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Abstract: Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line
drugs induce several side effects that drastically reduce the quality of life of people with this disease.
Finding molecules to prevent it or generate less aggressiveness or no side effects is significant to
counteract this problem. Therefore, this work searched for bioactive compounds of marine macroalgae
as an alternative treatment. An 80% ethanol extract of dried Caulerpa sertularioides (CSE) was analyzed
by HPLS-MS to identify the chemical components. CSE was utilized through a comparative 2D
versus 3D culture model. Cisplatin (Cis) was used as a standard drug. The effects on cell viability,
apoptosis, cell cycle, and tumor invasion were evaluated. The IC50 of CSE for the 2D model was
80.28 µg/mL versus 530 µg/mL for the 3D model after 24 h of treatment exposure. These results
confirmed that the 3D model is more resistant to treatments and complex than the 2D model. CSE
generated a loss of mitochondrial membrane potential, induced apoptosis by extrinsic and intrinsic
pathways, upregulated caspases-3 and -7, and significantly decreased tumor invasion of a 3D SKLU-
1 lung adenocarcinoma cell line. CSE generates biochemical and morphological changes in the
plasma membrane and causes cell cycle arrest at the S and G2/M phases. These findings conclude
that C. sertularioides is a potential candidate for alternative treatment against lung cancer. This
work reinforced the use of complex models for drug screening and suggested using CSE’s primary
component, caulerpin, to determine its effect and mechanism of action on SKLU-1 in the future. A
multi-approach with molecular and histological analysis and combination with first-line drugs must
be included.

Keywords: apoptosis; caspases; cancer; Caulerpa sertularioides; cell cycle arrest; lung adenocarcinoma;
MMP; SKLU-1 cells; tumor invasion; 2D and 3D culture model

1. Introduction

Cancer is the second-leading cause of death worldwide after cardiovascular dis-
eases [1]. It is characterized by the uncontrolled and continuous growth of cells that form
masses of tumors with the ability to generate metastases. By 2040, it is estimated that the
incidence will increase by 47% compared to 2020 [2]. GLOBOCAN reports that lung cancer
is the leading cause of death among different types of cancer, with 1,796,144 deaths reported
for both sexes, representing 18.2% of cancer-related deaths worldwide and a prevalence
of 5.9% over 5 years [3]. Moreover, in 2022, the United States registered 1,918,030 new
cancer cases and 609,360 cancer deaths, including approximately 350 deaths per day from
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lung cancer [4]. Two types of lung cancer are known: small cell lung cancer (SCLC), which
represents 15%, and non-small cell lung cancer (NSCLC), characterized by 85% of the
incidence of this type of cancer. NSCLC is subdivided into squamous cell carcinoma, large
cell carcinoma, and adenocarcinoma. Adenocarcinoma is the most common, representing
40% of lung cancer cases [5].

Treatments to counteract lung cancer include surgery, radiation therapy, chemotherapy,
and targeted therapy. However, these generate considerable side effects that decrease the
patient’s quality of life, and, despite improvements in diagnosis and treatments in recent
years, the prognosis for lung cancer patients is not satisfactory [6]. Natural compounds
have a better affinity for interacting with biological systems, need lower development costs,
and reduce possible side effects [7,8]. Therefore, alternative treatments with bioactive com-
pounds that can act as adjuvants are sought to reduce the dose of chemotherapeutic drugs.
Moreover, the synergism of bioactive compounds with first-line drugs can decrease the
drugs’ aggressivity or increase the effectiveness of these drugs while reducing side effects.

