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Abstract: In the course of the study, nanocrystalline cobalt monoboride was prepared by thermal
decomposition of precursors [Co(DMF)6][An], where [An] = [B12H12]2− (1), [trans-B20H18]2− (2) or
[B10Cl10]2− (3) in an argon atmosphere. Three new salt-like compounds 1–3 were prepared when
Co(NO3)2 was allowed to react with (Et3NH)2[An]. Compound 1 is new; the structures of compounds
2 and 3 have been previously reported. Samples 1–3 were annealed at 900 ◦C in argon to form samples
1a–3a, which were characterized by single crystal XRD for 1 and powder XRD for 1–3. Powder XRD on
the products showed the formation of BN and CoB for 1a in a 1:1 ratio; 2a gave a higher CoB:BN ratio
but an overall decreased crystallinity. For 3a, only CoB was found. IR spectra of samples 1a–3a as well
as X-ray spectral fluorescence analysis for 3a confirmed these results. The nanoparticular character
of the decomposition products 1a–3a was shown using TEM; quite small particle sizes of about
10–15 nm and a quite normal size distribution were found for 1a and 2a, while the decomposition of
3 gave large particles with 200–350 nm and a broad distribution.

Keywords: cobalt boride; boron nitride; boron cluster anion; precursor; thermal decomposition

1. Introduction

The preparation of high purity nanocrystalline metal borides has attracted the at-
tention of many material chemists due to the remarkable physicochemical properties of
these compounds, such as high strength, refractoriness, resistance to oxidation, corrosion,
wear, etc. [1–4]. Cobalt borides are compounds with the general formula CoxBy; two main
representatives are CoB and Co2B. It is known that cobalt(II) borides exhibit excellent cat-
alytic activity in the production of hydrogen [5–9] and oxygen [7,10–13], in the liquid phase
hydrogenation of citral [14,15], and can be used as anode materials in batteries [16,17].

To date, transition metal borides are obtained, as a rule, in the form of amorphous
powders, which can lead to the presence of impurities and defects in the final material.
Among the known methods for the preparation of nanoparticles of cobalt(II) borides
CoxB, the most common is the chemical reduction of cobalt(II) chloride with alkali metal
tetrahydroborate [5,9,13,17–20]. In addition, cobalt(II) borides Co2B, CoB can be prepared
by the interaction of cobalt(II) chloride or metal with elemental boron [21]. Moreover,
preparation of mesoporous nanocrystalline α-CoBx was synthesized by chemical reduction
of cobalt acetate with dimethylamine borane [20].

One of the possible ways to stabilize nanoparticles is the use of cages capable of
encapsulating metal borides. In particular, a framework of hexagonal boron nitride is
capable of encapsulating cobalt borides [10,22,23]. One of the possible ways to obtain metal
boride nanoparticles in a similar way is based on the use of thermal plasma [24]. It should
be noted that this method is a multi-stage process and requires high costs, both economic
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and time. In addition, laser irradiation, magnetron sputtering, γ-radiolysis, and other
methods can be noted; see details in recent review [25].

The development of alternative, simple, and convenient methods for the preparation
of high purity transition metal boride nanoparticles is still an urgent problem in applied
chemistry. We suggested that metal-containing boron clusters [26–31] can be used as sources
to prepare metal borides. These power-intense compounds can lower the temperatures
need to form final products. Our preliminary studies showed that moderate heating
of nickel(II) and cobalt(II) complexes with the closo-decaborate anion [M(solv)6][B10H10]
(M = Co, Ni; solv = H2O, N2H4, DMF, DMSO) [32–35] resulted in boron-oxide phase and
metal borides (the conclusions were based on IR spectroscopy data of amorphous samples).
X-ray powder diffraction studies allowed us to conclude that solid solutions Ni3C1 –xBx
and Ni3C were formed when annealing [Ni(DMF)6][B10H10]; BN and Co2B phases were
detected when annealing [Co(N2H4)3][B10H10]. Encouraging with the fact that formation of
boride and boron-oxide phases can be suggested at thermal heating of [Co(DMF)6][B10H10]
at 650 ◦C [32], which was concluded based on IR spectroscopy, we decided to study this
process in detail and determine the effect of changing the boron cluster on composition
and properties of final products. In order to avoid preparation of boron-oxide phases
which can be polyborates [36], we studied similar compounds with less reactive boron
clusters as compared to the closo-decaborate anion, namely, [B12H12]2−, [trans-B20H18]2−

