
Citation: Borisov, D.D.;

Chermashentsev, G.R.; Potapov, K.V.;

Novikov, R.A.; Tomilov, Y.V.

Dimerization/Elimination of

β-Styrylmalonates under Action of

TiCl4. Molecules 2023, 28, 270.

https://doi.org/10.3390/

molecules28010270

Academic Editors: Bagrat A.

Shainyan, Gilbert Kirsch, José C.

González-Gómez and Antonio Massa

Received: 8 December 2022

Revised: 26 December 2022

Accepted: 27 December 2022

Published: 29 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Dimerization/Elimination of β-Styrylmalonates under Action
of TiCl4

D. D. Borisov, G. R. Chermashentsev, K. V. Potapov, R. A. Novikov * and Yu. V. Tomilov *

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp.,
119991 Moscow, Russia
* Correspondence: novikovfff@bk.ru (R.A.N.); tom@ioc.ac.ru (Y.V.T.);

Tel./Fax: +7-(919)727-5362 (R.A.N.); +7-(495)135-6390 (Y.V.T.)

Abstract: A new type of dimerization of dimethyl (β-styryl)malonates in the presence of TiCl4 accom-
panied by elimination of a methanol molecule was discovered. Selective methods for the synthesis of
substituted trimethyl 4-hydroxy-[1,1′-biaryl]-3,3,5(2H)-tricarboxylates and trimethyl 7-hydroxy-9,10-
dihydro-5,9-methanobenzo[8]annulene-6,8,8(5H)-tricarboxylates were developed. The regularities of
the occurring processes were determined and a similar reaction of β-styrylmalonate with benzyliden-
emalonate in the presence of TiCl4 was performed in the scope of the suggested mechanism.

Keywords: styrylmalonates; (2-arylethylidene)malonates; dimerization/elimination; titanium
tetrachloride

1. Introduction

β-Styrylmalonates 1 are isomers of 2-arylcyclopropane-1,1-dicarboxylates (ACDC, 2)
which, in turn, are the most common and accessible class of donor-acceptor cyclopropanes
(DAC). The latter are widely used as versatile building blocks that make it possible to
involve a three-membered ring along with donor and acceptor substituents [1–8]. To date,
DACs proved to be useful synthons in complete syntheses of natural compounds. DACs
can be used to obtain various functionally substituted compounds that have a wide range
of chemical and biological types of activity [9–21]. In this context, the study of the chemical
reactions of β-styrylmalonates can become a continuation of studies on ACDC chemistry
and a relevant area of organic chemistry, since their behavior often differs from the reactions
of ACDCs themselves. The efforts of our team allowed us to publish a series of works
dealing with reactions of β-styrylmalonates 1 with aromatic aldehydes in the presence of
various Lewis acids and under various reaction conditions. [22–25].

Similar to ACDCs themselves, β-styrylmalonates are highly reactive substrates. If
no other substrates are present, ACDCs can undergo dimerization and oligomerization
reactions [18,26–36]. As a rule, these processes are accompanied by partial isomerization of
an ACDC into a styrylmalonate which, in turn, reacts with an activated ACDC molecule
by generation of 1,3- or 1,2-zwitter-ionic intermediates [18,26,27,31,32]. It should be noted
that dimerization is an interesting process in organic synthesis. As a rule, these reactions
occur with high regio- and diastereoselectivity and in a single synthetic stage, which allows
a range of both new and known compounds to be obtained. As of now, there are many
works in literature that deal with ACDC dimerizations that can give both cyclization
and annulation products (Scheme 1) [18,26–30] and acyclic compounds [31–33]. In some
cases, the cyclization process is accompanied by elimination of an alkoxy moiety, thus
representing a dimerization/elimination reaction. Analysis of the structure of dimers
shows that a styrylmalonate molecule is actually or formally involved in the formation
of some of these dimers as active intermediates (there are even a few examples of cross-
dimerization in reactions of ACDCs with styrylmalonate [28,34–36]). However, there is still

Molecules 2023, 28, 270. https://doi.org/10.3390/molecules28010270 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010270
https://doi.org/10.3390/molecules28010270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-3433-7571
https://doi.org/10.3390/molecules28010270
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010270?type=check_update&version=1


Molecules 2023, 28, 270 2 of 10

no information on the possibility of any dimerization of β-styrylmalonates themselves. All
starting β-styrylmalonates 1 were synthesized by a known method [37].
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2. Results and Discussion

