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Abstract: Graphene oxide is a promising nanomaterial with many potential applications. However,
before it can be widely used in areas such as drug delivery and medical diagnostics, its influence on
various cell populations in the human body must be studied to ensure its safety. We investigated
the interaction of graphene oxide (GO) nanoparticles with human mesenchymal stem cells (hMSCs)
in the Cell-IQ system, evaluating cell viability, mobility, and growth rate. GO nanoparticles of
different sizes coated with linear or branched polyethylene glycol (P or bP, respectively) were used at
concentrations of 5 and 25 µg/mL. Designations were the following: P-GOs (Ø 184± 73 nm), bP-GOs
(Ø 287 ± 52 nm), P-GOb (Ø 569 ± 14 nm), and bP-GOb (Ø 1376 ± 48 nm). After incubating the
cells with all types of nanoparticles for 24 h, the internalization of the nanoparticles by the cells was
observed. We found that all GO nanoparticles used in this study exerted a cytotoxic effect on hMSCs
when used at a high concentration (25 µg/mL), whereas at a low concentration (5 µg/mL) a cytotoxic
effect was observed only for bP-GOb particles. We also found that P-GOs particles decreased cell
mobility at a concentration of 25 µg/mL, whereas bP-GOb particles increased it. Larger particles (P-
GOb and bP-GOb) increased the rate of movement of hMSCs regardless of concentration. There were
no statistically significant differences in the growth rate of cells compared with the control group.

Keywords: graphene oxide nanoparticles; human mesenchymal stem cells; PEG; cell viability; cell
growth; Cell-IQ; flow cytometry

1. Introduction

Graphene is a gapless semiconductor that is currently being actively used in micro-
electronics and materials science [1–3] for various applications including the development
of narrow-band electromagnetic absorbers [4] and metamaterials [5]. Due to the complexity
of scalable production, its functional derivatives are more suitable for some applications.
For example, graphene oxide (GO) offers a favorable alternative for use in biomedicine and
optoelectronics due to its ease of fabrication, water solubility, and optical properties [6–9].
The graphene surface in GO is derivatized with epoxy, hydroxyl, and carboxyl groups,
which enable it to form hydrogen bond-stabilized water suspensions [10–12]. In addi-
tion, GO has a large surface area available for functionalization and excellent mechanical
properties [13,14], which make it attractive overall for electronics (LEDs and solar cells), tis-
sue engineering, and drug delivery [15–18]. GO can be used as a basis for nanoscale sensors
that detect small molecules such as NO2 [19], proteins [20], influenza virus strains [21], and
DNA strains [22]. It can also be used in pH measurement based on fluorescence to detect
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the microenvironment of tumors [23]. GO is effectively internalized by cells and shows
stable fluorescence emission within cells as well as low cytotoxicity at the concentrations
used for visualization [24,25]. This makes GO a potential candidate for drug delivery and
in vitro or ex vivo visualization that can be used to detect and treat cancer [26]. However,
in order for such applications of GO to become widely adopted, a solid understanding of
the distribution of GO nanoparticles in vivo is required as well as knowledge of how it
might interact with cells of different tissues.

Human mesenchymal stem cells (hMSCs), also known as multipotent mesenchymal
stromal cells [27], are undifferentiated cells with the ability to self-renew and differentiate
into various mesenchymal tissues, mainly bone, cartilage, and adipose tissue. According to
the International Society for Cell Therapy, cells that possess the following characteristics
can be considered human multipotent mesenchymal stromal cells [27]:

- Adhere to plastic;
- Differentiate in vitro into osteoblasts, adipocytes, and chondroblasts;
- Express CD105, CD90, CD73, CD44, and HLA-DR;
- Lack CD45, CD34, CD14, CD11b, CD79, and CD19.

Mesenchymal stem cells were first isolated from bone marrow in 1968. Since then, they
have been isolated from many other tissues, including adipose tissue [28], perivascular
networks [29], dental pulp [30], muscle, dermis, and embryonic tissue [31]. MSCs derived
from bone marrow and adipose tissue are widely used in regenerative medicine [32]. It
has been reported that drug-loaded hMSCs can deliver therapeutic cytokines to sites of
injury or inflammation, making them a potentially useful tool in regenerative medicine
and anti-tumor therapy [33]. Thus, hMSCs are attractive candidates for use as carriers of
therapeutic agents and bioactive materials to specific target sites.