and [B10Cl10]2−.
In this work, we propose a low-temperature method for the preparation of nanocrys-

talline cobalt monoboride based on the thermal decomposition of cobalt(II) coordination
compounds with energy-intensive boron cluster anions. As started compounds we used
complexes [Co(DMF)6]An (An = [B12H12]2−, [trans-B20H18]2− and [B10Cl10]2−) to deter-
mine the effect of the number of boron atoms per metal atom on the composition of the
final products.

2. Results and Discussion
2.1. Synthesis of Precursors [Co(DMF)6][An]

In this work, we used cobalt(II) complexes with coordinated molecules of N,N-
dimethylformamide, which are easily evaporating groups, as precursors [Co(DMF)6][An].
The starting complexes were obtained by reacting cobalt(II) nitrate with the corresponding
triethylammonium salts of boron cluster anions in DMF; the final compounds precipitated
from the reaction mixture as purple crystals (Scheme 1).
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The resulting compounds 1, 2·3H2O, and 3 were identified by elemental analysis,
IR spectroscopy, and X-ray diffraction. The structures of [Co(DMF)6][B10Cl10] (1) [37]
and [Co(DMF)6][B20H18] (2) [38] are known: water-free compound 2 was obtained when
anhydrous CoCl2 was allowed to react with [B20H18]2−; for 1 and 3, water-free samples were
isolated when using cobalt nitrate crystal hydrate. The structure of [Co(DMF)6][B12H12]
(1) was determined by X-ray diffraction in this paper.

The IR spectra of 1 and 2·3H2O contain an intense absorption band in the region of
2550–2400 cm−1, which is related to ν(BH) of the boron cluster anions [B12H12]2− and
[trans-B20H18]2− (Figures S1a,b). In the IR spectrum of 3, bands ν(BCl) are observed at 1157,
1002 cm−1; a band of stretching and bending vibrations of the B–B groups in boron cage is
observed near 843 cm−1 (Figure S1c).

The coordinated state of DMF molecules by the oxygen atom of the carbonyl group
is evidenced by the shift of band ν(C=O) (1651, 1664, and 1652 cm−1 in the IR spectra
of 1, 2·3H2O and 3, respectively) into a lower frequency interval compared to that in the
spectrum of free DMF (ν(C=O) is 1679 cm−1). It should be noted that the IR spectrum of
2·3H2O contains ν(OH) at about 3425 cm−1, which is characteristic of associated water
molecules. The IR spectra of 1 and 3 contain no bands in this region, thus indicating the
formation of water-free compounds.

According to single-crystal X-ray diffraction data, crystal 1 is built of cobalt(II) com-
plexes [Co(DMF)6]2+ and anions [B12H12]2− (Figure 1a). The triclinic unit cell (space group
P-1) of compound 1 contains four 1

2 complex cations located at the inversion centers and
two anions occupying a common position. The coordination environment of Co(II) atoms
includes six oxygen atoms from six DMF molecules. The octahedra of metal atoms are
slightly distorted. The Co–O bond lengths are in the range of 2.067–2.102 Å in 1. The O–Co–
O bond angles are in the range of 87.2–92.8◦ and 87.6–92.4◦, respectively. In the packing of
the structure of 1, complex cations [Co(DMF)6]2+ form three-dimensional networks with
square channels directed along axis a (Figure S2). The [B12H12]2− anions are located in the
center of these channels.
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The structures of samples 2 [38] and 3 [37] were determined early; they are structurally
similar and are shown in Figure 1b,c. Note that water-free sample 2 was isolated when an-
hydrous CoCl2 was allowed to react with (Et3NH)2[B20H18]; here we used sample 2·3H2O.

