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Abstract: A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was per-
formed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/
dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in
one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused synthetic
strategy. In both ways, the yields were excellent, considering the high number of bonds formed
with release of only one carbon dioxide and two molecules of water. The Ugi-Zhu reaction was
carried out using the 4-formylbenzonitrile as orthogonal reagent, where the formyl group was
first transformed into the pyrrolo[3,4-b]pyridin-5-one core, and then the remaining nitrile group
was further converted into two different nitrogen-containing polyheterocycles, both via click-type
cycloadditions. The first one used sodium azide to obtain the corresponding 5-substituted-1H-
tetrazolyl-pyrrolo[3,4-b]pyridin-5-one, and the second one with dicyandiamide to synthesize the
2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one. Both synthesized compounds may be used for
further in vitro and in silico studies because they contain more than two heterocyclic moieties of high
interest in medicinal chemistry, as well as in optics due to their high π-conjugation.

Keywords: multicomponent reactions (MCRs); Ugi-Zhu reaction; click chemistry; polyheterocycles;
pyrrolo[3,4-b]pyridin-5-ones; 5-substituted-1H-tetrazoles; 2,4-diamino-1,3,5-triazines

1. Introduction

Nitrogen-containing heterocycles play a very important role in medicinal chemistry
because they are the structural core of a broad spectrum of biologically active molecules.
Some are in preclinical trials, and many others are already commercially available [1].
Among the most privileged N-heterocycles are the 5-substituted-1H-tetrazoles (5S-1H-Ts),
due mainly to their ability to surrogate the carboxylic acids (RCOOH) into living systems
since they have close values of pKa (5S-1H-Ts: 4.5 to 4.9, RCOOH: 4.2 to 4.4), similar
topologies, and practically the same electrostatic potential and electron density [2]. For
these reasons, 5S-1H-Ts are considered bioisosteres of carboxylic acids [3]. In addition,
5S-1H-Ts are at least ten times more lipophilic compared to carboxylic acids, a property
that makes them even more valuable for designing new drug candidates with enhanced
pharmacokinetic profiles [4]. Indeed, to date 23 drugs containing the 5S-1H-T system
have been approved by the FDA for safe use in humans, including antivirals, antiallergics,
analgesics, anti-inflammatories, and especially antihypertensives such as the blockbuster
drug losartan (1, Figure 1) [5]. Another N-heterocycle of high interest in medicinal chemistry,
due also to its presence in many bioactive compounds and some marketed drugs such as
the anticancer alkylating agent altretamine (2, Figure 1) [6], is the 1,3,5-triazine, known
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as s-triazine [7]. This compound is a six-membered aromatic heterocycle containing three
nitrogen atoms that are able to form strong H-bonds, and three C-sp2 positions that can
be decorated a la carte [8]. Finally, the pyrrolo[3,4-b]pyridin-5-one is a fused-type bis-
heterocycle that is also of high interest in medicinal chemistry. It includes the antidiabetic
agent BMS-767778 (3, Figure 1) [9] which is an N-sp2-containing surrogate of the naturally
occurring isoindolin-1-one (3′, Figure 1) [10]. The pyrrolo[3,4-b]pyridin-5-one system is
very special in our research group. It has been the most essential molecule because it can
be smartly assembled in a one-pot manner using multicomponent reactions (MCRs).
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Figure 1. Losartan (1), altretamine (2), BMS-76778 (3), and isoindolin-1-one (3′).

MCRs are privileged synthetic tools that involve sequential additions of at least
three reagents into the same reactor (one pot). Given the nature of MCRs, they can be
accessed quickly, in comparison to linear synthesis, to a series of highly functionalized
and structurally complex products, leading to high atomic economy, eventually in good
chemical yields and in short reaction times, needing only one work-up and in most cases
just one purification process [11]. MCRs (together with click reactions) are considered one
of the most robust synthetic methodologies because a large variety of polyheterocyclic
compounds of high interest in medicinal chemistry and optics have been synthesized in
record time, satisfying the majority of the 12 principles of green chemistry [12].