Cell-IQ® (CM -Technologies, Tampere, Finland) is a fully automated system for contin-
uous in vitro cell imaging [34]. It includes an inverted phase contrast microscope with a
built-in video camera and a climate chamber that maintains a constant temperature (37 ◦C)
and CO2 concentration (5%). Inside the climate chamber is a movable stand for a cell
culture plate. Every 30 min, the system takes photographs in predetermined areas of the
plate. The integrated software allows tracking of individual cells, including changes in
their morphology and movement. The aim of this study was to investigate the interaction
between GO nanoparticles and hMSCs with the Cell-IQ® system.

2. Results
2.1. Determination of the Relative Numbers of Live and Dead Cells after 24-h Incubation with
GO Nanoparticles

Data on the number of live, apoptotic, and dead cells after 24-h incubation with GO
nanoparticles, as determined by flow cytometry analysis, are shown in Figure 1. Cultivation
of human mesenchymal stem cells in the presence of graphene oxide nanoparticles of types
P-GOs, bP-GOs, and P-GOb at a concentration of 5 µg/mL did not result in a statistically
significant decrease in the number of viable cells compared with the control group. The
number of viable cells in these groups, as in the control group, was approximately 90%,
which corresponds to the viability of the cells before the start of the experiment. At the
same time, incubation of cells with these types of nanoparticles at a higher concentration
of 25 µg/mL significantly decreased the relative number of viable cells. A decrease in the
number of living cells correlated with an increase in the number of both dead and apoptotic
cells, with a greater increase in the number of dead cells in all cases. The ratio between
the number of dead cells and the number of apoptotic cells (D/A) in these samples was
1.74 ± 0.17, whereas in the control group D/A = 1.1.
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Figure 1. Comparison of the number of viable (A), apoptotic (B), and dead (C) cells after 24 h of 
cultivation in the presence of different types of GO nanoparticles (median, 1st and 3rd quartiles are 
shown). n = 2. Significant differences compared with control group (<0.05) are marked with *. 

The greatest cytotoxicity among the samples studied was exerted by the bP-GOb na-
noparticles. In this sample, cell viability decreased significantly after 24 h of cultivation, 
regardless of the concentration of nanoparticles used. Interestingly, the low concentration 
of bP-GOb resulted mainly in an increase in the number of dead cells (D/A = 2.54), whereas 
at a high concentration the loss of cell viability was mainly due to an increase in the num-
ber of apoptotic cells (D/A = 0.39). 

Thus, it was shown that all particles studied had a cytotoxic effect on human mesen-
chymal stem cells at high concentrations. At low concentrations, the cytotoxic effect was 
observed only for bP-GOb particles. In all cases, there is a decrease in viability, mainly 
due to an increase in the number of dead cells. A decrease in viability due to the predom-
inant increase in the number of apoptotic cells was observed only for the bP-GOb sample 
at high concentration. 

2.2. Evaluation of Particle Internalization by Cells 
After a 24-h incubation of cells with all samples of GO nanoparticles (except P-GOs 

at high concentration and bP-GOs at low concentration), a statistically significant increase 
in the number of highly granular cells was observed compared with the control group 
(Figure 2). This fact might indicate that either adhesion of the particles to the cell surface 
or their internalization occurs. We did not find any correlation between the concentration 
of particles and the percentage of high-granular cells, which may be due to several rea-
sons. For example, particles that were weakly adsorbed on the cell surface might be lost 
during washing before flow cytometric analysis. In addition, we cannot exclude the influ-
ence of the physiological state of the cells (transition to apoptosis, death) on the granular-
ity. 

Figure 1. Comparison of the number of viable (A), apoptotic (B), and dead (C) cells after 24 h of
cultivation in the presence of different types of GO nanoparticles (median, 1st and 3rd quartiles are
shown). n = 2. Significant differences compared with control group (<0.05) are marked with *.

The greatest cytotoxicity among the samples studied was exerted by the bP-GOb
nanoparticles. In this sample, cell viability decreased significantly after 24 h of cultivation,
regardless of the concentration of nanoparticles used. Interestingly, the low concentration
of bP-GOb resulted mainly in an increase in the number of dead cells (D/A = 2.54), whereas
at a high concentration the loss of cell viability was mainly due to an increase in the number
of apoptotic cells (D/A = 0.39).

Thus, it was shown that all particles studied had a cytotoxic effect on human mes-
enchymal stem cells at high concentrations. At low concentrations, the cytotoxic effect was
observed only for bP-GOb particles. In all cases, there is a decrease in viability, mainly due
to an increase in the number of dead cells. A decrease in viability due to the predominant
increase in the number of apoptotic cells was observed only for the bP-GOb sample at
high concentration.