Hirshfeld surface analysis was performed for compound 1. The [B12H12]2− anions
are surrounded by eight [Co(DMF)6]2+ cations; weak CH . . . BH interactions between
the cations and anions are observed (in Figure 2a, dotted green lines show the B . . . H
contacts, dotted red lines show the H . . . H contacts, the distances between atoms in which
are less than the sum of the van der Waals radii). The strongest CH . . . BH interactions
are represented on the Hirschfeld surface of the anion as red spots. Analysis of the full
two-dimensional fingerprint plot shows that the H . . . H contacts of the anion account for
99.3% of the surface.



Molecules 2023, 28, 453 4 of 16

Molecules 2023, 28, 453 4 of 17 
 

 

Hirshfeld surface analysis was performed for compound 1. The [B12H12]2– anions are 

surrounded by eight [Co(DMF)6]2+ cations; weak CH…BH interactions between the cati-

ons and anions are observed (in Figure 2a, dotted green lines show the B…H contacts, 

dotted red lines show the H…H contacts, the distances between atoms in which are less 

than the sum of the van der Waals radii). The strongest CH…BH interactions are repre-

sented on the Hirschfeld surface of the anion as red spots. Analysis of the full two-dimen-

sional fingerprint plot shows that the H…H contacts of the anion account for 99.3% of the 

surface. 

 

Figure 2. (a) dnorm surface of compound 1∙, (b) full two-dimensional fingerprint plot for the [B12H12]2– 

anion together with that delineated into H…H (c) contacts. 

X-ray powder diffraction data revealed that samples 1, 2∙3H2O, and 3 are individual 

compounds and contain no impurities (Figure S3). Experimental X-ray diffraction pat-

terns for 1, 2∙3H2O, and 3 were compared to calculated data found from single-crystal X-

ray diffraction studies of compounds 1–3. Some discrepancy in the X-ray diffraction pat-

tern of 2 and 2∙3H2O can be explained by the presence of associated water molecules in 

sample 2∙3H2O. 

TGA studies of samples [Co(DMF)6][An] (1–3) were performed in argon. Sample 1 is 

stable up to 156.47 °С (Figure 3). At this temperature, an endothermic effect appears on 

the thermogram, accompanied by a loss of sample weight of 34.11% which corresponds 

to loss of three DMF molecules and corresponding to the first stage of the removal of the 

organic part of the complex. With an increase in temperature to 241 °С, the second endo-

thermic effect is observed on the thermogram, accompanied by a weight loss of the sample 

of 15.36% which corresponds to one DMF molecule. A further increase in temperature 

leads to an exothermic effects at 241.09 °С, which is accompanied with a weight loss of 

51.47% and corresponds to loss of two remaining DMF molecules. An exothermic effect at 

269.94 °С is accompanied with no weight loss and can be assigned to the opening of the 

closo-structure of the boron cluster to form nido-structures; an effect near 460 °С without 

weight loss can be assigned to rearrangement of nido-system and further destruction of 

the boron cage. 

Figure 2. (a) dnorm surface of compound 1·, (b) full two-dimensional fingerprint plot for the
[B12H12]2− anion together with that delineated into H . . . H (c) contacts.

X-ray powder diffraction data revealed that samples 1, 2·3H2O, and 3 are individual
compounds and contain no impurities (Figure S3). Experimental X-ray diffraction patterns
for 1, 2·3H2O, and 3 were compared to calculated data found from single-crystal X-ray
diffraction studies of compounds 1–3. Some discrepancy in the X-ray diffraction pattern of
2 and 2·3H2O can be explained by the presence of associated water molecules in sample
2·3H2O.