Marine organisms, mainly macroalgae, are sources of natural compounds with mul-
tiple biological activities, which can decrease the risk of many diseases [9]. The macroal-
gae Caulerpa sertularioides produce a variety of secondary metabolites in response to eco-
logical competition and adverse environmental conditions, among which are alkaloids,
carotenoids, phenolic compounds, sterols, pigments, and terpenes, among others [10].
These metabolites have been reported and evidenced as having peculiar chemical struc-
tures. In vitro and in vivo study models have found multiple biological activities, including
antioxidant, anti-inflammatory, anticancer, antiviral, and antidiabetic activity [11]. Alka-
loids, carotenoids, polysaccharides, polyphenols, and terpenoids are biologically relevant
due to their multiple anticancer activities [12]. Alkaloids have been attributed to anti-
tumor, antiangiogenic, anti-mitotic, and antinociceptive properties [13]. Carotenoids have
antioxidant and anticancer activities [14], while phenolic compounds have been attributed
to antidiabetic, antioxidant, and anticancer properties [15]. Therefore, C. sertularioides is
a good candidate for discovering bioactive compounds that will work as adjuvants of
pharmacological treatments against cancer. This work aimed to evaluate the cytotoxic,
proapoptotic, and anti-invasive activity of the ethanolic extract of Caulerpa sertularioides
using a three-dimensional model of lung cancer cells SKLU-1.

2. Results
2.1. Extract Characterization
Quantification of Phenols, Flavonoids, Carotenoids, and the Antioxidant Capacity of the
80% Ethanol Extract of Caulerpa sertularioides (CSE)

The content of phenolic compounds in macroalgae varies considerably, even in species
of the same genus [16]. In this study, the total content of phenols and flavonoids was
81.09 ± 2.28 mg GAE and 70.11 ± 2.06 mg QE/g dry extract, respectively. Carotenoid content
was 207.56 ± 2.67 µg Eq. β carotene/g dry extract. The antioxidant capacity of C. sertularioides
80% ethanol extract (CSE) evaluated by the ORAC assay was 2171.21 ± 1.35 µmol TE/g dry
extract (Table 1).

Table 1. The total phenols, flavonoids, carotenoids, and antioxidant capacity were obtained from C.
sertularioides 80% ethanol extract (CSE).

Total Phenol
(mg Eq. GAE/g)

Total Flavonoids
(mg Eq. QE/g)

Total Carotenoids
(µg Eq. β Carotene/g)

Antioxidant Capacity per
ORAC

(µmol TE/g)

81.09 ± 2.28 70.11 ± 2.06 207.56 ± 2.67 2171.21 ± 1.35

Characterization of CSE ethanol extract.
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2.2. HPLC-MS Analysis of Extract
Identified Compounds of CSE in Negative and Positive Ionization Mode

As shown in Tables 2 and 3, the HPLC-MS profile of CSE allowed the tentative identifi-
cation of phenolic compounds, including phenolic acids, flavonols, flavones, phlorotannins,
phenolic diterpenes, and alkaloids. The identification of the phytochemical compounds was
established based on the peak area and retention time [17,18]. The main chemical compound
identified was caulerpin, which showed ionization in both negative mode (m/z = 397) and
positive mode (m/z = 399) and presented the same retention time (17.7 min) in both polari-
ties (Tables 2 and 3). The spectrum mass of the principal compound is shown in Figure 1,
and some compounds’ chemical structures are in Figure 2.

Table 2. CSE compounds were identified from a negative ionization mode.

Compound Compound Class RT M-1 M

Caulerpin Alkaloid 17.7 397 398
Difucol Phlorotannin 20.6 249 250

Quercetin Flavonol 22.1 301 302
Dihydroquercetin Flavonol 23.6 303 304

P-coumaroyl malic acid Phenolic compound 25.4 279 280
Gallocatechin Flavonol 26.4 305 306
Carnosic acid Phenolic diterpene 27.6 331 332

Stigmasterol ferulatol Sterol 28.1 591 592
Damnacanthal Alkaloid 30.1 281 282
Pinocembrin Dihydroxyflavanone 30.5 255 356

Baicalein Flavone 34.1 445 446

Compounds detected in a negative ionization mode. RT: Retention Time.

Table 3. CSE compounds were identified from a positive ionization mode.

