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1 Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; barbasiewicz@chem.uw.edu.pl
2 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;

michal.fedorynski@pw.edu.pl
3 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
* Correspondence: rafal.loska@icho.edu.pl (R.L.); mieczyslaw.makosza@icho.edu.pl (M.M.);

Tel.: +48-22-343-2334 (M.M.)

Abstract: The aim of this essay is to disclose the similarity of a great variety of reactions that proceed
between nucleophiles and π-electrophiles—both aromatic and aliphatic. These reactions proceed
via initial reversible addition, followed by a variety of transformations that are common for the
adducts of both aliphatic and aromatic electrophiles. We hope that understanding of this analogy
should help to expand the scope of the known reactions and inspire the search for new reactions that
were overlooked.
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1. Introduction

This essay aims to disclose the similarity of a great variety of reactions that proceed
between nucleophiles and aliphatic and aromatic π-electrophiles. There is a common
belief that these reactions are mechanistically different, which we believe to be incorrect.
Therefore, we hope that understanding and acceptance of this analogy should help to
expand the scope of the known reactions and inspire the search for new reactions that were
so far overlooked.

Although there is a great variety of aliphatic π-electrophiles (carbonyl compounds,
imines, iminium ions, nitriles, Michael acceptors, etc.) and aromatic π-electrophiles with
electrophilic centers in the ring: nitroarenes, azines, etc., as well as a great, practically
unlimited variety of nucleophiles; therefore, numerous reactions that proceed between
them—there are just a few fundamental initial processes. All these reactions proceed via
the initial reversible addition of nucleophiles to the electrophilic center of an electrophilic
partner to form σ adducts that are subsequently converted into the final products in a
variety of ways. The addition to aliphatic electrophiles results in the formation of a new
σ bond and conversion of the π bond into a σ bond, which as a rule is energetically
favorable, with the formation of adducts that are energetically stable intermediates. Due
to stability, upon protonation, they can form final products, or they can react further in a
great variety of ways. On the other hand, the addition of nucleophiles to electron-deficient
arenes results in dearomatization, thus it is energetically unfavorable so, as a rule, the
produced σ adducts are unstable, short-lived intermediates. These σ adducts tend to
recover aromaticity via dissociation or fast further transformations, thus the number of
different final reactions appears to be limited. However, recent literature reports indicate
that adducts of nucleophiles to aromatic electrophiles can enter a variety of reactions, and
thus they display reactivity identical to their aliphatic counterparts [1–3].

The second difference between aliphatic and aromatic π-electrophiles is that aromatic
π-electrophiles usually contain more than one electrophilic center that is capable of adding
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nucleophilic agents, and the addition can result in the formation of isomeric adducts.
In turn, aliphatic π-electrophiles usually react selectively, giving single, predictable in-
termediates. However, the difference also seems to be apparent, as it arises from the
structure of individual substrates, and varies depending on substitution or length of the
conjugation pathway.

These observations should inspire the search for new processes based on the analogies
between aromatic and aliphatic π-electrophiles. In this essay, the similarity of reactions of
nucleophiles with aromatic and aliphatic π-electrophiles will be presented consecutively,
and for the sake of clarity, electrophiles and nucleophiles with or without leaving groups
will be discussed separately. We believe that the clear-cut analogy between aromatic
and aliphatic π-electrophiles should inspire the search for new synthetic transformations,
which were overlooked, due to the simplified picture of their reactivity, presented in
chemical textbooks.

2. Addition of Nucleophiles to π-Electrophiles Containing Leaving Groups at
Electrophilic Center
2.1. Addition of Nucleophiles without Leaving Groups

The most common and studied reaction between nucleophiles and aromatic elec-
trophiles is substitution of halogens and other leaving groups in nitroarenes. This reaction,
known for more than 150 years, proceeds via the addition of nucleophiles at positions
ortho or para to the nitro group occupied by a leaving group X to form σX adducts. As
was mentioned earlier, the addition is connected with dearomatization, thus the adducts
undergo fast rearomatization via the departure of X− to form products of substitution,
SNAr. As a consequence, in this two-step process, the addition is the slower, rate-limiting
step, therefore usually the substitution proceeds faster when X = F than X = Cl [4].