In 2001, J. Zhu and co-workers reported a new and elegant variant of the truncated Ugi
reaction, recently recognized by us as the Ugi-Zhu three-component reaction (UZ-3CR) [13],
where primary amines react sequentially with aldehydes, and isocyanoacetamides (derived
from amino acids) to lead to trisubstituted 5-aminooxazoles under mild reaction condi-
tions [14]. The most plausible reaction mechanism consists of the condensation between
aldehydes 4 with amines 5 to give rise to the corresponding Schiff bases 6, which, depend-
ing on the substituents (R1 and R2), may or may not require activation by an acid, thus
favoring the α-nucleophilic attack of the isocyanides 7, leading to formation of nitrilium
cations 8. Then, the intermediate 8′ rapidly tautomerizes via a non-prototropic chain-ring
process to the corresponding oxazoles 9 (Scheme 1).
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Thus, as a part of our ongoing program to synthesize novel and complex polyhetero-
cyclic compounds, we have developed several methodologies based on UZ-3CR as key syn-
thetic tool for preparing series of pyrrolo[3,4-b]pyridin-5-ones either bound, fused or linked
to various heterocyclic frameworks of interest in optics and medicinal chemistry. However,
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for the present work, the synthetic strategy behind a couple of new tris-heterocycles, from
the diversity-oriented synthesis (DOS) approach, started with an Ugi-Zhu reaction per-
formed stepwise to first obtain a Schiff base, and then, the corresponding 5-aminooxazole.
This pivotal heterocycle then reacts with maleic anhydride via a cascade process (aza
Diels–Alder cycloaddition/N-acylation/decarboxylation/dehydration) to assemble the
pyrrolo[3,4-b]pyridin-5-one core [15]. Finally, click reactions with different reagents and
conditions provide the polyheterocyclic products.