2.2. Evaluation of Particle Internalization by Cells

After a 24-h incubation of cells with all samples of GO nanoparticles (except P-GOs at
high concentration and bP-GOs at low concentration), a statistically significant increase
in the number of highly granular cells was observed compared with the control group
(Figure 2). This fact might indicate that either adhesion of the particles to the cell surface or
their internalization occurs. We did not find any correlation between the concentration of
particles and the percentage of high-granular cells, which may be due to several reasons.
For example, particles that were weakly adsorbed on the cell surface might be lost during
washing before flow cytometric analysis. In addition, we cannot exclude the influence of
the physiological state of the cells (transition to apoptosis, death) on the granularity.
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2.3. Evaluation of Cell Growth and Migration Activity in the Cell-IQ System 
A total of 188 images were acquired for each well of the cell culture plate (47 images 

for each area of visualization) (Figure 3). Adhesion of particles on the cells is clearly visible 
in these images (Videos S1–S9). This is particularly noticeable in wells with high concen-
trations of samples. In addition, 24 h after the start of cultivation, areas without nanopar-
ticles can be seen on the images. These correspond to the trajectories of hMSC movement 
as the cells have adhered/internalized most of the particles they encountered along the 
way. 

 

Figure 2. Comparison of the number of cells with high granularity after 24 h of co-cultivation with
samples from GO (median is shown). n = 2. Significant differences compared with the control group
(p < 0.05) are marked with *.

2.3. Evaluation of Cell Growth and Migration Activity in the Cell-IQ System

A total of 188 images were acquired for each well of the cell culture plate (47 images
for each area of visualization) (Figure 3). Adhesion of particles on the cells is clearly
visible in these images (Videos S1–S9). This is particularly noticeable in wells with high
concentrations of samples. In addition, 24 h after the start of cultivation, areas without
nanoparticles can be seen on the images. These correspond to the trajectories of hMSC
movement as the cells have adhered/internalized most of the particles they encountered
along the way.
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To assess the change in the number of cells in the visualization areas, the cells in every
other image were counted. A pivot table was created based on the data obtained (Table S1).
There were no statistically significant differences in either the increase in cell number after
one day of cultivation or in the value of the K1 coefficient compared with the control group
(Figure 4). In the evaluation of cell activity (K2), a statistically significant decrease in the
activity of the cells cultured with the P-GOs sample at high concentration was observed
compared to the control group. The opposite was true for the bP-GOb sample. At the
minimum concentration, it apparently enhanced cell activity, resulting in a statistically
significant increase in K2 levels compared to the control group. No statistically significant
differences were found in the other samples compared to the control group. In general,
it appears that low concentrations of GO nanoparticles contributed to an increase in cell
activity, while high concentrations, on the contrary, had an inhibitory effect.
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Figure 4. Comparison of (A) cell growth after 24 h of cultivation (mean and 95% confidence intervals
shown); (B) change in cell number—K1 (median, 1st and 3rd quartiles shown). n = 12; (C) cell
activity—K2 (median, 1st and 3rd quartiles shown). n = 12. Significant differences compared with
control group (p < 0.05) are marked with *.

In addition, the velocity of cell movement was evaluated (Figure 5). An increase
in the speed of cell movement was observed for all samples and concentrations studied
compared to the control group, while this was statistically significant only for the P-GOb
and bP-GOb samples.

To assess the effect of the samples on the functional properties of the hMSCs, the
change in cell activity (K2) was evaluated. It can be seen that the concentration of the
nanoparticles has a significant effect on the K2 value. The average K2 value for areas of
visualization containing samples at a concentration of 25 µg/mL is lower than that of
the control group, whereas it is higher for areas containing samples at a concentration of
5 µg/mL. Visually, it was observed that isolated cells moved farther and faster, while they
slowed down when they were near other cells.

Overall, it was found that a high concentration of P-GOs particles statistically signifi-
cantly reduced the value of the K2 coefficient, while high concentrations of bP-GOs particles
increased K2. A statistically significant effect of other particle types on the K2 coefficient
was not observed, but an upward trend for the K2 value can be seen for the samples in
the following series: P-GOs → bP-GOs → P-GOb → bP-GOb (Figure 4). Moreover, a
statistically significant increase in the speed of cell movement was observed for P-GOb and
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bP-GOb type particles at both concentrations, while no change in cell speed was registered
for P-GOs and bP-GOs particles compared to the control.
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3. Discussion

For all samples studied, the adhesion/internalization of GO nanoparticles by the cells
was visually observed in the images captured by the Cell-IQ system. This observation is
confirmed by the number of highly granular cells determined by flow cytometry.