In some cases, when X = Cl, the departure of Cl− is so fast that the process has a
synchronous character [5,6]. It is therefore a peculiar situation that the two-step substitution
of fluorine proceeds faster than the synchronous substitution of chlorine.

Substitution of leaving groups in electron-deficient arenes (nitroarenes, azines, etc.)
proceeds with various C, N, O, S, etc. nucleophiles. The most common leaving groups are
halogens, but alkoxy and aryloxy groups can also behave as leaving groups (Scheme 1).
The substitution of fluoride in 2-fluoropyridine is a versatile way of preparing pyridine
derivatives [7].
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Scheme 1. SNAr in nitroarenes.

As previously mentioned, in p- and o-halonitrobenzenes and analogues there are also
positions occupied by hydrogen available for the addition of nucleophiles. It should be
stressed that addition of nucleophiles at these positions is, as a rule, faster than at positions
occupied by halogen, but the σH adducts have no direct way for further conversion; hence,
they usually dissociated. Nevertheless, when such a possibility exists, further conversion
of the σH adducts results in nucleophilic substitution of hydrogen. The general picture is
presented in Scheme 2 [4,8].
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There is a great variety of aliphatic π-electrophiles containing leaving groups at the elec-
trophilic centers. The simplest examples of such electrophiles are acyl chlorides (halides),
esters of carboxylic acids, imidoyl chlorides, etc., as well as electron-deficient alkenes
containing leaving groups: β-halo or β-alkoxyvinyl ketones, nitriles, esters, etc. (Scheme 3).

Molecules 2023, 28, x FOR PEER REVIEW 3 of 22 
 

 

sion; hence, they usually dissociated. Nevertheless, when such a possibility exists, further 
conversion of the σH adducts results in nucleophilic substitution of hydrogen. The gen-
eral picture is presented in Scheme 2 [4,8]. 

 
Scheme 2. Addition of nucleophiles to nitroarenes. 

There is a great variety of aliphatic π-electrophiles containing leaving groups at the 
electrophilic centers. The simplest examples of such electrophiles are acyl chlorides 
(halides), esters of carboxylic acids, imidoyl chlorides, etc., as well as electron-deficient 
alkenes containing leaving groups: β-halo or β-alkoxyvinyl ketones, nitriles, esters, etc. 
(Scheme 3). 

 
Scheme 3. Aliphatic π-electrophiles. 

Numerous common reactions such as acylation of carbanions by acyl chlorides and 
esters, synthesis of esters via acylation of alcohols and transesterification, synthesis of 
amides, hydrazides, hydroxamic acids, etc. proceed via the addition of nucleophiles to 
carbonyl and amino groups substituted with a leaving group, followed by elimination of 
the leaving group (Scheme 4). Many names and common reactions, e.g., Claisen con-
densation, transesterification, etc., belong to this category. It appears difficult to see the 
analogy between the Claisen condensation and SNAr reaction, but indeed these reactions 
proceed similarly as follows: addition of nucleophile followed by elimination of a leaving 
group from the addition center. 

 

Scheme 3. Aliphatic π-electrophiles.

Numerous common reactions such as acylation of carbanions by acyl chlorides and
esters, synthesis of esters via acylation of alcohols and transesterification, synthesis of
amides, hydrazides, hydroxamic acids, etc. proceed via the addition of nucleophiles to
carbonyl and amino groups substituted with a leaving group, followed by elimination of the
leaving group (Scheme 4). Many names and common reactions, e.g., Claisen condensation,
transesterification, etc., belong to this category. It appears difficult to see the analogy
between the Claisen condensation and SNAr reaction, but indeed these reactions proceed
similarly as follows: addition of nucleophile followed by elimination of a leaving group
from the addition center.
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The reactions of nucleophiles with π-electrophiles containing leaving groups at the
electrophilic centers of electron deficient alkenes are less common. Nevertheless, there are
many examples of substitution of β-halogens or β-alkoxy groups in vinyl nitriles, ketones,
or sulfones that proceed via an addition–elimination mechanism analogous to SNAr [9,10].
Similar to the SNAr, addition is usually the rate-determining step, hence for instance
substitution of fluorine is faster than chlorine (Scheme 5). Selected synthetic examples of
nucleophilic substitution in aliphatic systems are presented in Scheme 6 [11–13].
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Similar to the case of aromatic electrophiles there are two main mechanistic variants
of substituting chlorine in β-chlorovinyl ketones through two-step processes in which the
adducts are intermediates or synchronous reaction when the dissociation is faster than
addition and the adducts are transition states [9,10]. Occasionally, reactions other than
elimination may be observed following the addition of nitrogen [14–16], oxygen [17,18],
carbon [19,20], or fluoride [21] nucleophiles to electron-deficient fluoroalkenes, including
SN2’ reactions [22].