2. Results and Discussion

The reaction sequence started with the synthesis of the Schiff base 12 via a condensation
of the 4-formylbenzonitrile (10) with piperonylamine (11). It is worthy to note that the
reagent 10 contains two functional groups, aldehyde, and nitrile. The first one is used
in the UZ-3CR, and the second in further click reactions. Indeed, 10 is considered an
orthogonal reagent. Thus, some experiments were performed with the aim to find the
optimal reaction conditions. The first entry was carried out at room temperature, under
continuous stirring, without additives or catalysts, and using methanol as solvent. The
reaction was monitored with thin layer chromatography (TLC) until the amount of aldehyde
in the reaction mixture was consumed or considerably decreased. However, after 24 hours,
there was no appreciable change. Therefore, some additional experiments were performed
with varying temperatures, additives, and solvents. The optimal conditions turned out to
be using anhydrous toluene as solvent at 2.0 M concentration, one equivalent of anhydrous
sodium sulfate as drying agent, and under microwave heating conditions at 90 ◦C for
30 min (see Table S1 in the Supplementary Material for further details). It is essential to
highlight that the addition of anhydrous sodium sulfate to the reaction mixture in the
formation of the Schiff base allowed obtaining the condensation product 12 in 90% yield.
This dehydrating salt is especially useful when reactions assisted by microwaves are carried
out in closed-vessel systems, where Dean–Stark traps cannot be implemented. The next step
was a nucleophilic α-addition of the isocyanide 13 [16] to the imine 12 to provide the key
5-aminoxazole 14. The first tests behind optimal reaction parameters were carried out under
relatively mild conditions since it was found previously that isocyanide 13 can undergo an
acid-catalyzed process of chain-ring tautomerization leading to the 5-aminooxazole 15 as
by-product. However, the desired 5-aminooxazole 14 was not detected by TLC. Thus, by
increasing the temperature, traces of 14 were observed but the main isolated compound
was 15, again. In this context, Lewis acids were used to activate the imine 12, so catalytic
amounts of a panel of them in different proportions were added, and the reaction mixture
was heated at 60 ◦C for 5 min before addition of the isocyanide 13. Then, the new resulting
mixture was heated for 25 minutes using microwaves as heat source. The use of ytterbium
triflate allowed obtaining the 5-aminooxazole 14 with the best yield (90%). The substantial
improvement in the performance using ytterbium (III) compared to the other Lewis acids
is because it is the most polarizable due to its size compared to scandium (III), indium (III),
and aluminum (III). Indeed, it is a softer acid according to the HSAB Pearson principle,
and therefore, it coordinates preferentially with the imine, activating it better. It is worth
mentioning that experimentally, it was found that both indium chloride and scandium
triflate reach coordination with isocyanide and even with the nitrile group, avoiding an
efficient coordination with the imine (see Table S2 in the Supplementary Material for
further details). Then, the 5-aminoxazole 14 was reacted with maleic anhydride (16) into a
cascade process (aza Diels-Alder cycloaddition/N-acylation/decarboxylation/dehydration)
to generate the corresponding pyrrolo[3,4-b]pyridin-5-one 17. Different entries were carried
out using toluene as solvent but varying temperature, finding that at 80 ◦C in 20 minutes
the reaction was accomplished in 96% yield (see Table S3 in the Supplementary Material
for further details). It is worth mentioning that a couple of additional experiments were
performed at temperatures just over 80 ◦C but decomposition and formation of many
uncharacterized by-products were observed, in addition to a very difficult work-up. The
next step was the transformation of nitrile group from the pyrrolo[3,4-b]pyridin-5-one 17
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into two nitrogenated heterocycles, tetrazole and triazine, both via click reactions. Thus, it
has been widely documented that the most common reactions to synthesize 5-substituted-
1H-tetrazoles are the (3+2) cycloadditions [17] between nitriles and some azide source as
the 4π-component, catalyzed by Bronsted or Lewis acids [18–21]. In addition, it is known
that aromatic nitriles as 2π-components in [3+2] cycloadditions react very low, unless they
have strong EWGs [22], or if the [3+2] cycloadditions are catalyzed by acids. One of the
rare examples of non-catalyzed [3+2] cycloadditions involving 4π-components to nitriles
(2π-components) was reported by Jasinski and co-workers in 2020 [23]. In the compound
17, the nitrile group is placed in the para-position relative to a methine group, so the [3+2]
cycloaddition occurred due to a less steric hindrance, but it was not easy. Thus, a first
attempt was carried out using the methodology described by Harasawa and co-workers in
2013 [24], which is useful for the synthesis of 5-substituted-1H-tetrazoles from electronically
deactivated aromatic nitriles with some azide source. Unfortunately, the reaction did not
proceed, probably due to a protonation of the N(sp2)-atom from pyridine 17. Therefore, the
strategy was changed, and the methodology published in 2001 by Demko and Sharpless
was used, employing ZnBr2 in equimolar amounts, and sodium azide (18) [25] in a mixture
1:1 v/v of H2O/i-PrOH at reflux using conventional heating, or under microwave heating
conditions. To our delight, the desired polyheterocycle 19 was obtained in both cases but
in low yields, 9% and 6%, respectively, in addition to the fact that the work-up became
laborious. Based on these results, it was considered that more drastic conditions were
required to improve the yield, so the reaction was repeated, but using a pressure sealed tube.
These conditions allowed performance of the cycloaddition but using a solvothermal sealed
tube. Thus, the corresponding compound 19 was obtained in 45% yield, and, with respect to
the work-up, it became trivial because once the reaction was finished, the tube reactor was
left to cool, and a mixture of hexanes/EtOAc led to the precipitation of tetrazole. Finally,
the polyheterocycle 19 was washed with ethyl acetate and hot water and dried under
high vacuum (see Table S4 in the Supplementary Material for further details). Finally, the
preparation of a second polyheterocycle also from the chemical scaffold 17 consisted of the
annulation reaction between 17 and dicyandiamide (20) via a [3+2] cycloaddition assisted
by microwave radiation. Thus, the reaction was carried out using DMSO as solvent and
KOH as catalyst, according to the methodology reported by Fang and co-workers [26]. For
the first attempt at 100 ◦C, the reaction did not proceed, so, the temperature was increased
to 125 ◦C, and 150 ◦C but, in both cases only traces of the product 21 were detected. It is
worth mentioning that from 150 ◦C, the DMSO decomposes into methane, sulfur dioxide,
and other volatile substances [27,28]. The reaction was repeated, replacing the DMSO by
2-methoxyethan-1-ol at 150 ◦C again, but this time the desired product 21 was obtained in
65% yield, Scheme 2 (see Table S5 in the Supplementary Material for further details).

Although there are some reports about the synthesis of triazines from nitriles and
dicyandiamide via [4+2] cycloadditions, to our best knowledge, there is no proposals of
mechanisms. Thus, in Scheme 3, a plausible reaction mechanism is proposed. Dicyandi-
amide (20) exists in different canonic forms, with its zwitterionic form 20D the one that
carries out the intermolecular [4+2] cycloaddition, leading to the formation of the six-
membered polyheterocycle 22. This intermediate subsequently undergoes a base-assisted
aromatization to get finally the 2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one 21,
after recovering a H-atom from water. It is noteworthy that despite Scheme 3 suggesting a
synchronous one step mechanism between 20D and 17, in fact the [4+2] cycloadditions can
occur stepwise, even by non-polar [29], or polar [30] mechanisms. As a matter of fact, all
kind of Diels–Alder cycloadditions, and, in general click reactions, remain controversial
mainly due to their various possible reaction mechanisms. In this way, theoretical and
experimental studies behind reaction mechanisms will be worthy of research.
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Scheme 2. General scheme of synthesis.