Compound Compound Class RT M + 1 M

Caulerpin Alkaloid 17.7 399 398
Difucol Phlorotannin 21.5 611 610

Quercetin Flavonol 22.1 593 592

Compounds detected in a positive ionization mode. RT: Retention time.
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ionization mode (m/z = 399). Retention time: 17.7 min in both polarities.
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Figure 2. Chemical structure of identified compounds from HPLC-MS of CSE. (A) Caulerpin; (B) Di-
fucol; (C) Quercetin; (D) Dihydroquercetin; (E) Gallocatechin; (F) Carnosic acid; (G) Damnacanthal;
(H) Pinocembrin; (I) Baicalein.

2.3. Phase 1. Cytotoxic Effects of CSE and Cis in a 2D Culture Model of SKLU-1 Lung Cancer Cell
CSE Decreased Cell Viability in a 2D Culture Model

Cell viability is the percentage of healthy cells within a population [19]. Different
methods allow the evaluation of cellular health. However, evaluating membrane integrity
is the most effective test for detecting dying cells because the latter is crucial for viable cells.
In contrast, cells with compromised membranes are considered dead [20].

This work evaluated the cell viability in a 2D SKLU-1 lung cancer cell culture with the
exclusion dye Sytox Green. CSE decreased the cell viability in 2D model culture with an
IC50 (maximum inhibitory concentration) of 80.28 µg/mL after 24 h treatment exposure
(Figure 3).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 29 
 

 

 

Figure 3. Decreased cell viability in SKLU-1 2D culture model. Cell viability is determined by mem-

brane integrity through the exclusion dye Sytox Green. The 2D model culture was exposed to 25–

200 μg/mL of CSE for 24 h. Mean values and standard deviation of percentage of viable cells calcu-

lated by Dunnett post hoc test (p ≤ 0.05) n = 12. Different letters represent significant differences 

between types of treatment. 

Ayoub et al. [21] consider a promising IC50 for botanicals/crude extract should be up 

to 100 μg/mL. Therefore, according to these criteria, an IC50 of 80.28 μg/mL, registered by 

CSE after 24 h exposure to SKLU-1, is within this parameter. These findings are the first 

promising results of the macroalgae C. sertularioides on SKLU-1 lung cancer cells. 

2.4. Phase 2. Cytotoxic Effects of CSE and Cis in a 3D Culture Model of SKLU-1 Lung Cancer 

Cell 

CSE Decreased Cell Viability in a 3D Culture Model 

The 3D cell culture model is more resistant and complex than the 2D model (Figure 

4A–C). Because of their ability to accurately mimic a tumor’s natural microenvironment, 

response to stimuli, cell polarity, cell differentiation, protein synthesis, cell morphology, 

nutrient diffusion gradients, cell-cell and cell-extracellular matrix interaction, and drug 

metabolism (Figure 4A) [22], in vitro 3D studies have revealed information about tumor-

igenesis that has not been detectable with traditional 2D models [23,24]. 

Figure 3. Decreased cell viability in SKLU-1 2D culture model. Cell viability is determined by
membrane integrity through the exclusion dye Sytox Green. The 2D model culture was exposed to
25–200 µg/mL of CSE for 24 h. Mean values and standard deviation of percentage of viable cells
calculated by Dunnett post hoc test (p ≤ 0.05) n = 12. Different letters represent significant differences
between types of treatment.
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Ayoub et al. [21] consider a promising IC50 for botanicals/crude extract should be up
to 100 µg/mL. Therefore, according to these criteria, an IC50 of 80.28 µg/mL, registered by
CSE after 24 h exposure to SKLU-1, is within this parameter. These findings are the first
promising results of the macroalgae C. sertularioides on SKLU-1 lung cancer cells.