2.2. Addition of Nucleophiles Containing Leaving Groups

There are few examples of substitution of halogens in nitroarenes with nucleophiles
containing leaving groups, e.g., α-chlorocarbanions, mostly because nucleophilic addi-
tion to such arenes proceeds faster from the position occupied by hydrogen. The formed
σH adducts of α-chlorocarbanions usually undergo β-elimination to form products of
vicarious nucleophilic substitution (VNS) [23] faster than dissociation and addition at
positions occupied by a leaving group (see below, Section 3.2). Nevertheless, there
are examples of substitution of halogens, particularly fluorine, in fluoronitrobenzenes
by carbanions of α-chloroalkyl sulfones [24,25], alkoxynitriles, sulfenamides, and an-
ion of t-butylhydroperoxide (Scheme 7) [26]. These reactions have rather limited practi-
cal application.

There are also not frequent reports of reactions of such nucleophiles with acyl chlorides
or esters of carboxylic acids [27]. Nevertheless, adding anions of hydroperoxides to acyl
chlorides is a way of synthesis of acyl peroxides in moderate to good yields (Scheme 8) [28].
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3. Addition of Nucleophiles to π-Electrophiles without Leaving Groups at the
Electrophilic Center
3.1. Addition of Nucleophiles without Leaving Groups

For many years, the known reactions of nucleophiles with electron-deficient arenes
were limited to those proceeding via addition at positions occupied by halogens or other
leaving groups. Only recently was it established that adding nucleophiles to nitroaromatic
rings also proceeds to rings that do not contain leaving groups. Moreover, addition to
the rings containing halogens proceeds faster at positions occupied by hydrogen than
halogen [1–3,8]. This process was overlooked because the initial fast addition is a reversible
process and the initially formed σH adducts dissociate and slower addition at positions
occupied by halogens leading to SNAr taking place (see Scheme 1). It should be mentioned
that σH adducts of C, N, O, etc. nucleophiles to highly electrophilic arenes, such as
trinitrobenzene, are stable and upon protonation, trinitrocyclohexadiene-type products
known as “Meisenheimer complexes”, that are in fact trinitrocyclohexadiene derivatives,
are formed (Scheme 9) [29].
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Scheme 9. Formation of stable adducts of nucleophiles to trinitrobenzene.

Carbanions generated from 1,3-dicarbonyl compounds add to such nitroarenes to form
upon protonation peculiar bicyclic products in moderate yields (Scheme 10) [30]. These
important and interesting observations have limited application in organic synthesis.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 22 
 

 

products known as “Meisenheimer complexes”, that are in fact trinitrocyclohexadiene 
derivatives, are formed (Scheme 9) [29]. 

 
Scheme 9. Formation of stable adducts of nucleophiles to trinitrobenzene. 

Carbanions generated from 1,3-dicarbonyl compounds add to such nitroarenes to 
form upon protonation peculiar bicyclic products in moderate yields (Scheme 10) [30]. 
These important and interesting observations have limited application in organic syn-
thesis. 

 
Scheme 10. Formation of bicyclic structures from trinitrobenzene and carbanions of 1,3-dicarbonyl 
compounds. 

Anionic σH adducts of nucleophiles to mononitroarenes are short-lived species; 
nevertheless, protonation or silylation of such σH adducts of some carbanions results in 
the elimination of water to form nitrosoarenes that can be isolated in the form of qui-
noneoximes [31] or further converted to anthranils (Scheme 11) [32]. 

 
Scheme 11. Addition of nucleophiles to nitroarenes followed by elimination. 

Silylation of σH adducts of methinic carbanions followed by elimination of silanol 
gave substituted nitrosobenzenes (Scheme 12) [33]. 
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compounds.

