. Inhibitory
activities of AChE and BChE were measured after preincubating enzyme with inhibitors for
15 min before adding DTNB and each substrate. BACE1 assay was measured by the activity
detection kit using a fluorescence spectrometer (FS-2, Scinco, Seoul, Republic of Korea), for
2 h at 37 ◦C with 7-methoxycoumarin-4-acetyl-[Asn670, Leu671]-amyloid β/A4 protein
fragment 667-676-(2,4-dinitrophenyl)Lys-Arg-Arg amide trifluoroacetate as a substrate [57].

3.5. Kinetics of Enzyme Inhibition

Inhibitions of hMAO-A, hMAO-B, AChE, BChE, and BACE1 by the thirteen com-
pounds were initially investigated at a concentration of 10 µM, and then IC50 values of the
compounds and the reference inhibitors (toloxatone and clorgyline for hMAO-A, lazabe-
mide and pargyline for hMAO-B, donepezil for AChE and BChE, and quercetin for BACE1)
were determined. Kinetic parameters, inhibition types, and Ki values of the most potent
hMAO-B inhibitors (compounds 8 and 13) were analyzed, as described previously [31].
The kinetics of MAO-B inhibition by 8 and 13 were investigated at five different substrate
concentrations (0.03–0.6 mM) and in the absence or presence of each inhibitor at three
concentrations of ~0.5, 1.0, and 2.0 times of each IC50 value [30]. The kinetics of MAO-A
inhibition by 13 was also investigated as above, except at 0.0075–0.12 mM of substrate
concentrations. Inhibitory types and Ki values were determined using Lineweaver-Burk
plots and secondary plots of their slopes, respectively.

3.6. Analysis of Inhibitor Reversibility

The reversibilities of hMAO-A or hMAO-B inhibitions by compounds 8 and 13 were
investigated by dialysis, as previously described [53], at ~2 times of IC50 concentrations.
Reversible and irreversible reference inhibitors were also included in the experiment at
~ 2 times of IC50 concentrations. After preincubating compounds or reference inhibitors
with hMAO-A and hMAO-B, residual activities for undialyzed and dialyzed samples
were measured. Relative values for undialyzed (AU) and dialyzed (AD) activities were
then calculated and compared with non-inhibitor treated controls. Reversibilities were
determined by comparing the AU and AD values of inhibitors with those of references.

3.7. Cytotoxicity
3.7.1. Reagents and Cell Lines

Dulbecco’s Modified Eagle Medium (DMEM), Roswell Park memorial Institute (RPMI)
1640, Minimum Essential Medium (MEM), Fetal Bovine Serum (FBS), Penicillin/Streptomycin
solution, and Trypsin-EDTA solution were purchased from Hyclone Laboratories (Logan,
UT, USA). Dimethyl sulfoxide (DMSO) and 2-mercaptoethanol (2-ME) were obtained from
Sigma Aldrich. Cell counting kit-8 (CCK-8) was obtained from Dojindo Laboratories
(Kumamoto, Japan). Madin-Darby canine kidney (MDCK; KCLB 10034) cells, human
acute promyelocytic leukemia (HL-60; KCLB 10240) cells, and human neuroblastoma cells
(SH-SY5Y; KCLB 22266) were purchased from the Korean Cell Line Bank (KCLB, Seoul,
Republic of Korea).
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3.7.2. Cell Viability

MDCK, HL-60, and SH-SY5Y cells were cultured in DMEM, RPMI 1640, or MEM,
respectively [58], supplemented with heat-inactivated 10% FBS, 100 U/mL Penicillin/
Streptomycin solution, and 50 µM 2-ME in a humidified atmosphere at 37 ◦C with 5%
CO2 with media change every 2 days, using 75 cm2 T-flask, and were grown until 80%
confluent [58]. Passages were used between 10 and 30. Following trypsinization, MDCK
(1 × 104), HL-60 (5 × 104), and SH-SY5Y (5 × 104) cells were seeded in 96-well plates
and treated with 1, 3, 10, 30 and 50 µM of each inhibitor. The plates were then incubated
for 24 h at 37 ◦C with 5% CO2, and cell viability was determined by the CCK-8 and by
measuring the optical density at 450 nm using a microplate reader (Versa Max, Molecular
Devices, Sunnyvale, CA, USA). The cell viability was expressed as % by comparing the
absorbance of the sample to that of the control [59]. Statistical differences between groups
were analyzed by ANOVA using IBM SPSS statistics 27 and probability values (p-values)
less than 0.05 were marked as significant values.

3.8. Docking Simulations of the Compounds with MAO-A and MAO-B

AutoDock Vina was used to simulate docking of the chemicals to MAO-A and MAO-
B [47]. The binding sites of the chemicals were selected to the binding pocket of 7-methoxy-
1-methyl-9H-beta-carboline (HRM) co-crystallized with hMAO-A (PDB ID: 2Z5X), and
the binding pocket of (5R)-5-{4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl}-1,3-thiazolidine-2,4-
dione (P1B) co-crystallized with hMAO-B (PDB ID: 4A79). To define these binding pockets,
the grid boxes for docking were centered to 40.582, 26.931, and −14.540 for hMAO-A, and
50.730, 157.601, and 30.131 for hMAO-B, with dimensions of 15 × 15 × 15 Å. The following
steps were carried out to prepare the chemicals for the docking simulation: creation of 2D
structures of the chemicals [60], conversion of the 2D structures into 3D structures [61],
and energy minimization using the ChemOffice program (http://www.cambridgesoft.com,
23 February 2021) [61]. Docking simulations of MAO-A and MAO-B with the derivatives
were performed using Chimera [62]. Based on the docking results, possible hydrogen
bonding interactions were checked with relaxation constraints of 0.6 Å and 20.0◦ [62].
Amino acids with overlapped volume of van der Waals more than −0.4 Å with any atoms
in the chemicals were defined as favorable residues.

3.9. Pharmacokinetic Analysis Using In Silico Method

The pharmacokinetics of the compounds were analyzed using the web tool of Swis-
sADME (http://www.swissadme.ch/, 22 October 2022) for gastrointestinal (GI) absorption,
blood–brain barrier (BBB) permeability, P-glycoprotein (P-gp) substrate, and cytochrome
P450 inhibition, and skin permeation [63].

4. Conclusions

Thirteen compounds were isolated from the methanolic extract of C. lineata including
EtOAc and BuOH fractions, and identified as one flavonol, two flavanones, five isoflavones,
two syringaresinols, and three pterocarpans. Compounds medicarpin (8) and homopte-
rocarpin (13) were reversible and competitive inhibitor against hMAO-B (IC50 = 0.45 and
0.72 µM, respectively), with high selectivity (SI = 44.2) and low selectivity (SI = 2.07),
respectively. Structurally, the group 3-OH at A-ring of 8 increased hMAO-B inhibitory
activity, compared to 3-OCH3 group at the A-ring of 13. In addition, 9-OCH3 group at the
B-ring of 8 and 13 showed higher MAO-B inhibition than 8,9-methylenedioxy group at
the B-ring of 12. Compounds 8 and 13 were non- or less toxic to the normal and cancer
cells, including neuroblastoma cells. Molecular docking simulation revealed that 8 or 13
both bonded to Cys172 of hMAO-B with a binding affinity of −8.7 and −7.7 kcal/mol,
respectively. However, compound 12 was not predicted to have hydrogen bond to MAO-B.
These findings suggest that compounds 8 and 13, a novel potent and reversible hMAO-B
inhibitor, should be considered potential candidate agents for the treatment of neurological
disorders.

http://www.cambridgesoft.com
http://www.swissadme.ch/
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