2.4. Phase 2. Cytotoxic Effects of CSE and Cis in a 3D Culture Model of SKLU-1 Lung Cancer Cell
CSE Decreased Cell Viability in a 3D Culture Model

The 3D cell culture model is more resistant and complex than the 2D model (Figure 4A–C).
Because of their ability to accurately mimic a tumor’s natural microenvironment, response
to stimuli, cell polarity, cell differentiation, protein synthesis, cell morphology, nutrient dif-
fusion gradients, cell-cell and cell-extracellular matrix interaction, and drug metabolism
(Figure 4A) [22], in vitro 3D studies have revealed information about tumorigenesis that has
not been detectable with traditional 2D models [23,24].
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Figure 4. Main differences between 2D and 3D cell cultures. Taken and modified from Ka-
matar et al. [25]. (A–C), schematics of the 2D monolayer and 3D cell culture, structural, morphologic,
and physiologic differences.

2D culture models allow initial evaluation of the efficacy of anticancer drugs. However,
in these experiments, all cells are uniformly exposed to nutrients, oxygen, and drugs, cell
differentiation could be better, and the junctions are less accurate than the real junctions
(Figure 4B) [26]. In contrast, in vivo, tumors expand as three-dimensional (3D) multicellular
masses, where cells have variable and limited access to nutrients, metabolites, and drugs
(Figure 4B,C). Therefore, the response of the 3D model to therapeutic interventions is
different from that of two-dimensional models (2D) (Figure 4C) [27].
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On the other hand, in vivo mouse models are more relevant than the 2D culture
model due to complex biology. However, research on living animals raises ethical issues
addressed through the 3Rs framework (Replacement, Reduction, Refinement) to reduce
animal use [28,29]. Moreover, animal models are expensive, time-consuming, and require
resources [30,31]. According to the Food and Drug Administration (FDA) report in 2004, less
than 8% of medicinal compounds entering Phase I trials reach the market [25], which might
be because mouse models still need to reproduce the complexity of human physiology and
metabolism fully. Alternatives to the 2D culture and in vivo mouse models include clinical
samples. Still, their limited use due to intratumoral heterogeneity and their many federal
regulations [32] makes them routinely low-yielding and challenging to use. Therefore, the
3D model was used to preserve the geometry of typical tumors in vivo.

In this work, cell viability in a 3D SKLU-1 lung cancer cell culture was evaluated with
the exclusion dye Sytox Green, registering a decrease in cell viability of 47, 71, and 77% by
500, 800, and 1000 µg/mL of the CSE, respectively, and 97% for 9.94 µg/mL of cisplatin
(Cis) (positive control) (Figure 5A). As shown in Figure 5B, cell death is distinguished by the
penetration of the dye, which occurs when the cell membrane is compromised, beginning a
death process. Considering the results obtained in this experiment, the two concentrations
that generated the most significant cytotoxic effect were chosen for the subsequent tests.
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Figure 5. Decreased cell viability in SKLU-1 spheroids (3D). Cell viability is determined by membrane
integrity through the exclusion dye Sytox Green. Spheroids were exposed to 500, 800, and 1000 µg/mL
of CSE and 9.94 µg/mL of cisplatin for 24 h: (A) Decreased cell viability in a 3D model of SKLU-1
cells; (B) Images of spheroids taken under an inverted microscope with a scale of 100 µm and an
amplification of 20×. Mean values and standard deviation of percentage of viable cells calculated
by Dunnett post hoc test (p ≤ 0.05) n = 12. Different letters represent significant differences between
types of treatment.
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2.5. Phase 3. Effects of CSE and Cis in a 2D Culture Model of SKLU-1 Lung Cancer Cell
2.5.1. CSE-Induced Apoptosis in a 2D Model of SKLU-1 Cells

In this work, the apoptosis induced by CSE was evaluated by measuring the transloca-
tion of Annexin V-FITC and analyzed by flow cytometry.