Anionic σH adducts of nucleophiles to mononitroarenes are short-lived species; never-
theless, protonation or silylation of such σH adducts of some carbanions results in the elimi-
nation of water to form nitrosoarenes that can be isolated in the form of quinoneoximes [31]
or further converted to anthranils (Scheme 11) [32].
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Silylation of σH adducts of methinic carbanions followed by elimination of silanol
gave substituted nitrosobenzenes (Scheme 12) [33].
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The scope of these interesting and valuable synthesis processes is rather limited.
Short-lived σH adducts of anilines to mononitroarenes upon protonation also undergo the
elimination of water to form nitrosodiphenyl amines (Scheme 13) [34,35].
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Another important way of further transformation of σH adducts of C, N, O, and even P
nucleophiles to nitroarenes is oxidation by external oxidants to form products of oxidative
nucleophilic substitution of hydrogen (ONSH). It was recently shown that this process is
of the general character of wide application in organic synthesis. Examples of ONSH in
nitroarenes are presented in Scheme 14 [33,36,37].
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Scheme 14. Examples of ONSH in nitroarenes.

Further, adding nucleophiles to aliphatic π-electrophiles containing carbon-heteroatom
double bonds that do not contain leaving groups is energetically favorable; hence, the usual
protonation of the adducts provides stable products. This can be exemplified by the addition
of cyanide anion to aldehydes and ketones that upon protonation form cyanohydrines
or silylation O-silylated cyanohydrines (Scheme 15) [38,39]. Similarly, the addition of
carbanions to aldehydes and ketones followed by protonation gives aldol-type products.
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Scheme 15. Addition of carbon nucleophiles to carbonyl groups.

Usually, the protonated adducts—aldols—enter fast further reactions, most often
elimination of water to form alkenes (Knoevenagel reaction) [40]. Additionally, adding
ammonia and a variety of amines to aldehydes and ketones results in the formation of
aminals and subsequently, upon elimination of water, aldimines or enamines (Scheme 16).
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Scheme 16. Addition of nucleophiles to carbonyl groups followed by elimination.

We would like to stress the similarity of the conversion of the σH adducts to nitroarenes
and to aldehydes and ketones via protonation and the elimination of water. The addition
of nucleophiles to highly electron-deficient nitroarenes upon protonation results in for-
mation of relatively stable adducts, similarly to formation of aldols, whereas addition to
mononitroarenes followed by protonation and elimination of water gives nitrosoarenes,
isolated usually as methylenequinone oximes (Schemes 11–13) in a process analogous to
the Knoevenagel reaction.

Oxidation analogous to that of σH adducts of nucleophiles to nitroarenes, ONSH,
also proceeds with the adducts of nucleophiles to aliphatic π-electrophiles–aldehydes. For
instance, aromatic aldehydes treated with potassium permanganate in liquid ammonia
form amides in moderate yields (Scheme 17) [41].
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Formally, the oxidation of protonated adducts of RLi and RMgX to aldehydes, that
is alcohols, may be viewed as another example belonging to this category. ONSH reac-
tion also proceeds with electron-deficient alkenes, for example, in quinone or maleimide
derivatives [42–47] or even nitroalkenes [48] (Scheme 18).
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ONSH is also a well-established process for the functionalization of two struc-
turally similar classes of π-electrophiles–aromatic N-oxides [49–51] and aliphatic nitrones
(Scheme 19) [52,53].
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3.2. Addition of Nucleophiles Containing Leaving Groups

Of particular interest and value are reactions of aromatic and aliphatic π-electrophiles
with nucleophiles that contain leaving groups at the nucleophilic center. Such nucle-
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ophiles are exemplified by α-halocarbanions, sulfonium and phosphonium ylides, t-
butylhydroperoxide anion, substituted amines, etc.

The addition of α-halocarbanions to nitroarenes results in the initial formation of the
σH adducts that subsequently enter base-induced β-elimination of hydrogen halide and
protonation to give products of vicarious nucleophilic substitution (VNS). This reaction can
proceed provided the σH adducts exist for a sufficiently long time and the base is present
in excess (Scheme 20) [23,54].
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Similar reaction proceeds with carbanions containing other leaving groups able to
be eliminated in the base-induced E2 process. For example, VNS cyanomethylation of
nitroarenes in the reaction with aryloxyacetonitriles is widely used to synthesize indoles
(Scheme 21) [55].
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There are a few examples of VNS with sulfonium [56–58] and phosphonium ylides
(Scheme 22) [59,60].
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It should be stressed that an identical process of addition—β-elimination proceeds
with an anion of t-butylhydroperoxide to produce nitrophenols and N-anions, generated
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from some sulfenamides, trimethylhydrazonium iodide, hydroxylamine derivatives, etc. to
give nitroanilines (Scheme 23) [26,61–63].
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Thus, VNS is a general process for introducing carbon, nitrogen, and oxygen sub-
stituents into aromatic rings.