Having the optimal conditions for the step-by-step synthesis of compounds 12, 14,
17 and 21, and with the idea of evaluating the robustness of this methodology from the
one pot chemistry approach, the synthesis of the final compound 21 was carried out via a
domino process coupling in sequential manner the Ugi-Zhu reaction with the N-acylation,
decarboxylation, dehydration, and the [4+2] cycloaddition, yielding 19%. Of course, this
yield seems to be low, but it is not true at all considering the high number of formed bonds,
the atom economy (89%), and that only a couple of water molecules and one carbon dioxide
were released in the entire domino process (Scheme 4). In addition, only one work up and
purification process was needed. In the same way, only one solvent shift was performed,
but by evaporation/addition, the reaction mixture was maintained in the same MW-sealed
reaction tube.
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3. Materials and Methods
3.1. General Information, Instrumentation, Software and Chemicals

1H and 13C nuclear magnetic resonance (NMR) spectra were acquired on a Bruker
AMX Advance III spectrometer (500 MHz, Fällande, Uster, Switzerland). The solvents
used for NMR experiments were deuterated chloroform (CDCl3) and deuterated dimethyl
sulfoxide (DMSO-d6). Chemical shifts are reported in parts per million (d/ppm). Cou-
pling constants are reported in Hertz (J/Hz). The internal reference for NMR spectra was
tetramethyl silane (TMS) at 0.00 ppm. Multiplicities of the signals are reported using the
standard abbreviations: singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m).
NMR spectra were analyzed using the MestReNova software Ver. 12.0.0-20080 (A Coruña,
Spain). The infrared (IR) spectrum was acquired on a Perkin-Elmer 2000 spectrometer
(Norwalk, CT, USA) using the attenuated total reflectance (ATR) method. The maximum
absorbance peaks are reported in reciprocal centimeters (νmax/cm−1), uncorrected. The IR
spectrum was analyzed using the Origin software (Ver. 2018b, 9.55, OriginLab Corporations,
Northampton, MA, USA). The high-resolution mass spectroscopy (HRMS) spectrum was
acquired by electrospray ionization (ESI) on a Micro-TOF II spectrometer Bruker Daltonics
GmbH (Bremen, Germany). The sample was injected directly (Apollo source) and analyzed
by the time-of-flight method (TOF). The HRMS spectrum was analyzed using the Compass
software (Ver. 1.5, Bruker Daltonik GmbH, Bremen, Germany). Microwave-assisted reac-
tions were performed in closed-vessel mode on a CEM Discover SP MW-reactor (Matthews,
North Carolina, CA, USA). Reaction progress was monitored by thin-layer chromatogra-
phy (TLC), and the spots were visualized under ultraviolet (UV) light (254 or 365 nm).
Glass preparative plates (20 × 20 cm) coated with silica-gel 60 doped with UV indicator
(F254) were used to purify the products. All starting reagents and solvents were used as
received (without further purification, distillation, or dehydration). Chemical structures
were drawn using the ChemDraw software (Ver. 15.0.0.106 Professional, Perkin Elmer Infor-
matics, Cambridge, MA, USA). The purity of all synthesized products (>96%) was assessed
by NMR.

3.2. Synthesis of 4-(((Benzo[d] [1,3]dioxol-5-ylmethyl)imino)methyl)imino)methyl)benzonitrile 12

The 4-formylbenzonitrile (1.0 mmol, 1.0 equiv.), 1,3-benzodioxole-5-methylamine
(1.0 mmol, 1.0 equiv.) and sodium sulfate anhydrous (1.0 mmol, 1.0 equiv.) were placed in
a sealed CEM Discover microware reaction tube (10 mL) and diluted in anhydrous toluene
(1.5 mL). The mixture was stirred and heated using microwave irradiation (90 ◦C, 150 W)
for 30 min. Subsequently, the reaction mixture was filtered, and the resulting solid was
washed with 15 mL of dichloromethane and 15 mL of acetone; then, it was dried under
high vacuum, obtaining (237.86 mg, 90% yield) of a light yellow solid, Rf = 0.04 (EtOAc);
1H NMR (500 MHz, CDCl3): δ 8.37 (s, 1H, H-12), 7.86 (d, 2H, H-17, H-15, J = 8.0 Hz), 7.69
(d, 2H, H-18, H-14, J = 8.0 Hz), 6.84–6.76 (m, 3H, H-6, H-7, H-9), 5.94 (s, 2H, H-2), 4.76 (s,
2H, H-10) ppm; 13C NMR (125 MHz, CDCl3): δ 159.6 (C-12), 147.8 (C-4), 146.8 (C-5), 139.9
(C-13), 132.4 (C-15, C-17), 132.3 (C-8), 128.6 (C-14, C-18), 121.4 (C-7), 118.4 (C-19), 114.0
(C-16), 108.6 (C-6), 108.3 (C-9), 101.0 (C-2), 64.8 (C-10) ppm; HRMS: (ESI+) m/z calcd. for
[M − H]+ C16H13N2O2