As shown in Figure 6A,B, the exposure of CSE to 800, 1000 µg/mL, and 9.94 µg/mL of
cisplatin for 24 h presented a total of 97, 98 and 99% of SKLU-1 apoptotic cells, respectively,
compared to the control (<2.5%). Less than 1% of the population, including the control,
showed necrotic cells.
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Figure 6. CSE induces apoptosis in SKLU-1 lung cancer. A 2D culture model of SKLU-1 cells was
exposed to 800, 1000 µg/mL CSE, and 9.94 µg/mL cisplatin for 24 h. (A) Each quadrant indicates
the percentage of living cells (annexin V−/PI−), early apoptosis (annexin V+/PI−), late apoptosis
(annexin V+/PI+), and necrosis (annexin V−/PI+). (B) Total percentage of apoptotic cells. The
data represent mean values and standard deviation from independent experiments (p ≤ 0.05) n = 3.
Different letters represent significant differences between types of treatment.

2.5.2. CSE Causes Morphological Changes Characteristic of Apoptosis

Multiple biochemical and morphological changes characterize the apoptotic event. The
latter is characterized by cell contraction, pyknosis, karyorrhexis, and apoptotic bodies [33].
During cell contraction, the cells become smaller, making the cytoplasm more compact.
The chromatin is condensed in pyknosis, and the nucleus often has a slightly irregular
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outline. Karyorrhexis consists of the fragmentation of the nucleus and the separation of cell
fragments into apoptotic bodies consisting of cytoplasm with compacted organelles with
or without nuclear fragments [34].

As shown in Figure 7, Hoechst stain 33258 indicated that the cells had shrunken,
condensed, and fragmented nuclei after exposure to 800 and 1000 µg/mL and 9.94 µg/mL
cisplatin for 24 h. The cell morphology of SKLU-1 was severely distorted, and the cells
presented very irregular, contracted shapes and showed pyknosis. Unlike the treated cells,
the untreated cells emitted a blue fluorescence with an intensity consistent with normal
nuclei, a round shape with an intact and healthy membrane, and uniform chromatin.
These results indicate that CSE generated morphological changes typical of apoptosis in
SKLU-1 cells.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 29 
 

 

These results indicate that CSE generated morphological changes typical of apoptosis in 

SKLU-1 cells. 

 

Figure 7. Morphological study of apoptosis in a 2D culture model of SKLU-1 cells. Cells were treated 

with 800, 1000 μg/mL of CSE, and 9.94 μg/mL of cisplatin for 24h and stained with Hoechst 33258—

representative images of morphological changes observed through an inverted fluorescence micro-

scope with 20× amplification. The white arrows indicate the morphological changes generated by 

the treatments. 

2.5.3. CSE Arrests the Cell Cycle in the S and G2/M Phases in a 2D Culture Model 

The duplication of genetic material characterizes the cell cycle and results in two 

identical daughter cells, each with an exact copy of the genetic material. It consists of two 

phases: interface and mitosis. This event is negatively regulated by activated checkpoints 

when DNA damage (ATM/ATR) is detected and by deprivation of growth factors, cyto-

kines, insufficient cell size, lack of molecules for the next phase, and telomere length, 

among others. The cell cycle checkpoints are critical because the cell can enter the next 

phase of the cell cycle only through checkpoint testing [35]. The main control points are 

at the end of the G1 phase (G1/S), in the S phase, at the end of the G2 phase, and at the 

end of the M phase (M/G1) [36]. Different families of proteins play an essential role in the 

control points by positively regulating the cell cycle. Of these, cyclins and cyclin-depend-

ent kinases (CDKs) can be mentioned, with the complex cyclin D/CDK 4/6 and cyclin 

E/CDK2 being the main ones of the G1 phase, cyclin A/CDK2 the main one of S phase, and 

cyclin A/B/CDK1 the main one of the G2 phase. 