In this work, we discovered the first example of dimerization of β-styrylmalonates 1
in the presence of titanium tetrachloride accompanied by elimination of one alkoxy group.
This process opens a way to substituted trimethyl 4-hydroxy-[1,1′-biphenyl]-3,3,5(2H)-
tricarboxylates 2 and trimethyl 7-hydroxy-9,10-dihydro-5,9-methanobenzo[8]annulene-
6,8,8(5H)-tricarboxylates 3 that are formed with involvement of one of the ester groups of
the starting styrylmalonate. It is important to note that these dimerization/elimination
processes can be partially controlled, as follows from the data on the optimization of these
processes with styrylmalonate 1a as an example (Table 1). It should be noted that in the
presence of other Lewis acids we did not observe such type of the transformations [24].
Usually, we fixed oligomers or (4 + 2)-products in NMR spectra of the reaction mixtures.
In fact, the reaction in the presence of 0.5 equiv. TiCl4 in 1,2-dichloroethane under reflux
conditions gives almost exclusively cyclohexadienol 2a, whereas the reaction with excess
TiCl4 (1.5 equiv.) at a lower temperature (in dichloromethane, reflux conditions) gives
substituted dihydro-5,9-methanobenzo[8]annulene 3a, though its maximum yield is as
small as 30%. The relatively low yield of compound 3a is explained by competitive side
processes, in particular, (4 + 2)-dimerization and oligomerization.

In order to study the effect of electronic and steric factors on the reactions, the dimer-
ization reaction was performed with a number of substituted β-styrylmalonates. It was
found that β-styrylmalonates with an acceptor substituent in the aromatic ring as well as
various halo-substituted derivatives readily enter the process under study on heating in
dichloroethane, while the position of the halogen atoms in the aromatic moiety does not
significantly affect the occurring reactions. The process with these substrates occurs quite
selectively without significant formation of side products. Moreover, the final compounds,
i.e., the corresponding 2-hydroxycyclohexa-2,4-diene-1,1,3-tricarboxylates 2a–e, do not
require additional purification after extraction. The sterically hindered β-styrylmalonate
and a styrylmalonate with a donor substituent in the aromatic ring underwent this type
of dimerization somewhat less readily (Scheme 2). The 1H NMR spectra of the reaction
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mixtures contained a significant number of dimers 4f,g formed by (4 + 2)-annulation, as we
reported previously [18]. Moreover, the donor moiety in styrylmalonate 1f partially favors
yet another reaction pathway to give not only compound 2f (Scheme 2) but also a small
amount of substituted dihydro-5,9-methanobenzo[8]annulene 3f (Scheme 3).

Table 1. Optimization of the reaction conditions for dimerization/elimination of β-styrylmalonate 1a.
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ring underwent this type of dimerization somewhat less readily (Scheme 2). The 1H NMR 
spectra of the reaction mixtures contained a significant number of dimers 4f,g formed by 
(4 + 2)-annulation, as we reported previously [18]. Moreover, the donor moiety in 
styrylmalonate 1f partially favors yet another reaction pathway to give not only com-
pound 2f (Scheme 2) but also a small amount of substituted dihydro-5,9-
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Entry Solvent [e] T, ◦C t, h TiCl4 (Equiv.)
NMR Yields, % [a,b]

2a 3a

1 1,2-DCE 60 3 1 27 26
2 CH2Cl2 40 3 1 10 30

3 [c] CH2Cl2 25 3 1 0 0
4 CH2Cl2 40 3 0.5 53 7

5 [c] CH2Cl2 40 3 0.1 traces 0
6 CH2Cl2 40 1.5 1 7 24
7 CH2Cl2 40 3 1.5 traces 30
8 CH2Cl2 40 3 2 2 5
9 1,2-DCE 80 3 0.5 93 [d] traces
10 1,2-DCE 80 1.5 0.5 86 8

[a] 1,4-Dinitrobenzene was used as internal standard. [b] Other compounds in the reaction mixture are
[4 + 2]-products and oligomers. [c] Only starting compound. [d] Isolated yield [e] 0.113 M solution.
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* Formed as a minor compound under the conditions used to synthesize cyclohexadienol 2f.