Interestingly, when delocalization of the negative charge in the σH adduct of α-
halocarbanions or sulfonium ylides to electron-deficient arenes is inefficient, they react
further not via β-elimination but via intramolecular substitution to form aziridines or
cyclopropanes (Scheme 24) [64–67].
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Scheme 24. Aziridination and cyclopropanation of aromatic systems.

On the other hand, adducts of α-chlorocarbanions and sulfonium ylides to aliphatic
electrophiles containing carbonyl groups result in formation of anionic σ adducts that
undergo intramolecular 1,3-substitution to form oxiranes (Darzens [68,69] or Corey-
Chaykovsky [70–73] reactions). The reaction of such nucleophiles with imines to form
aziridines proceeds similarly (Scheme 25) [74,75].

The high affinity of phosphorus to oxygen causes a different behavior of phosphonium
ylides. Their anionic adducts to aldehydes and ketones react further via a combination of
the O-anion with a positively charged phosphorous atom giving oxaphosphetanes, followed
by the elimination of phosphine oxide to produce alkenes (Wittig reaction; Scheme 26).
A similar reaction course leading to alkenes has been reported for adding phosphonium
ylides to N-sulfonylimines [76,77], whereas simple N-arylimines give allenes [78].
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Scheme 26. The Wittig reaction.

The addition of the nucleophiles containing leaving groups to electron-deficient
alkenes results in the formation of anionic adducts that are γ-halocarbanions and related in-
termediates and is followed by intramolecular 1,3-substitution to give cyclopropanes. This
is one of the major ways to synthesize substituted cyclopropanes (Scheme 27) [71,79,80]. A
similar process—addition followed by 1,3-intramolecular substitution reaction—proceeds
between the anion of t-butylhydroperoxide and some electron-deficient alkenes to give
oxiranes, although protonation of the intermediate adducts to form Michael-type products
dominates [81]. Similarly, the addition of N-nucleophiles containing leaving groups fol-
lowed by 1,3-intramolecular substitution is an efficient way of synthesis of aziridines [75].
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Surprisingly, there are no reports of the possibility of converting adducts of α-chlorocarbanions
to aliphatic π-electrophiles containing a carbon-heteroatom double bond via base-induced
β-elimination, although such attempts were disclosed in the literature [82]. Motivated by
the similarity of aromatic and aliphatic π-nucleophiles reactivity, we have attempted such
reactions. β-Elimination in the adducts of α-chlorocarbanions to benzaldehyde does not
proceed as it is hampered by the vicinity of the negatively charged oxygen which engages
in facile intramolecular substitution to form oxiranes. On the other hand, β-elimination
in the adducts of α-chlorocarbanions to electron-deficient imines proceeded satisfactorily
(Scheme 28) [83].
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Scheme 28. VNS in imines.

No examples of β-elimination of HCl from the adducts of α-chlorocarbanions to
electron-deficient alkenes were known for a long time. We have shown that such pro-
cesses, identical to VNS in nitroarenes, proceed under appropriate conditions with electron-
deficient alkenes and carbanions containing an aryloxy leaving group or even with α-
chlorocarbanions (Scheme 29) [42,84,85].
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More examples of this kind appeared in recent years, including a reaction of nitroalka-
nes with NO2 acting as a carbanion-stabilizing and leaving group (Scheme 30) [86,87]. A
reaction of a nitrogen nucleophile bearing a Ph2S leaving the group with maleimides and
naphthoquinone in good yields has also been reported (Scheme 31) [88–90].
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4. Reactions of Specific Nucleophiles

Several kinds of specific nucleophiles also enter analogous reactions with aromatic
and aliphatic π-electrophiles. To this category belong 1,3-dipoles that enter 1,3-dipolar
cycloaddition both to electron-deficient arenes [91,92] and alkenes [93,94] (Scheme 32).
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Of substantial interest are masked acyl carbanions, key intermediates in the Stetter
reaction [95]. This reaction proceeds via addition of cyanide anion or nucleophilic carbenes
to aldehydes and subsequent intramolecular migration of proton to generate masked
acyl carbanions that add to active electrophiles, mainly Michael acceptors. Subsequent
dissociation gives Michael adducts of acyl carbanions (Scheme 33).
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Examples of the Stetter reaction with nitroarenes that gave as the final products
nitrobenzophenones were reported (Scheme 34) [96,97].