On the other hand, there are cyclin-dependent kinase inhibitors (CDKIs), including 

the INK4 protein family (p14, p15, p16, p18, and p19) that specifically inhibit CDK4 and 

CDK6 and the CIP/KIP family (p21, p27, and p57) that regulates the cyclin E/CDK2, cyclin 

A/CDK2, and cyclin B/CDK1 complexes [37]. To determine whether CSE treatment re-

sulted in impaired cell-cycle progression, the cell-cycle patterns of SKLU-1 cells were ex-

amined. Compared to the control group, cells treated with 800 and 1000 μg/mL of CSE 

accumulated in the cell cycle’s S and G2/M phases (Table 4) (Figure 8). The most significant 

percentage of cells was accumulated in the S phase for cisplatin. 

Table 4. Cell cycle distribution of SKLU-1 cells treated with CSE and cisplatin. 

Treatments G0/G1 S G2/M 

Control 55.59 ± 0.45 35.57 ± 0.12 8.86 ± 0.41 

Starvation 53.37 ± 0.53 32.55 ± 0.37 14.08 ± 0.78 

CSE [800 μg/mL] 10.08 ± 0.19 67.59 ± 0.18 22.34 ± 0.38 

CSE [1000 μg/mL] 1.38 ± 0.06 88.20 ± 0.21 10.42 ± 0.19 

Cisplatin [9.94 μg/mL] 1.41 ± 0.08 92.72 ± 0.34 5.87 ± 0.31 

S and G2/M phase cell cycle arrest by CSE in a 2D model culture of SKLU-1 lung cancer. SKLU-1 

cells were exposed to 800, 1000 μg/mL CSE, and 9.94 μg/mL of cisplatin for 24 h. Data represent 

mean values and standard deviation from independent experiments (p ≤ 0.05) n = 3. 

Figure 7. Morphological study of apoptosis in a 2D culture model of SKLU-1 cells. Cells were
treated with 800, 1000 µg/mL of CSE, and 9.94 µg/mL of cisplatin for 24h and stained with Hoechst
33258—representative images of morphological changes observed through an inverted fluorescence
microscope with 20× amplification. The white arrows indicate the morphological changes generated
by the treatments.

2.5.3. CSE Arrests the Cell Cycle in the S and G2/M Phases in a 2D Culture Model

The duplication of genetic material characterizes the cell cycle and results in two identi-
cal daughter cells, each with an exact copy of the genetic material. It consists of two phases:
interface and mitosis. This event is negatively regulated by activated checkpoints when
DNA damage (ATM/ATR) is detected and by deprivation of growth factors, cytokines,
insufficient cell size, lack of molecules for the next phase, and telomere length, among
others. The cell cycle checkpoints are critical because the cell can enter the next phase of the
cell cycle only through checkpoint testing [35]. The main control points are at the end of the
G1 phase (G1/S), in the S phase, at the end of the G2 phase, and at the end of the M phase
(M/G1) [36]. Different families of proteins play an essential role in the control points by
positively regulating the cell cycle. Of these, cyclins and cyclin-dependent kinases (CDKs)
can be mentioned, with the complex cyclin D/CDK 4/6 and cyclin E/CDK2 being the main
ones of the G1 phase, cyclin A/CDK2 the main one of S phase, and cyclin A/B/CDK1 the
main one of the G2 phase.

On the other hand, there are cyclin-dependent kinase inhibitors (CDKIs), including
the INK4 protein family (p14, p15, p16, p18, and p19) that specifically inhibit CDK4 and
CDK6 and the CIP/KIP family (p21, p27, and p57) that regulates the cyclin E/CDK2,
cyclin A/CDK2, and cyclin B/CDK1 complexes [37]. To determine whether CSE treatment
resulted in impaired cell-cycle progression, the cell-cycle patterns of SKLU-1 cells were
examined. Compared to the control group, cells treated with 800 and 1000 µg/mL of CSE
accumulated in the cell cycle’s S and G2/M phases (Table 4) (Figure 8). The most significant
percentage of cells was accumulated in the S phase for cisplatin.