TGA studies of samples [Co(DMF)6][An] (1–3) were performed in argon. Sample 1 is
stable up to 156.47 ◦C (Figure 3). At this temperature, an endothermic effect appears on the
thermogram, accompanied by a loss of sample weight of 34.11% which corresponds to loss
of three DMF molecules and corresponding to the first stage of the removal of the organic
part of the complex. With an increase in temperature to 241 ◦C, the second endothermic
effect is observed on the thermogram, accompanied by a weight loss of the sample of
15.36% which corresponds to one DMF molecule. A further increase in temperature leads to
an exothermic effects at 241.09 ◦C, which is accompanied with a weight loss of 51.47% and
corresponds to loss of two remaining DMF molecules. An exothermic effect at 269.94 ◦C is
accompanied with no weight loss and can be assigned to the opening of the closo-structure
of the boron cluster to form nido-structures; an effect near 460 ◦C without weight loss can
be assigned to rearrangement of nido-system and further destruction of the boron cage.
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Figure 3. Thermogram of 1.

For 2·3H2O, a gradual weight loss of 7.489% is observed in the temperature range of
20–160 ◦C, which is accompanied by a broadened endothermic effect with a final value of
143.5 ◦C (Figure 4). These processes correspond to the removal of three associated water
molecules, which is consistent with the data of the IR spectrum of 2·3H2O, where the
ν(OH) stretching vibration band characteristic of associated water molecules is observed at
3450 cm−1.
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Figure 4. Thermogram of 2·nH2O.

In the range of 155–220 ◦C, an exothermic effect is observed with a maximum at 204 ◦C,
which is accompanied by a weight loss of 18.37% and corresponds to the removal of two
coordinated DMF molecules. With a further increase in temperature, an exothermic effect
is observed at 326 ◦C with sample weight loss of 8.257%, which corresponds to the removal
of another DMF molecule. The broadened exothermic effects at 357 ◦C without weight loss
corresponds to the opening of the closo-system of the boron cage; an effect at 470 ◦C can be
assigned to rearrangement of the nido-system of the boron cage. Further heating results
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in gradual destruction of the boron cage accompanied by a weight loss of 7.815 ◦C of the
sample which corresponds to release of one DMF molecule.

Three pronounced thermal effects are observed on the thermogram of sample 3 (Fig-
ure 5). The endothermic effect with a maximum at 203 ◦C, accompanied by a loss of sample
weight 15.43%, corresponds to the removal of two DMF molecules. Two exothermic effects
at 361.61 and 413.99 ◦C, accompanied by a weight loss of 16.68 and 14.34%, respectively,
indicate the stepwise removal of four DMF molecules with simultaneous destruction of
the closo-system of the boron cage. With further heating of the sample above 500 ◦C, no
thermal effects are observed on the differential curve; however, the TG curve shows a mass
loss of 9.803%, corresponding to the partial removal of exopolyhedral chlorine atoms with
the formation of a Cl2 molecule.
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Based on the results obtained, the annealing temperature needed to prepare boride
phases was determined to be 900 ◦C in order to achieve maximum structuration of samples.
When heated 1, 2·3H2O, and 3 at 900 ◦C in argon, products 1a, 2a, and 3a, respectively,
were prepared.

2.2. Thermal Decomposition of 1–3

The completeness of annealing of precursors 1–3 and the phase composition of samples
1a–3a were determined based on X-ray powder diffraction and IR spectroscopy data. On
the X-ray powder diffraction patterns of the annealed samples, visually distinguishable
reflections of the observed crystalline phases are noted and the corresponding Miller indices
are marked (Figure 6). The card numbers of the PDF-2 X-ray powder database used in this
work are shown.
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According to X-ray powder diffraction data, the annealing product 1a is a two-phase
mixture (Figure 6a). The diffraction pattern contains reflections corresponding to boron
nitride BN in the hexagonal modification, as well as reflections of cobalt monoboride CoB.

In the case of sample 2a, boron nitride reflections (hexagonal modification) are also
observed in the diffraction pattern (Figure 6b). However, in contrast to 1a, the relative
intensity of the reflections is lower, which can be caused by a decrease in the particle size
of the CoB phase. Apparently, the increase in the size of CoB crystallites is hindered by
their dilution in the nitride matrix due to an increase in the ratio of the number of boron
atoms in the cluster (12 versus 20 boron atoms) to the number of nitrogen atoms in DMF
molecules (compared with sample 1a).