Molecules 2023, 28, x FOR PEER REVIEW 15 of 22 
 

 

benes to aldehydes and subsequent intramolecular migration of proton to generate 
masked acyl carbanions that add to active electrophiles, mainly Michael acceptors. Sub-
sequent dissociation gives Michael adducts of acyl carbanions (Scheme 33). 

 
Scheme 33. Benzoin condensation and Michael addition of masked acyl carbanions. 

Examples of the Stetter reaction with nitroarenes that gave as the final products ni-
trobenzophenones were reported (Scheme 34) [96,97]. 

 
Scheme 34. Stetter reaction with SNAr in nitroarenes with a NHC as catalyst. 

It should be mentioned that the Stetter reaction follows the concept of Umpolung 
introduced by Seebach to invert the polarity of the carbonyl group in aldehydes [98]. 
Conversion of aldehydes into dithioacetals followed by deprotonation produced masked 
acyl carbanions. Subsequent reactions with a variety of electrophiles, followed by 
deacetalization, give products of reactions of acyl carbanions. Reactions of such carban-
ions with nitroarenes were also reported. A more convenient approach is generating 
masked acyl carbanions via the conversion of aldehydes into cyanohydrines, followed by 
protection in the form of acetals via reactions with vinyl ethers (Scheme 35). Deprotona-
tion of such protected cyanohydrins gave stable equivalents of acyl carbanions [99–101]. 

Scheme 34. Stetter reaction with SNAr in nitroarenes with a NHC as catalyst.

It should be mentioned that the Stetter reaction follows the concept of Umpolung
introduced by Seebach to invert the polarity of the carbonyl group in aldehydes [98]. Con-
version of aldehydes into dithioacetals followed by deprotonation produced masked acyl
carbanions. Subsequent reactions with a variety of electrophiles, followed by deacetal-
ization, give products of reactions of acyl carbanions. Reactions of such carbanions with
nitroarenes were also reported. A more convenient approach is generating masked acyl
carbanions via the conversion of aldehydes into cyanohydrines, followed by protection
in the form of acetals via reactions with vinyl ethers (Scheme 35). Deprotonation of such
protected cyanohydrins gave stable equivalents of acyl carbanions [99–101]. Thanks to
the stability of all intermediates involved, this way of generating masked acyl carbanions
appears to be more versatile than the original Stetter reaction.
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5. General Comments

Finally, an interesting general question should be addressed. As it was mentioned
earlier, nucleophilic addition to ortho and para halonitrobenzenes proceeds faster at positions
occupied by hydrogen than halogens, therefore nucleophilic substitution of hydrogen: VNS,
ONSH, etc. proceeds as a rule faster than conventional SNAr of halogens. Based on these
observations, it was often considered that halogens in electron-deficient arenes partially
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protect their positions against nucleophilic addition. It was interesting to see that the
same observation was made in rather few experiments with aliphatic π-electrophiles. Thus
in 2-chloronaphthoquinone VNS reaction with α-chlorocarbanions proceeds exclusively
(Scheme 36) [42]. Mayr has shown that nucleophilic addition to chlorobenzoquinones also
proceeds faster at positions occupied by hydrogen [102].
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We have also found that carbanions add faster at carbon occupied by hydrogen (in
position 2) of 1-chlorofumarate and maleate [103]. However, the statement that chlorine
decelerates nucleophilic addition at positions it occupies, although supported by many
observations, is unjustified simply because competition between addition of nucleophiles
at a position occupied by hydrogen and chlorine in para or ortho chloronitrobenzenes is
unfair. Positions occupied by hydrogen are additionally activated by electron withdrawing
chlorine substituent in the ring or at the π bond, whereas those occupied by chlorine
are not additionally activated. This interesting and important problem should be solved
using unbiased models. For instance, we have observed that in competition between
nitrobenzene and p-chloronitrobenzene for the reaction with a bulky methinic carbanion
which does not react in the ortho position, the addition of this carbanion in position para
of nitrobenzene proceeds faster. Similarly, the VNS reaction of chloromalonates with
2-chloronaphthoquinones proceeds faster than with 2,3-dichloronaphthoquinones, also
1,2-dichloromaleate reacts slower than monochloro with carbanion of chloromethyl phenyl
sulfone (Scheme 36).