+ 265.0972, found 265.0968 (error = 1.3 ppm); FT-IR (ν, cm−1): 2835
(aryl H), 2242 (C≡N), 1480, 1442 (C=N), 1362, 1244 (C=C), 1179 (C–O), 1034, 916, 839 (C–C).

3.3. Synthesis of 4-(((Benzo[d][1,3]dioxol-5-ylmethyl)amino)(4-benzyl-5-morpholinooxazol-2-yl)methyl)
benzonitile 14

The 4-formylbenzonitrile (1.0 mmol, 1.0 equiv.), 1,3-benzodioxole-5-methylamine
(1.0 mmol, 1.0 equiv.) and sodium sulfate anhydrous (1.0 mmol, 1.0 equiv.) were placed
in a sealed CEM Discover microware reaction tube (10 mL) and diluted in anhydrous toluene
(1.5 mL). The mixture was stirred and heated using microwave irradiation (90 ◦C, 150 W) for
30 min, and ytterbium (III) triflate (0.08 equiv.) was added. The mixture was stirred and heated
using microwave irradiation (60 ◦C, 60 W) for 5 min, and then 2-isocyano-1-morpholino-
3-phenylpropan-1-one (1.2 mmol, 1.2 equiv.) was added. The new mixture was stirred
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and again heated using microwave irradiation (70 ◦C, 150 W) for 25 min, time it took to
complete the reaction. Then, the solvent was evaporated under reduced pressure and the
reaction crude was diluted with ethyl acetate. A Na2CO3(aq.) (0.4 M) solution was added, and
liquid–liquid extractions were carried out three times. The organic phases were collected and
washed with brine three times (3 × 10 mL). The organic phase was dried with anhydrous
MgSO4 and concentrated to dryness under vacuum. The resulting crude was purified by
column chromatography using a mixture of hexanes: ethyl acetate 3:1 (v/v) as eluent to
obtain a slightly yellowish oil (457.72 mg, 90% yield), Rf = 0.36 (Hex-EtOAc = 3:2 v/v);
1H NMR (500 MHz, CDCl3): δ 7.62 (d, 2H, H-33, H-35, J = 8.6 Hz), 7.54 (d, 2H, H-32, H-36,
J = 8.6 Hz), 7.29–7.25 (m, 2H, H-27, H-29), 7.23–7.17 (m, 3H, H-28, H-26, H-30), 6.80 (dd,
1H, H-16, J = 1.7, 0.5 Hz), 6.71 (dd, 1H, H-22, J = 7.9, 0.5 Hz), 6.67 (dd, 1H, H-23, J = 7.9,
1.7 Hz), 5.91 (s, 2H, H-19), 4.88 (s, 1H, H-12), 3.81 (s, 1H, H-24), 3.70–3.67 (m, 4H, H-2, H-6),
3.65–3.61 (m, 2H, H-14), 2.92–2.89 (m, 4H, H-3, H-5) ppm; 13C NMR (125 MHz, CDCl3):
δ 157.5 (C-9), 152.3 (C-7), 147.7 (C-17), 146.7 (C-21), 144.6 (C-31), 139.2 (C-25), 132.9 (C-15),
132.3 (C-33, C-35), 128.3 (C-26, C-30, C-27, C-29, C-32, C-36), 126.1 (C-28), 124.7 (C-37),
121.4 (C-22), 188.5 (C-11), 111.7 (C-31), 108.7 (C-16), 108.0 (C-23), 100.8 (C-19), 66.6 (C-2,
C-6), 59.4 (C-12), 51.2 (C-14), 50.8 (C-3, C-5), 31.7 (C-24) ppm; HRMS: (ESI+) m/z calcd.
for [M − H]+ C30H29N4O4

+ 509.2183, found 509.2188 (error = 1.0 ppm); IR (ν, cm−1): 3324
(aryl H), 2958, 2892, 2854 (C–H), 1630, 1607 (N–H), 2227 (C≡N), 1441 (C=N), 1374, 1298
(C=C), 1120 (C–O–C), 1032, 992, 920, 799, 732 (C–C).