The diffraction pattern of sample 3a shows reflections of the CoB crystalline phase
(Figure 7) without other reflections.
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The formation of cobalt monoboride CoB in the tetragonal modification is observed
for all samples; for 1a and 2a, it is better described by the space group Pbnm, the annealing
product 3a has a crystal lattice with the space group Pnma.
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In the case of all studied annealed compounds, the formation of other phases of the
Co–B system (other cobalt borides, metallic cobalt, or crystalline boron) was not detected
by X-ray powder diffraction. However, the presence of some amorphous components
is expected.

The absence of absorption bands of stretching vibrations ν(BH) at 2466 cm−1 and
2532, 2497 cm−1 in the IR spectra of samples 1a and 2a, respectively, or ν(BCl) at 1157,
1002, and ν + δ(BB) at 843 cm−1 in the IR spectrum of 3a, as well as ν(C=O) at 1651, 1664,
and 1652 cm−1 indicates complete destruction of boron cluster anions and coordinated
dimethylformamide molecules, respectively (Figures S4–S6). The absorption band at
780 cm−1 in the IR spectrum of 1a and 781 cm−1 in the IR spectrum of 2a, which, according
to the literature data [39], refers to stretching vibrations of the ν(BN) bond, indicates the
formation of a boron nitride phase in annealed samples 1a and 2a. It should be noted
that this absorption band is not observed in the IR spectrum of the annealed sample 3a
(Figure S6). In addition, the presence of absorption bands at ~1100 and ~798 cm−1, as well
as the correlation with the IR spectrum of amorphous boron, suggests the presence of an
amorphous boron phase in annealed samples 1a–3a. It seems logical because using the
started samples, the Co:B ratio is 1:12, 1:20, and 1:10 for 1, 2·3H2O, and 3, respectively.
In the products, CoB and BN are observed (note that Co:N ratio is 1:6 for all the starting
samples). Therefore, formation of amorphous boron is expected for all three samples.

Analyzing the data obtained from TGA studies, we can discuss the composition of
compounds formed in samples 1a–3a. Note that the presence of BN in products 1a and 2a
indicate that DMF molecules release with their decomposition and N atoms reacts with
B atoms. Starting from [Co(DMF)6][B12H12] (1, M = 639.90 g/mol), we can assume that
sample 1a is a mixture of CoB + 6 BN + 5 B (M = 273.85 g/mol), which corresponds to
total weight loss of 57.35 % (calcd.) which close to 51.47% (from TGA data). Thermal
decomposition of sample [Co(DMF)6][B20H18]·3H2O (2·3H2O, M = 785.85 g/mol) results
in CoB + 6 BN + 13 B, the same calculations give us the total weight loss of 45.81% (calcd.)
vs. 57.35% (from TGA data). The discrepancy in experimental and theoretical data is
explained further weight loss of the sample after 800 ◦C. Annealing of [Co(DMF)6][B10Cl10]
(3, M = 960.13 g/mol) gives us the composition of sample 3 to be CoB + 6 BCl + 3 B (379.75
g/mol); the calculated total weight loss is 39.50% which is very close to 37.35% (calculated
from TGA data).

2.3. Morphology of Samples 1a–3a

According to the presented TEM images (Figure 8), sample 1 is an inhomogeneous
two-component system, which consists of large blocks and nanosized particles of cobalt
monoboride crystallized on its surface, which have isometric shape. As can be seen from
the distribution curve, the sizes of isometric particles are in the range of 2–35 nm. The
average nanoparticle size is 11 nm (Figure 8d).

However, sample 2a is characterized by a higher degree of destruction of the matrix
and the formation of nanosized particles of cobalt monoboride in both agglomerated and
non-agglomerated forms (Figure 9b,c). Cobalt monoboride particles in sample 2a have a
spherical shape. The particle sizes are in the range of 2–26 nm, with an average value of
10 nm. According to the size distribution curve, the nanosized particles of sample 2a are
characterized by a smaller size spread.
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Figure 8. (a–c) TEM images and (d) particle size distribution curve of sample 1a.