Subsequently, we studied a deeper transformation of substituted β-styrylmalonates
that resulted in dihydro-5,9-methanobenzo[8]annulenes 3. It was found that a narrower
range of substrates could be used in this process compared to the formation of cyclohexa-
dienols 2 due to the high sensitivity of the reaction to the position and nature of the sub-
stituent in the aromatic part of styrylmalonate. The reaction occurs rather successfully with
styrylmalonate 1a itself or with its meta-bromo substituted derivative (Scheme 3). Although
the presence of a substituent, e.g., a fluorine atom, at the para-position of the aromatic moiety
makes it possible to obtain a certain amount of dihydro-5,9-methanobenzo[8]annulene 3e,
the typical formation of the dimeric product of (4 + 2)-annulation 4e is still the main process.
A donor substituent in the aromatic moiety, similar to sterically hindered naphthyl, shifts
the reaction pathway of these styrylmalonates toward the formation of (4 + 2)-annulation
products 4f,g. Nevertheless, the annulated compound 3f was obtained in small yields
by the reaction of styrylmalonate 1f with 0.5 equiv. TiCl4 under the conditions used to
synthesize cyclohexadienol 2f (Scheme 3). An acceptor substituent at the para position
does not favor the formation of fused rings 3, either. For example, the action of TiCl4
(1.5 equiv.) on (4-nitrostyryl)malonate 1c results in intense reddish-brown coloring of
the reaction mixture with formation of a significant amount of oligomers among which
it was almost impossible to identify any dimerization products. In contrast, though the
formation of dihydro-5,9-methanobenzo[8]annulene 3d was not observed in the case of
(2-chlorostyryl)malonate 1d, almost no oligomerization processes were observed either, and
according to the NMR spectra of the reaction mixture, all the major signals corresponded
only to compound 2d.

9,10-Dihydro-5,9-methanobenzo[8]annulenes 3 are formed as a single diastereomer
where the aryl substituent is oriented toward the OH group (Figure 1). At the same time,
the other diastereomer is not detected in any noticeable amounts.
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In addition to the dimerization/elimination of β-styrylmalonates 1 in the presence of
titanium tetrachloride, a cross variant of a similar process was carried out by the reaction
of β-styrylmalonate 1a with benzylidenemalonate 5 as one of the possible components for
the formation of cyclohexadienols 2. In fact, a mixture of two different cyclohexadienols in
1: 2 ratio was obtained in the reaction of malonates 1a and 5 in 1: 2 ratio in the presence of
0.5 equiv. TiCl4 at 80 ◦C. Cyclohexadienol 2a, a product of formal dimerization/elimination
of styrylmalonate 1a described above, was a minor compound, while the related cyclo-
hexadienol 6a formed by the reaction of benzylidenemalonate 5 with styrylmalonate 1a
and also with elimination of a methanol molecule was the main compound according
to NMR and mass spectra (Scheme 4). It should be noted that due to similarity of the
structures of compounds 2a and 6a, we failed to separate them completely and to isolate
cyclohexadienol 6a individually even after double chromatography on SiO2. An attempt
was made to perform the reaction with a large excess of benzylidenemalonate 5, but even
in this case we failed to avoid the formation of homodimer 2a completely.
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Scheme 4. Cross-reaction of β-styrylmalonates 1a,f with benzylidenemalonate 5.

The same reaction of benzylidenemalonate 5 with (4-methylstyryl)malonate 1f oc-
curred more selectively. According to the 1H NMR spectra of the reaction mixture, the
homo-dimerization/elimination product 2f was detected in trace amounts, whereas the
cross-coupling product 6f (2f/6f ratio approximately 1:16) predominated (Scheme 4). The
total yield of cyclohexadienols 2f and 6f was smaller than in the case of unsubstituted styryl-
malonate 1a and was approximately the same as in the homo-dimerization/elimination
reaction of (4-methylstyryl)malonate 1f (see Scheme 2), which is still due to the fact that its
dimerization to give the (4 + 2)-annulation product 4f occurs more readily.