GO nanoparticles of the P-GOs, bP-GOs, and P-GOb types at a concentration of
5 µg/mL show a low level of cytotoxicity during short-term incubation with human
mesenchymal cells, as there are no significant differences in the relative numbers of live
and dead cells between the experimental and control groups. A high concentration of
graphene oxide nanoparticles during short-term incubation results in a significant decrease
in the number of live cells compared to the control group for all types of nanoparticles
used in this study. Graphene oxide nanoparticles of the bP-GOb type have the most
significant negative effect on the viability of human mesenchymal stem cells during short-
term cultivation by significantly reducing the relative number of living cells, regardless of
the concentration used.

Multiple mechanisms of cytotoxicity of GO nanoparticles have been described by other
authors. The main mechanisms include interaction of cells with extremely sharp graphene
edges [35], generation of reactive oxygen species (ROS) [36], and trapping of cells within
aggregates of GO nanosheets [37]. In this study the mechanisms behind cytotoxicity of
GO nanoparticles were not investigated and we possess no data regarding ROS generation
or levels of oxidative stress the cells experienced. However, it is certain that the coating
of GO nanoparticles by linear and especially branched PEG helped reduce the damage
cells sustained from contact with sharp edges of graphene. Moreover, aggregation of
nanoparticles on the cell surface was clearly seen by phase-contrast microscopy and may
have contributed to cytotoxicity.

The nanoparticles used in this study had no significant effect on the growth of hMSCs,
as reflected in both the K1 coefficient and the measurement of the final increase in cell
number. Cell activity (K2) decreased significantly compared with the control group when
cultivation was performed in the presence of a high-concentration P-GOs sample and



Molecules 2023, 28, 4148 7 of 15

increased when the concentration of the bP-GOs sample was low. Visually, a trend of
increasing cell activity with increasing particle size can be observed.

In previous studies on the effects of other types of nanoparticles on MSCs, it has been re-
peatedly shown that these cells are able to internalize small particles (up to 200 nm) [38–40].
However, previous studies have predominantly used spherical polymer or metal parti-
cles. There are far fewer studies investigating the effect of graphene nanoparticles and
their derivatives on MSCs. An important difference between graphene-based nanopar-
ticles and those mentioned above is the two-dimensional structure of graphene-based
materials, which provides a large surface area and the possibility of obtaining particles in
different shapes.

The shape of the particles and surface modifications play an important role in achiev-
ing low cytotoxicity. For example, reduced GO nanoribbons were shown to cause more
extensive DNA damage in hMSCs after a short incubation than nanosheets of similar
size [41]. In another study using nanoparticles of PEG-coated reduced GO, incubation of
cells for an extended period of time (up to 72 h) did not result in a significant decrease in
viability [42]. In this case, particles with a diameter of 1 µm were used at concentrations
of 5, 10, 50, and 100 µg/mL. The results obtained in our study are not consistent with
these data. This could be due to several reasons, including the use of PEG with different
lengths for nanoparticle coating. Syama et al. used PEG with a molecular weight of 1.9 kDa,
whereas our particles were coated with PEG which had a molecular weight of 5 kDa.

The uptake of 2.7 µm-sized capsules by MSCs has previously been associated with a
decrease in cell mobility [43]. The decrease in velocity was shown to be positively correlated
with the concentration of capsules in the medium during incubation. At the same time,
some studies have shown the ability of nanoparticles to accumulate in endosomes, leading
to a change in cellular metabolism, stimulation of cells, and an increase in their mobility [44].
In this study, it was shown that incubation of cells with P-GOb and bP-GOb samples
resulted in an increase in cell velocity, which may indicate that these particles have some
effect on cellular metabolism, although the mechanism of this effect is not clear at present.

In general, there are good prospects for the use of graphene nanoparticles and their
derivatives in diagnostics, therapy, and regenerative medicine. At the same time, the effect
of these particles on human stem cells is still insufficiently studied. We see the need for
further research in this area to gain a more comprehensive understanding of the parameters
that play a key role in the cyto- and genotoxicity of graphene-based nanoparticles with
respect to human stem cells. It is critical to know the consequences of short- or long-term
exposure of human tissues to these materials.