3.4. Synthesis One Pot of 4-(6-(Benzo[d][1,3]dioxol-5-ylmethyl)-2-benzyl-3-morpholino-5-oxo-6,7-
dihydro-5H-pyrrolo[3,4-b]pyridin-7-yl)benzonitrile 17

General Procedure (GP): 4-formylbenzonitrile (1.0 mmol, 1.0 equiv.), 1,3-benzodioxole-
5-methylamine (1.0 mmol, 1.0 equiv.) and sodium sulfate anhydrous (1.0 mmol, 1.0 equiv.)
were placed in a sealed CEM Discover microwave reaction tube (10 mL) and diluted in
anhydrous toluene (1.5 mL). The mixture was stirred and heated using microwave irradi-
ation (90 ◦C, 150 W) for 30 min, and ytterbium (III) triflate (0.08 equiv.) was added. The
mixture was stirred and heated using microwave irradiation (60 ◦C, 60 W) for 5 min, and
then 2-isocyano-1-morpholino-3-phenylpropan-1-one (1.2 mmol, 1.2 equiv.) was added. The
new mixture was stirred and again heated using microwave irradiation (70 ◦C, 150 W) for
25 min, and then maleic anhydride (1.3 mmol, 1.0 equiv.) was added. Finally, the reaction
mixture was stirred and heated using microwave irradiation (80 ◦C, 150 W) for 20 min.
Then, the solvent was removed to dryness under vacuum. The crude was extracted using
ethyl acetate (3 × 10.0 mL) and Na2CO3(aq.) (3 × 10.0 mL), and then washed with brine
(3 × 10 mL). The organic layer was dried using anhydrous MgSO4, filtered, and con-
centrated to dryness under vacuum. The new crude was purified by silica-gel column
chromatography using mixtures of hexanes (Hex) and ethyl acetate (EtOAc) in 4:1 to
3:2 (v/v) proportions as mobile phase to isolate the corresponding pyrrolo[3,4-b]pyridin-
5-one-7-yl benzonitrile (490.15 mg, 90% yield) as yellow oil, Rf = 0.30 (Hex-EtOAc = 3:2 v/v);
1H NMR (500 MHz, CDCl3): δ 7.90 (s, 1H, H-15), 7.67–7.64 (m, 2H, H-25, H-27),
7.28–7.25 (m, 2H, H-24, H-28), 7.18–7.10 (m, 5H, H-18, H-22), 6.70 (dd, 1H, H-37, J = 7.9,
0.4 Hz), 6.67 (d, 1H, H-31, J = 1.7 Hz), 6.57 (dd, 1H, H-38, J = 7.9, 1.7 Hz), 5.92 (d, 1H, H-34,
J = 1.4 Hz), 5.91 (d, 1H, H-34’, J = 1.4 Hz), 5.33 (d, 1H, H-29, J = 14.5 Hz), 5.29 (s, 1H,
H-11), 4.26 (d, 1H, H-16, J = 14.0 Hz), 4.15 (d, 1H, H-16’, J = 14.0 Hz), 3.81 (t, 4H, H-2, H-6,
J = 4.6 Hz), 3.73 (d, 1H, H-29’, J = 4.6 Hz), 2.87–2.80 (m, 4H, H-3, H-5) ppm; 13C NMR
(125 MHz, CDCl3): δ 167.0 (C-13), 162.3 (C-8), 159.2 (C-10), 148.2 (C-7), 148.1 (C-32), 147.3
(C-36), 141.1 (C-23), 139.0 (C-17), 132.7 (C-25, C-27), 130.0 (C-30), 128.7 (C-18, C-22), 128.6
(C-24, C-28), 128.2 (C-19, C-21), 126.2 (C-20), 123.9 (C-15), 123.5 (C-14), 121.8 (C-38), 118.3
(C-40), 112.5 (C-26), 108.7 (C-31), 108.3 (C-37), 101.2 (C-34), 67.0 (C-2, C-6), 63.7 (C-11),
53.0 (C-3, C-5), 44.0 (C-29), 39.9 (C-16) ppm; HRMS: (ESI+) m/z calcd. for [M − H]+

C33H29N4O4
+ 545.2183, found 545.2192 (error = 1.6 ppm); IR (ν, cm−1): 3419 (aryl H), 3005, 2968