Finally, we tested the variant of the asymmetric reaction of dimerization/elimination of
β-styrylmalonates, for which no asymmetric processes have been described in the literature
so far. In fact, this turned out to be not an easy task, since the standard asymmetric catalytic
approaches using chiral ligands, which were used for ACDC reactions [38–41], would
hardly work for the processes under consideration under conditions of equimolar amounts
of strong Lewis acids. As a result, after a series of experiments, we focused not on the elusive
development of a catalytic variant with chiral ligands, but on the use of chiral substituents in
ester groups. As such a fragment, we used an available natural (–)-menthyl substituent [42]
and synthesized the corresponding styrylmalonate 1h (according to the standard method
from ACDC). Under the influence of 1.5 equiv. TiCl4 under standard conditions, the
menthyl styrylmalonate 1h also enters the dimerization/elimination reaction with the
formation of dihydromethanobenzoannulene 3h (Scheme 5), while the cyclohexadienol
derivative 2h is not formed even when using 0.5 equiv. TiCl4. The steric effect of the
substituents in the ester groups undoubtedly affects the efficiency of the process, and the
yield of tricycle 3h turns out to be low, only 18%, but “e.r.” turns out to be good enough
(9:1) for such a simple chirality induction, which demonstrates the fundamental efficiency
of this approach.
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the use of chiral substituents in ester groups. As such a fragment, we used an available 
natural (–)-menthyl substituent [42] and synthesized the corresponding styrylmalonate 
1h (according to the standard method from ACDC). Under the influence of 1.5 equiv. 
TiCl4 under standard conditions, the menthyl styrylmalonate 1h also enters the dimeri-
zation/elimination reaction with the formation of dihydromethanobenzoannulene 3h 
(Scheme 5), while the cyclohexadienol derivative 2h is not formed even when using 0.5 
equiv. TiCl4. The steric effect of the substituents in the ester groups undoubtedly affects 
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Scheme 5. Development of the preliminary asymmetric version of the reaction for the dihy-
dromethanobenzoannulene 3h.

Taking these results into consideration, the following mechanism of formation of
cyclohexadienols 2 may be assumed. At the first stage, β-styrylmalonate 1 is activated with
titanium tetrachloride and two different intermediates I and II are generated (Scheme 6),
which seems to be especially favored by the use of 0.5 equivalents of TiCl4. Subsequently,
ionic (4 + 2)-cycloaddition of these intermediates occurs to give a polyfunctionally substi-
tuted cyclohexene III, which is converted to titanium enolate IV due to elimination of a
methanol molecule. The ability to react with Knoevenagel adducts of type 5 (intermediate I)
is an additional evidence that the reaction occurs as formal (4 + 2)-cycloaddition (Scheme 7).
At the final stage of the process, hydrolysis results in the final cyclohexadienols 2. It should
be noted that we did not observe the aromatization of compounds 2. At the same time,
in the case of self-condensation of other 1,3-dicarbonyl compounds, in particular enam-
inodiones or diethyl 2-ethoxymethylenemalonates, the formation of substituted benzene
compounds is observed [43,44].
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Scheme 7. Probable mechanism for the formation of 2-hydroxycyclohexa-2,4-diene-1,1,3-tricarboxylates 2.

The mechanism of formation of benzobicyclo[3.3.1]octenes 3, which, strangely enough,
are formed at a lower temperature but with an excess of TiCl4, appears to be more complex.
Control experiments with compounds 2a and 4a showed that the presence of 1.5 equivalents
of titanium(IV) tetrachloride in boiling dichloromethane did not result in the formation
of any amounts of compound 3a. The NMR spectra of the reaction mixtures after acid
treatment contained only signals of the initial compounds, and thus we can assume that
the pathway leading to compound 3a is established already at the first stages of the process.
In this case, titanium tetrachloride is apparently coordinated to the malonyl moieties of
both intermediates I and II. As a result, annulation to the aromatic ring of V occurs first,
followed by cyclization with involvement of malonyl moieties to form bicyclic titanium
enolate VI (Scheme 8).
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4. Conclusions

Thus, we have discovered a new previously unknown variant of dimerization of
β-styrylmalonates 1 that is accompanied by elimination of an alcohol molecule and is
not observed in the case of isomeric ACDCs. Titanium tetrachloride acts as a catalyst.
The process we discovered is quite general for various substituted β-styrylmalonates
and, as a rule, gives high yields of the corresponding 2-hydroxycyclohexa-2,4-diene-1,1,3-
tricarboxylates 2, up to 93%. A variant of controlling the dimerization process to reach
deeper transformations by varying the amounts of TiCl4 and reaction temperature that
gave 9,10-dihydro-5,9-methanobenzo[8]annulenes 3 was suggested. The effect of electronic
and steric factors on the observed process was noted: halo-substituted styrylmalonates
and styrylmalonates containing an acceptor moiety in the aromatic nucleus successfully
undergo this reaction. Moreover, the principal possibility to perform similar reactions with
Knoevenagel adducts 5 was shown.
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