4. Materials and Methods

Obtaining a cell culture. To study the effect of GO nanoparticles, a culture of human
multipotent mesenchymal stem cells was obtained from a lipoaspirate at the Center for
Immunology and Cellular Biotechnology at Immanuel Kant Baltic Federal University.
The culture obtained met the minimum criteria set by the International Society for Cell
Therapy [22]. The cells were stored in liquid nitrogen. After removal from the cryobank,
the tube containing the frozen cell suspension was thawed in a water bath at 37 ◦C for
5 min. After thawing, the cells were washed with DMEM/F-12 containing 15 mM Hepes
(Sigma-Aldrich, Saint Louis, MO, USA) by centrifugation at 1500 rpm for 5 min. Then, cells
were transferred to T75 culture flasks (Eppendorf, Hamburg, Germany) and grown to 80%
in complete culture medium (CCM) based on αMEM base medium (Sigma-Aldrich, Saint
Louis, MO, USA) supplemented with 10% FBS (Sigma-Aldrich, Saint Louis, MO, USA),
100 U/mL penicillin, 100 µg/mL streptomycin (Thermo Fisher Scientific, Waltham, MA,
USA), and 2 mM L-glutamine (Sigma-Aldrich, Saint Louis, MO, USA).

Properties of graphene oxide nanoparticles. Graphene oxide nanoparticles with
sizes of 100–200 nm (GOs) and 1–5 µm (GOb) (“Ossila Ltd.”, Sheffield, UK) coated with
linear (P) and branched (bP) polyethylene glycol (PEG) were used. The procedures for
modification and characterization of nanoparticles have been previously described by the
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authors [45]. The following particles were used in the study: P-GOs (Ø 184 ± 73 nm),
bP-GOs (Ø 287 ± 52 nm), P-GOb (Ø 569 ± 14 nm), and bP-GOb (Ø 1376 ± 48 nm). The
information about the types of nanoparticles used in this study is summarized in Table 1.
Further information is available in [45] and Appendix B.

Table 1. Characteristics of GO nanoparticles.

Notation Diameter (nm) Coating

P-GOs 184 ± 73 Linear PEG
bP-GOs 287 ± 52 Branched PEG
P-GOb 569 ± 14 Linear PEG

bP-GOb 1376 ± 48 Branched PEG

Cultivation of cells for viability assessment. Cultivation was performed in CCM at
37 ◦C in a humidified atmosphere with 5% CO2. Cells were cultured in a 6-well plate with
5 mL CCM per well. Cell suspension was added to the wells to a final concentration of
1 ∗ 105 cells per well. In addition, a suspension of GO nanoparticles of each type (P-GOs,
bP-GOs, P-GOb, bP-GOb) was added to the wells at final concentrations of 5 and 25 µg/mL.
Each group was present in duplicate. Cells without the addition of GO nanoparticles were
used as negative controls. In addition, the cells with the addition of GO nanoparticles
of each type at the maximum concentration (1 well for each sample type) were used as a
null control.

Evaluation of cell culture viability. Analysis of cell viability before and after cultiva-
tion was performed by flow cytometry using MACS Quant FL7 (Miltenyi Biotec, Bergisch
Gladbach, Germany). Guava ViaCount dye (Millipore, Burlington, MA, USA) was used for
staining. This is a commercial reagent that combines an intercalating dye that selectively
penetrates the membrane of dead cells and a specific dye for surface receptors, allowing
accurate determination of the relative numbers of live, dead, and apoptotic cells.

Adherent culture of human mesenchymal stem cells was removed from the culture
flasks by enzymatic treatment. The flask was washed 3 times with Hanks solution (HBSS)
without magnesium and calcium (Capricorn Scientific, Ebsdorfergrund, Germany). Enzy-
matic treatment was performed with 3 mL of trypsin-EDTA solution (Sigma-Aldriche, Saint
Louis, MO, USA). The gating strategy for flow cytometry is shown in Figure 6. Before the
experiment, the viability of the cell culture was 90%. To compare the effect of the samples
on apoptosis and cell death, the ratio between the number of dead cells and the number of
apoptotic cells (D/A) was calculated.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. Gating strategy for human mesenchymal stem cells to assess the relative amounts of live, 
dead, and apoptotic cells. 