(C–H), 1710 (C=O, ketone), 1490 (C=N), 1441 (C=C), 1416 (C–O–C), 1361, 1220, 1117, 1034,
905 (C–C).
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3.5. Synthesis of 7-(4-(1H-Tetrazol-5-yl)phenyl)-6-(benzo[d][1,3]dioxol-5-ylmethyl)-2-benzyl-3-
morpholino-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one 19

According to the GP, compound 17 was synthesized, and once the reaction was
finished, the solvent was evaporated to dryness, and the crude was transferred to a Pyrex
pressure tube (5 mL), sodium azide (1.5 mmol, 1.5 equiv.) and zinc bromide (2.0 mmol,
2.0 equiv.) were added. The mixture was dissolved in 1.5 mL of H2O and 1.5 mL of
isopropyl alcohol, and then the mixture of reaction was heated in an oil bath at 120 ◦C for
40 hours. Subsequently, the reaction mixture was allowed to cool to room temperature,
and a mixture 1:1 v/v of hexanes with ethyl acetate was added at 0 ◦C, stirred for 10 min,
and then filtered and washed with hot water and hot ethyl acetate. The resulting solid
was dried under high vacuum overnight, obtaining 264.44 mg of a light brown solid (45%
yield); mp > 250 ◦C; 1H NMR (500 MHz, DMSO-d6): δ 7.96 (d, 2H, H-25, H-27, J = 7.9 Hz),
7.92 (s, 1H, H-15), 7.16 (d, 2H, H-24, H-28, J = 7.9 Hz), 7.14–7.05 (m, 5H, H-18, H-22), 6.79
(d, 1H, H-37, J = 7.9 Hz), 6.72 (d, 1H, H-31, J = 1.7 Hz), 6.62–6.60 (m, 1H, H-38), 5.95 (d,
1H, H-34, J = 1.0 Hz), 5.93 (d, 1H, H-34’, J = 1.0 Hz), 5.44 (s, 1H, H-11), 5.00 (d, 1H, H-29,
J = 15.1 Hz), 4.28 (d, 1H, H-16, J = 14.2 Hz), 4.06 (d, 1H, H-16’, J = 14.2 Hz), 3.76 (d, 1H,
H-29’, J = 15.1 Hz), 3.72–3.66 (m, 4H, H-2, H-6), 2.89–2.76 (m, 4H, H-3, H-5) ppm; 13C NMR
(125 MHz, DMSO-d6): δ 166.5 (C-13), 161.7 (C-8), 160.2 (C-10), 148.1 (C-7), 147.9 (C-32),
146.9 (C-36), 139.7 (C-17), 136.5 (C-26), 131.1 (C-30), 130.1 (C-40), 129.0 (C-18, C-22), 128.7
(C-24, C-28), 128.5 (C-19, C-21), 127.5 (C-25, C-27), 126.3 (C-20), 124.0 (C-15), 123.8 (C-14),
121.7 (C-38), 108.7 (C-31), 108.6 (C-37), 101.3 (C-34), 66.8 (C-2, C-6), 64.1 (C-11), 52.8 (C-3,
C-5), 43.7 (C-29), 40.4 (C-16) ppm; HRMS: (ESI+) m/z calcd. for [M − H]+ C33H30N7O4

+

588.2354, found 588.2348 (error = 1.0 ppm); IR ( ν, cm−1): 2973, 2867 (C–H), 2368, 2187, 2156,
2090 (C=N), 1993, 1922, 1741 (C=C), 1701 (C=O, ketone), 1599, 1493, 1445, 1397, 1365 (C=N),
1290, 1246, 1220 (C–O–C), 1158, 1114, 1034, 1013, 915, 862, 796, 787, 729, 703, 650, 623 (C–C).

3.6. Synthesis of 6-(Benzo[d][1,3]dioxol-5-ylmethyl)-2-benzyl-7-(4-(4,6-diamino-1,3,5-triazin-2-
yl)phenyl)-3-morpholino-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-one 21