Molecules 2023, 28, 4361 9 of 27

Table 4. Cell cycle distribution of SKLU-1 cells treated with CSE and cisplatin.

Treatments G0/G1 S G2/M

Control 55.59 ± 0.45 35.57 ± 0.12 8.86 ± 0.41
Starvation 53.37 ± 0.53 32.55 ± 0.37 14.08 ± 0.78

CSE [800 µg/mL] 10.08 ± 0.19 67.59 ± 0.18 22.34 ± 0.38
CSE [1000 µg/mL] 1.38 ± 0.06 88.20 ± 0.21 10.42 ± 0.19

Cisplatin [9.94 µg/mL] 1.41 ± 0.08 92.72 ± 0.34 5.87 ± 0.31

S and G2/M phase cell cycle arrest by CSE in a 2D model culture of SKLU-1 lung cancer. SKLU-1 cells were
exposed to 800, 1000 µg/mL CSE, and 9.94 µg/mL of cisplatin for 24 h. Data represent mean values and standard
deviation from independent experiments (p ≤ 0.05) n = 3.
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Figure 8. CSE causes cell cycle arrest in the S phase with an accumulation of population in G2/M
compared to control. Cells were treated for 24 h and stained with propidium iodide. The black arrows
indicate the place of the cell cycle arrest.

2.6. Phase 4. Effects of CSE and Cis in a 3D SKLU-1 Lung Cancer Cell Culture Model on ATP
Levels, Membrane Potential Changes, Caspases Activation, and Invasion
2.6.1. CSE Decreased ATP Level in a 3D Culture Model

Adenosine triphosphate (ATP) is the primary energy source for cellular reactions [38]
and a critical molecule that maintains and drives the life process by actively participating
in metabolic processes. In carcinogenesis, there is a great demand for energy on the part of
the cells to guarantee their growth [39].

There are different methods for assessing cell viability. However, the determination
based on the quantification of ATP is used the most due to the metabolic dysregulation of
tumor cells, one of the hallmarks of cancer [40]. This bioluminescence assay measured ATP,
with the light detected directly proportional to the ATP content and indicating the presence
of metabolically active cells.

In this work, concentrations of 800 and 1000 µg/mL of CSE showed a significant
decrease in the ATP level after 24 h treatment exposure to the control. The decline in the
ATP level indicates a reduction in cell viability. The 800 µg/mL concentration decreased the
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ATP level by 82%; meanwhile, 1000 µg/mL of CSE and 9.94 µg/mL of cisplatin decreased
the ATP level by 87 and 93%, respectively (Figure 9). The results in this work show that
CSE is a potential therapeutic adjuvant to reduce ATP levels in addition to cell viability in
lung cancer spheroids SKLU-1.
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Figure 9. Decreased cell viability in SKLU-1 spheroids (3D model). Cell viability was determined
by quantifying the ATP level with the CellTiter-Glo® Reagent 2.0 (PROMEGA) kit. Spheroids were
exposed to 800 and 1000 µg/mL of CSE and 9.94 µg/mL of cisplatin for 24 h. Mean values and
standard deviation of relative units of ATP luminescence were calculated by the Dunnett post hoc
test (p ≤ 0.05) n = 12. Different letters represent significant differences between types of treatment.

2.6.2. Apoptosis Induction
CSE Generated a Loss of Mitochondrial Membrane Potential (∆Ψm) in a 3D Model of
SKLU-1 Cells

Apoptosis is a regulated process of cell death executed by two alternative pathways:
extrinsic and intrinsic. Inducing apoptosis is one of the essential goals of cancer therapy
because cancer cells develop abilities to evade cancer mechanisms [41].

The mitochondria are the organelle that generates most of the energy needed for the
cell’s biochemical reactions, which is stored in ATP. Mitochondrial membrane potential
(MMP) provides information on cellular health. It is essential for ATP production, so a
decrease or loss of ATP results in lower ATP production and the release of apoptotic factors
that lead to cell death [42].