Heating of 2, as in the case of 1, leads to the destruction of its crystal structure and the
formation of a two-component system consisting of large blocks and nanosized particles
crystallized on their surface (Figure 9).
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Heating of 3, as in the case of 1 and 2, leads to the destruction of the crystal structure.
However, it should be noted that, in all cases, an aqueous suspension was prepared for
the study of samples by the TEM method, which was then sprayed onto carbon-coated
copper grids. When preparing an aqueous suspension of sample 3a, a sharp odor was
present. The process of dissolution is indirectly confirmed by the observed process of
sample recrystallization on a carbon film in the form of separate branches (Figure 10).
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The crystals of sample 3a have the shape of regular hexagons (Figure 11a–c). It should
be noted that sample 3a is characterized by the formation of crystals with well-defined
faces, which indicates the perfection of the structure of the synthesized particles.
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At the same time, an intermediate stage of the formation of faces of future crystals with
a disordered defect structure is fixed (Figure 11a–c), as evidenced by the inhomogeneity of
the structure of the synthesized particles. Figure 11d shows the particle size distribution
curve: the particle size is in the range of 25–400 nm with an average size of about 250 nm.

Analyzing the results obtained, the process of formation of nanocrystalline cobalt
monoboride in the course of thermal decomposition of cobalt(II) coordination compounds
with boron clusters can be represented as follows (Scheme 2).
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Scheme 2. Schematic formation of nanocrystalline cobalt boride during thermolysis of 1–3.

The absence of BN in 3a is explained by the fact that the thermolysis of 3 containing
[B10Cl10]2− is accompanied by the destruction of the boron cluster and release of chlorine
atoms. The latter, in turn, are a strong oxidizing agent, which leads to the oxidation of the
amide nitrogen atom N3–, which is formed as a result of the destruction of dimethylfor-
mamide molecules, to a neutral N2 molecule followed by its removal from the system. In
addition, the released chlorine interacts with the boron atoms formed as a result of the
destruction of the boron cluster, which leads to the formation of a chlorine-boron com-
pound. It should be noted that chlorine in the composition of annealing product 3a acts as
a mineralizer, which improves the structure of cobalt monoboride particles (Figure 11).

The presence of chlorine in the annealing product 3a was qualitatively confirmed by
X-ray fluorescence analysis. Note that this method qualitatively demonstrated the presence
of Co in the thermolysis product 3a. The presence of analytical lines ClKα, ClKβ, CoKα,
and CoKβ was revealed with a value many times higher than the background component
(Figure S7).

3. Experimental
3.1. Synthesis of Compounds

N,N-dimethylformamide (DMF) and Co(NO3)2·6H2O (≥98.0%) were purchased from
Sigma-Aldrich and used without additional purification. Powder amorphous boron
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(≥95%) was purchased from Merck. (Et3NH)2[B12H12] was synthesized from decaborane-
14 through the formation of 1,6-bis(triethylamine)decaborane according to the proce-
dure [40,41]. (Et3NH)2[trans-B20H18] was obtained by oxidation of (Et3NH)2[B10H10] with
iron(III) chloride in an aqueous solution according to the procedure [42]. (Et3NH)2[B10Cl10]
was prepared from (Et3NH)2[B10H10] by chlorination of aqueous solution of potassium salt
of the closo-decaborate anion according to the procedure reported [43].

3.1.1. Preparation of [Co(DMF)6][An], Where [An] = [B12H12]2− (Compound 1) and
[trans-B20H18]2− (Compound 2·3H2O)

A solution of salt (Et3NH)2[B12H12] or (Et3NH)2[trans-B20H18] (5 mmol) in DMF (10
mL) was added to a solution of Co(NO3)2·6H2O (5 mmol) dissolved in DMF (10 mL).
As a result of evaporation in air for 2 weeks, purple crystalline precipitate 1 or 2·3H2O
was obtained, which was filtered off and dried in air. Yield was 59% (for 1) and 54% (for
2·3H2O). Single crystals of 1 suitable for X-ray diffraction were obtained directly from the
reaction solution.