According to the GP, compound 17 was synthesized, and once the reaction was
finished, the solvent was evaporated to dryness, and to the crude, 1.5 mL of 2-methoxyethan-
1-ol, dicyandiamide (1.2 mmol, 1.2 equiv.), and potassium hydroxide (0.008 mmol, 0.0008
equiv.) were added. The mixture was stirred and heated using microwave irradiation (150 ◦C,
250 W) for 90 min. Subsequently, the reaction mixture was allowed to cool to room temperature.
Then, hot water was stirred for 10 min, and then filtered and washed with hot water and
hot ethyl acetate. The resulting solid was dried under a high vacuum overnight, obtaining
408.65 mg of a yellow solid (65% yield); mp > 250 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.28 (d,
2H, H-25, H-27, J = 8.6 Hz), 7.92 (s, 1H, H-11), 7.20 (d, 2H, H-24, H-28, J = 8.6 Hz), 7.15–7.09 (m,
5H, H-18, H-22), 6.70 (d, 1H, H-37, J = 7.9 Hz), 6.69 ( d, 1H, H-31, J = 1.7 Hz), 6.59 (dd, 1H, H-38,
J = 7.8, 1.7 Hz), 5.92 (d, 1H, H-34, J = 1.4 Hz), 5.91 (d, 1H, H-34’, J = 1.4 Hz), 5.47 (bs, 4H, H-46,
H-47), 5.33 (d, 1H, H-29, J = 14.8 Hz), 5.30 (s, 1H, H-11), 4.80 (d, 1H, H-16, J = 13.9 Hz), 4.12 (d,
1H, H-16’, J = 13.9 Hz), 3.81–3.77 (m, 4H, H-2, H-6), 3.66 (d, 1H, H-29’, J = 14.8 Hz), 2.86–2.77 (m,
4H, H-3, H-5) ppm; 13C NMR (125 MHz, CDCl3): δ 171.8 (C-40), 167.6 (C-42, C-44), 167.0 (C-13),
162.2 (C-8), 160.2 (C-10), 148.0 (C-17), 147.9 (C-32), 147.2 (C-36), 139.2 (C-7), 138.9 (C-23), 137.0
(C-26), 130.4 (C-30), 129.0 (C-25, C-27), 128.7 (C-18, C-22), 128.2 (C-24, C-28), 128.0 (C-19, C-21),
126.1 (C-20), 124.0 (C-15), 123.8 (C-14), 121.9 (C-38), 108.9 (C-37), 108.3 (C-31), 101.1 (C-34), 67.1
(C-2, C-6), 64.1 (C-11), 53.0 (C-3, C-5), 43.7 (C-29), 40.0 (C-16) ppm; HRMS: (ESI+) m/z calcd. for
[M − H]+ C35H33N8O4

+ 629.2619, found 629.2647 (error = 4.4 ppm); IR (ν, cm−1): 3419 (aryl H),
3009, 2964 (C–H), 1715 (C=O, ketone), 1609, 1542 (N–H, secondary amine), 1485, 1440 (C=N),
1419, 1357 (C=C), 1220 (C–O–C), 1096, 1046, 902, 818, 778, 695.

4. Conclusions

A couple of new polyheterocycles were synthesized via synthetic strategies that in-
volve combinations of MCRs with cascade processes and click reactions. Such target
compounds were designed and synthesized using 4-formylbenzonitrile as a pivotal bi-
functionalized orthogonal reagent. The syntheses were accomplished with good chem-



Molecules 2023, 28, 4087 10 of 11

ical yields, high atom economy, and outstanding structural complexity both stepwise
and in one pot manner. It is worth highlighting the utility of the Ugi-Zhu reaction as
a structural generation tool, in turn allowing the control over several points of diver-
sity: varying the functional groups (appendage diversity), and the generation of different
molecular skeletons (diversity skeletal) through post-functionalization processes. In line
with the diversity-oriented synthesis (DOS) approach, both polyheterocyclic compounds
correspond to a reagent-based approach because the new, structurally diverse polyhete-
rocycles were synthesized from common scaffolds, first the 5-aminooxazole and then the
pyrrolo[3,4-b]pyridin-5-one.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28104087/s1. Synthesis of the imine 12 (Table S1). Characteriza-
tion of the imine 12 (Figures S1–S4). Synthesis of the 5-aminooxazole 14 (Table S2). Characterization
of the 5-aminooxazole 14 (Figures S5–S8). Synthesis of the cyano-pyrrolo[3,4-b]pyridin-5-one 17
(Table S3). Characterization of the cyano-pyrrolo[3,4-b]pyridin-5-one 17 (Figures S9–S12). Synthesis of
the tetrazolyl-pyrrolo[3,4-b]pyridin-5-one 19 (Table S4). Characterization of the tetrazolyl-pyrrolo[3,4-
b]pyridin-5-one 19 (Figures S13–S22). Synthesis of the triazine-pyrrolo[3,4-b]pyridin-5-one 21 (Table S5).
Characterization of the triazine-pyrrolo[3,4-b]pyridin-5-one 21 (Figures S23–S32).
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