Evaluation of nanoparticle adhesion/internalization by cells. In addition to viabil-
ity, adhesion/internalization of particles by cells was also assessed. Cells that adhere/in-
ternalize GO nanoparticles became more granular, which increased the lateral scattering 
of light and could be detected by flow cytometry. To compare particle adhesion/internal-
ization between samples, a subpopulation of high-granularity cells was isolated in the cell 
gate and the percentage of high-granularity cells was compared to that of the control 
group. 

Cultivation of cells for assessment of their behavioral changes in the Cell-IQ sys-
tem. Cultivation was performed in CCM at 37 °C in a humidified atmosphere with 5% 
CO2 for 24 h. Cells were cultured in 24-well plates with 1 mL CCM per well. A suspension 
of cells was added to the wells of the cell culture plate at a concentration of 2 ∗ 104 cells 
per well. Then, a suspension of GO nanoparticles of each type was added to the wells to a 
final concentration of 5 and 25 µg/mL. Each group was present in triplicate. Cells cultured 
in CCM without addition of GO nanoparticles served as the control group. 

For each well of the cell culture plate, four areas were selected for visualization (Fig-
ure 7). Images of these areas were taken every 30 min. The acquired images were analyzed 
to assess the activity of the cells. To obtain a better visual representation of the events 
taking place in each visualization area, the images for each of these areas were combined 
into a video file (one file per area, Videos S1–S9). As a result of image processing, the 
dynamics of cell growth and migration activity of human mesenchymal stem cells was 
evaluated. 

 
Figure 7. Distribution of visualization areas in a single well. 

Figure 6. Gating strategy for human mesenchymal stem cells to assess the relative amounts of live,
dead, and apoptotic cells.



Molecules 2023, 28, 4148 9 of 15

Evaluation of nanoparticle adhesion/internalization by cells. In addition to via-
bility, adhesion/internalization of particles by cells was also assessed. Cells that ad-
here/internalize GO nanoparticles became more granular, which increased the lateral
scattering of light and could be detected by flow cytometry. To compare particle ad-
hesion/internalization between samples, a subpopulation of high-granularity cells was
isolated in the cell gate and the percentage of high-granularity cells was compared to that
of the control group.

Cultivation of cells for assessment of their behavioral changes in the Cell-IQ sys-
tem. Cultivation was performed in CCM at 37 ◦C in a humidified atmosphere with 5% CO2
for 24 h. Cells were cultured in 24-well plates with 1 mL CCM per well. A suspension of
cells was added to the wells of the cell culture plate at a concentration of 2 ∗ 104 cells per
well. Then, a suspension of GO nanoparticles of each type was added to the wells to a final
concentration of 5 and 25 µg/mL. Each group was present in triplicate. Cells cultured in
CCM without addition of GO nanoparticles served as the control group.

For each well of the cell culture plate, four areas were selected for visualization
(Figure 7). Images of these areas were taken every 30 min. The acquired images were
analyzed to assess the activity of the cells. To obtain a better visual representation of the
events taking place in each visualization area, the images for each of these areas were
combined into a video file (one file per area, Videos S1–S9). As a result of image processing,
the dynamics of cell growth and migration activity of human mesenchymal stem cells
was evaluated.
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Evaluation of the dynamics of cell growth and migration activity of cells in the
Cell-IQ system. Cells were counted in every second image acquired with the Cell-IQ
system. Coefficients K1 and K2 were used to evaluate the dynamics of changes in cell
number per area of visualization.

The K1 coefficient reflects changes in the number of cells in the observation area per
unit time. It was calculated as the average value of the difference between the number of
observed cells in each pair of analyzed images divided by the time interval between these
images. In addition to K1, the final change in cell number in each visualization area was
assessed. For this purpose, the ratio between the number of cells at the end of cultivation
(after 24 h) and the number of cells at the beginning of cultivation was calculated for each
area. This ratio reflects the total cell growth that occurred during cultivation.

K1 = Σ ((ki
start − ki

end)/ti), (1)

ki
start—number of cells observed in a single area of visualization at the beginning of a

time period;
ki

end—number of cells observed in a single area of visualization at the end of a time period;
ti—time between observations.
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The coefficient K2 reflects the activity of cell movement in the area of observation. It
was calculated based on K1, but the absolute value of the difference between the number
of cells observed in each pair of analyzed images was used. While K1 is influenced by
cell growth, K2 is more appropriate to evaluate the migration of cells. If the average
number of cells remains constant, their migration rate to/from the observation area can
still be evaluated.