These observations support the hypothesis that chlorine substituents indeed decelerate
nucleophilic addition at positions they occupy in aromatic and aliphatic π-electrophiles.
These interesting observations and hypotheses need further studies.

For instance, there remains an important matter of the relative activity of aldehydes
and the corresponding acyl chlorides. We hypothesize that the electrophilic activity of
aldehydes is higher, but we are not aware of any experimental evidence. The formation
of benzoate of benzaldehyde cyanohydrine when KCN or LiCN is added to a mixture of
benzaldehyde and benzoyl chloride is not sufficient [38,104].

6. Kinetic vs. Thermodynamic Control

In the electron-deficient aromatic rings, e.g., nitroarenes, there are usually two or
even three electrophilic sites able to add nucleophiles, thus the question of kinetic and
thermodynamic control is of crucial importance. According to the recently formulated
general mechanism of nucleophilic aromatic substitution in nitroarenes, the addition of
nucleophiles to nitroarenes proceeds rapidly at positions ortho or para to the nitro group
to form σH adducts [1,8,105]. The adducts are short-lived species and usually dissociate
and slower addition at positions occupied by halogens X followed by the fast departure
of halide anion results in the substitution of halogens, thus this process can be considered
thermodynamically controlled. Furthermore, when, with proper structure of nucleophiles
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and conditions, the initially formed σH adducts are converted into products of substitution
of hydrogen, the process can be considered kinetically controlled. Additionally, the orienta-
tion of nucleophilic substitution of hydrogen can be kinetically and thermodynamically
controlled. For instance, VNS in nitrobenzene with methylenic carbanions under kinetic
control—excess of base, low temperature—proceeds mostly in the ortho position, whereas
under thermodynamic control (r.t., slow addition of the carbanion solution to a solution of
nitroarene) para substitution dominates. Exemplification of the kinetic vs. thermodynamic
control in the reaction of an α-chlorocarbanion with nitroarenes is shown in Scheme 37.
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These experimental observations are confirmed by calculations of free energies of
transition states of the addition and σ adducts [105].

In most aliphatic π-electrophiles, there is one electrophilic center to which the addition
of nucleophiles occurs. Nevertheless, there are numerous electrophiles with two such
centers, e.g., acrolein, vinyl ketones, acrylates, etc., reactions of which nucleophiles can
proceed under kinetic or thermodynamic control (1,2- vs. 1,4-addition) [70].

7. Conclusions

We hope that the general concept of this paper—the analogy between reactions of
nucleophiles with aliphatic and aromatic π-electrophiles—is convincingly supported by the
presented examples and their interpretation. The mechanism of reactions of nucleophiles
with both kinds of π-electrophiles are in fact identical; they are all initiated by a nucleophilic
addition to the π system, at the position occupied by a leaving group or by hydrogen, with
the latter process usually faster. There are several ways of further conversion of the
adducts which are common for both aromatic and aliphatic systems. If the π system of
the electrophilic partner contains a heteroatom, Knoevenagel-type elimination may also
be possible. Importantly, examples of each type of reaction course can be given for both
aliphatic and aromatic electrophiles.

Two important conclusions can be drawn from our analysis. First, some types of
reactions are underrepresented within either the aliphatic or aromatic electrophiles group,
which should inspire the search for new reactions that remain to be discovered. Second,
this essay should change the general opinion that reactions of aliphatic electrophiles are
more diversified than those of aromatic ones. It is just the opposite, as exemplified by
benzoyl chloride, which is capable only of chloride substitution, and chloronitrobenzene
which, upon nucleophilic addition, undergoes SNAr, VNS, or two variants of the ONSH
reaction [106].
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