1: Calcd. for CoC18H54N6O6B12, %: C, 33.82; H, 8.51; N, 13.15; Co, 9.22; B, 20.3.
Found, %: C, 33.77; H, 8.57; N, 13.19; Co, 9.16; B, 19.5. IR (NaCl, Nujol, cm−1): ν(BH) 2466;
ν(C=O)DMF 1651.

2 (dry sample): Calcd. for CoC18H60N6O6B20, %: C, 29.54; H, 8.26; N, 11.48; Co, 8.05;
B, 29.5. Found, %: C, 29.58; H, 8.20; N, 11.43; Co, 8.12; B, 29.1. IR for 2·3H2O (NaCl, Nujol,
cm−1): ν(OH) 3450; ν(BH) 2532, 2497; ν(C=O)DMF 1664.

3.1.2. Preparation of [Co(DMF)6][B10Cl10] (3)

Compound 3 was synthesized from Co(NO3)2·6H2O and (Et3NH)2[B10Cl10] in DMF
according to the procedure reported [40]. Yield, 82%.

Calcd. for CoC18H42N6O6Cl10B10, %: C, 22.52; H, 4.41; N, 8.75; Co, 6.14; B, 11.3. Found,
%: C, 22.41; H, 4.54; N, 8.65; Co, 6.19; B, 10.9. IR (NaCl, Nujol, cm−1): ν(BCl) 1157, 1002,
843; ν(C=O)DMF 1652.

3.1.3. Preparation of Compounds 1a–3a

Compounds 1–3 were annealed in a quartz tube-reactor heated by a resistance furnace
and sealed hermetically with tapered silica glass ground joints. The studied samples were
placed in corundum crucibles. Annealing was carried out in a high purity argon (5–7 ppm
O2, 10 ppm H2O) flow at a gas flow rate of 300 mL/min and heating at 10 ◦C/min. The
annealing time for each sample was 120 min (in a flow of high purity argon) at 900 ◦C;
the sample was cooled down to room temperature in an Ar flow. Note that with a longer
exposure, the phase composition (qualitative and quantitative) did not change. Visually,
the thermolysis products 1a–3a are black powders remained stable when treated in air.

3.2. Methods of Investigation

Elemental analysis of compounds 1–3 for carbon, hydrogen, and nitrogen was per-
formed using a Carlo ErbaCHNS-3 FA 1108 automated elemental analyzer. Boron and
metal content was determined on an iCAP 6300 Duo ICP emission spectrometer with
inductively coupled plasma. Before the measurements, samples were dried in vacuum to
constant weight; for 2·3H2O, solvent-free sample 2 was obtained.

IR spectra of complexes 1, 2·3H2O, 3 and annealed products 1a–3a and amorphous
boron were recorded on a Lumex Infralum FT-02 Fourier-transform spectrophotometer in
the range of 4000–600 cm−1 at a resolution of 1 cm−1. Samples were prepared as Nujol
mulls; NaCl pellets were used.

X-ray diffraction study. The single-crystal X-ray diffraction data for 1 performed with
a Bruker APEX-II CCD and a Bruker D8 Venture (Centre of Joint Equipment of Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences) using ϕ and
ω-scan mode. The data were indexed and integrated using the SAINT program [44].
Absorption correction based on measurements of equivalent reflections (SADABS) were
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applied [45]. The structures were determined by direct methods and refined by full-matrix
least squares technique on F2 with anisotropic displacement parameters for non-hydrogen
atoms. The hydrogen atoms were placed in calculated positions and refined within riding
model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3-
groups and 1.2Ueq(C) for the other groups]. All calculations were carried out using the
SHELXTL program [46] and OLEX2 program package [47]. For details, see Table S1
(Electronic Supporting Information).