K2 = Σ (|ki
start − ki

end\|/ti), (2)

ki
start—number of cells observed in a single area of visualization at the beginning of a

time period;
ki

end—number of cells observed in a single area of visualization at the end of a time period;
ti—time between observations.
The speed of human mesenchymal stem cells was also evaluated. For this purpose,

3 cells were selected in each visualization area (if possible). Then, the central points of these
cells in each image were determined. By tracking the changes in the coordinates of these
points over time, the total distance travelled by each cell and its corresponding speed of
movement could be calculated.

Statistical analysis. Descriptive statistics and hypothesis testing were performed
using the standard STATISTICA package for Windows 10.0. Before data were analyzed,
they were tested for normality using the Kolmogorov–Smirnov method. Median (Me),
25% (Q1), and 75% (Q3) quartiles were calculated for data that did not follow the normal
distribution. Plots were generated with the R programming language [46] using the ggplot2
module [47].

For samples that did not follow the normal distribution, the significance of differences
was assessed using the Wilcoxon T-test for pairs of dependent samples. Differences were
considered significant when p < 0.05.

5. Conclusions

We studied the interaction of graphene oxide nanoparticles with hMSCs in the Cell-IQ
in vivo monitoring system. We have shown that all the studied GO nanoparticles after
24 h of incubation have a cytotoxic effect on hMSCs at a high concentration (25 µg/mL),
however, only bP-GOb particles were able to reduce cell viability at a low concentration
(5 µg/mL).

We also showed that small particles (P-GOs) at a high concentration (25 µg/mL)
reduced cell motility, while large-sized particles coated with branched PEG (bP-GOb) at a
similar concentration increased this parameter. It was demonstrated that larger particles of
P-GOb and bP-GOb (5 and 25 µg/mL) increased the speed of hMSCs movement.

However, the particles did not affect the changes in cell count during cultivation.
In general, GO nanoparticles can reduce the viability of hMSCs, but increase the rate
of cell movement. Thus, we have demonstrated for the first time the interaction of GO
nanoparticles with hMSCs in the Cell-IQ in vivo monitoring system.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28104148/s1: Video S1: Visualization of incubation of cells with P-
GOs nanoparticles (5 µg/mL); Video S2: Visualization of incubation of cells with P-Gos nanoparticles
(25 µg/mL); Video S3: Visualization of incubation of cells with bP-Gos nanoparticles (5 µg/mL);
Video S4: Visualization of incubation of cells with bP-Gos nanoparticles (25 µg/mL); Video S5:
Visualization of incubation of cells with P-Gob nanoparticles (5 µg/mL); Video S6: Visualization
of incubation of cells with P-Gob nanoparticles (25 µg/mL); Video S7: Visualization of incubation
of cells with bP-Gob nanoparticles (5 µg/mL); Video S8: Visualization of incubation of cells with
bP-Gob nanoparticles (25 µg/mL); Video S9: Visualization of incubation of cells in the control group
(without GO nanoparticles); Table S1: The pivot table of cell count in every area of visualization at
different time periods.

https://www.mdpi.com/article/10.3390/molecules28104148/s1
https://www.mdpi.com/article/10.3390/molecules28104148/s1
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Appendix A

Cultivation groups:

1. Control—cells in a culture medium without the addition of graphene oxide nanoparti-
cles (3 iterations per plate, 6 iterations in total).

2. Sample 1 (5µg/mL)—cells in a culture medium with the addition of P-GOs (Ø 184± 73 nm)
graphene oxide nanoparticles at a concentration of 5 µg/mL (3 iterations).

3. Sample 1 (25 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles P-GOs (Ø 184 ± 73 nm) at a concentration of 25 µg/mL (3 iterations).

4. Sample 2 (5 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles bP-GOs (Ø 287 ± 52 nm) at a concentration of 5 µg/mL (3 iterations)

5. Sample 2 (25 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles bP-GOs (Ø 287 ± 52 nm) at a concentration of 25 µg/mL (3 iterations)

6. Sample 3 (5 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles P-GOb (Ø 569 ± 14 nm) at a concentration of 5 µg/mL (3 iterations)

7. Sample 3 (25 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles P-GOb (Ø 569 ± 14 nm) at a concentration of 25 µg/mL (3 iterations)

8. Sample 4 (5 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles bP-GOb (Ø 1376 ± 48 nm) at a concentration of 5 µg/mL (3 iterations)

9. Sample 4 (25 µg/mL)—cells in a culture medium with the addition of graphene oxide
nanoparticles bP-GOb (Ø 1376 ± 48 nm) at a concentration of 25 µg/mL (3 iterations)

10. Group 0 control—in the second plate, row D is filled for unstained control. Cells in a
culture medium with the addition of graphene oxide nanoparticles of each sample at
a maximum concentration of 25 µg/mL.
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Table A1. Layout of wells in experimental plates for analysis in the Cell-IQ in vitro imaging system.

Plate No. 1

1 2 3 4 5 6

A Control
20,000 cells

Control
20,000 cells

Control
20,000 cells

B
Sample 1

20,000 cells
5 µg/mL

Sample 1
20,000 cells
5 µg/mL

Sample 1
20,000 cells
5 µg/mL

Sample 2
20,000 cells
5 µg/mL

Sample 2
20,000 cells
5 µg/mL

Sample 2
20,000 cells
5 µg/mL

C
Sample 1

20,000 cells
25 µg/mL

Sample 1
20,000 cells
25 µg/mL

Sample 1
20,000 cells
25 µg/mL

Sample 2
20,000 cells
25 µg/mL

Sample 2
20,000 cells
25 µg/mL

Sample 2
20,000 cells
25 µg/mL

D

Plate No. 2

1 2 3 4 5 6

A Control
20,000 cells

Control
20,000 cells

Control
20,000 cells

B
Sample 3

20,000 cells
5 µg/mL

Sample 3
20,000 cells
5 µg/mL

Sample 3
20,000 cells
5 µg/mL

Sample 4
20,000 cells
5 µg/mL

Sample 4
20,000 cells
5 µg/mL

Sample 4
20,000 cells
5 µg/mL

C
Sample 3

20,000 cells
25 µg/mL

Sample 3
20,000 cells
25 µg/mL

Sample 3
20,000 cells
25 µg/mL

Sample 4
20,000 cells
25 µg/mL

Sample 4
20,000 cells
25 µg/mL

Sample 4
20,000 cells
25 µg/mL

D
Sample 1

20,000 cells
25 µg/mL

Sample 2
20,000 cells
25 µg/mL

Sample 3
20,000 cells
25 µg/mL

Sample 4
20,000 cells
25 µg/mL

Table A2. Layout of wells in experimental plates for viability analysis by flow cytometry.

Plate No. 1 Plate No. 2

1 2 3 1 2 3

A Control
100,000 cells

Sample 1
100,000 cells
25 µg/mL

Sample 3
100,000 cells
25 µg/mL

A
Sample 1

100,000 cells
5 µg/mL

Sample 1
100,000 cells
25 µg/mL

Sample 2
100,000 cells

5 µg/mL

B Control
100,000 cells

Sample 2
100,000 cells
25 µg/mL

Sample 4
100,000 cells
25 µg/mL

B
Sample 1

100,000 cells
5 µg/mL

Sample 1
100,000 cells
25 µg/mL

Sample 2
100,000 cells

5 µg/mL

Plate No. 3 Plate No. 4

1 2 3 1 2 3

A
Sample 2

100,000 cells
25 µg/mL

Sample 3
100,000 cells

5 µg/mL

Sample 3
100,000 cells
25 µg/mL

A
Sample 4

20,000 cells
5 µg/mL

Sample 4
100,000 cells
25 µg/mL

Control
100,000 cells

B
Sample 2

100,000 cells
25 µg/mL

Sample 3
100,000 cells

5 µg/mL

Sample 3
100,000 cells
25 µg/mL

B
Sample 4

20,000 cells
5 µg/mL

Sample 4
100,000 cells
25 µg/mL

Control
100,000 cells
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Figure A1. Characterization of P-GO nanoparticles (LnGO = P-GOb, LbGO = bP-GOb, SnGO = P-
GOs, SbGO = bP-GOs). (A)—IR spectra; (B)—Raman spectra; (C)—intensity-weighted size distribu-
tion determined by DLS; (D,E)—SEM images of GO (D) and LbGO (E); (F,G)—TGA/DSC of P-GO. 
Scale bars are 1 µm (D) and 500 nm (E). 
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Figure A1. Characterization of P-GO nanoparticles (LnGO = P-GOb, LbGO = bP-GOb, SnGO = P-GOs,
SbGO = bP-GOs). (A)—IR spectra; (B)—Raman spectra; (C)—intensity-weighted size distribution
determined by DLS; (D,E)—SEM images of GO (D) and LbGO (E); (F,G)—TGA/DSC of P-GO. Scale
bars are 1 µm (D) and 500 nm (E).
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