The crystallographic data were deposited with the Cambridge Crystallographic Data
Center, CCDC no. 2159665. Copies of this information may be obtained free of charge from
the Director, CCDC, 12 Union Road, Cambridge CHB2 1EZ, UK (Fax: +44 1223 336033;
e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk (accessed on 24 November 2022)).

X-ray powder diffraction studies of started samples 1–3 and annealed products 1a–3a
were performed on a Bruker D8 ADVANCE diffractometer (CuKα radiation, Ni filter,
LYNXEYE detector, reflection geometry) in low-background cuvettes with an oriented
silicon single crystal substrate in the angle range 2θ = 5◦–80◦ with a step 0.01125◦.

X-ray spectral fluorescence analysis of sample 3a was performed on a wave-dispersive
X-ray fluorescence spectrometer SPECTROSCAN MAX (Russia) (voltage 40 kV, current
0.5 mA, X-ray tube anode material Pd, analyzer crystals: LiF(200) and COO2. Individual
particles were placed between two layers of a polyethylene terephthalate film of thickness
5 µm.

Thermogravimetric analysis (TG-DSC) of samples 1–3 was carried out using an SDT
Q600 synchronous thermal analyzer in alundum crucibles (40–100 µL) in a flow of high
purity argon (100 mL/min) at a sample heating rate of 10 ◦C/min and within the range
temperatures from room temperature to 900 ◦C.

Samples 1–3 were annealed in a Nabertherm R 30/200/11 tube furnace in an inert gas
flow to form samples 1a–3a. Before annealing, samples were ground in an agate mortar
and transferred into thin-walled quartz test tubes, which were then placed in a quartz flow
tube at the level of the furnace hot zone.

Transmission electron microscopy (TEM) studies of samples 1a–3a were carried out on
a Jem-1011 instrument at an accelerating voltage of 80 kV. Samples were applied to copper
grids by ultrasonic sputtering.

Hirshfeld surface analysis. The Crystal Explorer 17.5 [48] program was used to analyze
the interactions within crystal 1. The donor–acceptor groups are visualized using a standard
(high) surface resolution and dnorm surfaces are mapped over a fixed color scale of −0.640
(red) to 0.986 (blue) a.u.

4. Conclusions

Nanocrystalline cobalt boride in the tetragonal modification was prepared by thermal
decomposition (900 ◦C) of preliminarily synthesized cobalt precursors [Co(DMF)6][An],
where An = [B12H12]2− (1), [B20H18]2− (2) or [B10Cl10]2− (3) in an argon atmosphere. Ther-
molysis products 1a–3a were identified and characterized by X-ray powder diffraction and
IR spectroscopy; X-ray fluorescence data were obtained for 3a. The average particle size
of cobalt monoboride was determined using transmission electron microscopy (TEM). It
has been found that the nature of the boron cluster anion affects the phase composition of
the thermolysis products (presence of a boron nitride phase during the thermolysis of 1
and 2), as well as the structural features of the resulting cobalt monoboride (space groups
Pbnm or Pnma). Thermolysis of 1 and 2 afforded CoB particles up to 35 nm in size with a
narrow size distribution curve, which is an important task in catalysis; 3 gave CoB with
200–350 nm in size.

www.ccdc.cam.ac.uk
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010453/s1, Table S1, Crystal data and structure
refinement for complex 1; Figure S1, IR spectra of compounds (a) 1, (b) 2·3H2O, and (c) 3; Figure S2,
Projection of structure of complex 1 along the a axi; Figure S3, Calculated (black) and experimental
(red) X-ray powder diffraction patterns for (a) compound 1, (b) compound 2, and (c) compound 3;
Figure S4, IR spectra of (a) complex 2·nH2O (blue), sample 2a (green) and amorphous boron (red));
Figure S5, Fragments of IR spectra of complex 1 (blue), sample 1a (purple) and amorphous boron
(red); Figure S6, Fragments of IR spectra of complex 3 (purple), sample 3a (red) and amorphous boron
(green); Figure S7, X-ray spectral fluorescence spectrum of sample 3a: (A) determination of Cl, (B)
determination of Co.
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