There are different ways to monitor the state of the mitochondria. One of the most
frequent is the use of fluorescent dyes that accumulate in healthy mitochondria. This work
used rhodamine 123 (Rh123), a cationic dye attracted to the electronegative interior of the
mitochondria of viable cells where the fluorescence intensity indicates the mitochondria
condition [43]. CSE at 800 µg/mL and cisplatin at 9.94 µg/mL generated an MMP loss of
74%, while CSE at 1000 µg/mL induced a loss of 76% after 24 h of exposure to SKLU-1
spheroids. On the other hand, no change in MMP was observed in the control group. As
shown in Figure 10, CSE generated changes in mitochondrial membrane permeability,
which correlated with increased cell death and decreased ATP.
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Figure 10. Loss of mitochondrial membrane potential in SKLU-1 spheroids (3D model). MMP
determined by Rh123. Spheroids were exposed to 800 and 1000 µg/mL of CSE and 9.94 µg/mL of
cisplatin for 24 h. Mean values and standard deviation of relative units of fluorescence by Dunnett
post hoc test (p ≤ 0.05) n = 12. Different letters represent significant differences between types
of treatment.

CSE Induced Apoptosis in a 3D Model by Caspases-3/7, -8, and -9 Activation

Apoptosis is programmed cell death that is executed by extrinsic and intrinsic path-
ways. This event is mainly triggered by the regulatory activity of caspases, which are
enzymes of the cysteine-protease family capable of hydrolyzing tetrapeptides containing
an aspartic acid residue [44]. The activation of caspases results in a chain reaction that leads
to the activation of other caspases downstream and cell death [45]. Depending on their
function, caspases are divided into initiating caspases: -2, -8, -9, and -10, which form the
propagation signals of apoptosis, and effector caspases: -3, -6, and -7, which execute this
process. Caspase-8 plays a vital role in the extrinsic pathway, while caspase-9 plays an
essential role in the intrinsic pathway, where both pathways converge in activating effector
caspases [46]. To investigate the pathway and mechanism by which CSE induces apoptosis,
the activity of caspases -8 and -9 was evaluated.

Figure 11 shows an increase in the initiating caspases (caspases -8 extrinsic path-
way, -9 intrinsic pathway) and effectors caspases (-3/7) after being exposed to 800 and
1000 µg/mL of CSE and 9.94 µg/mL of cisplatin. The treatments induced apoptosis in
SKLU-1 spheroids after 24 h exposure.
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Figure 11. Induction of apoptosis in SKLU-1 spheroids (3D model). Induced apoptosis was de-
termined by caspases-3/7, -8, and -9 activity. Spheroids were exposed to 800 and 1000 µg/mL of
CSE and 9.94 µg/mL of cisplatin for 24 h. Mean values and standard deviation of relative units
of fluorescence by Dunnett post hoc test (p ≤ 0.05) n = 12. Different letters represent significant
differences between types of treatment.

2.7. CSE Inhibited Invasion in a 3D Model of SKLU-1 Cells

The invasion process is carried out through three main stages: invasion, intravasation,
and extravasation. Invasion is caused by the reduction or loss of intercellular adhesion,
allowing the dissociation of an individual or group of cells to the primary tumor mass and
by the changes generated in the cell-matrix interaction where the cells acquire abnormally
high motility invading the surrounding stroma [47]. This process is characterized by the
secretion of substances that degrade the basement membrane (BM) and the extracellular
matrix (ECM), showing characteristic markers of epithelial-to-mesenchymal transition
(EMT) [48]. Invasion and metastasis are considered hallmarks of cancer because they
represent the aggressive nature of cancer [40]. Therefore, inhibiting tumor invasion is
critical in discovering drugs and/or therapeutic adjuvants. In this work, cell invasion was
determined by the area and perimeter of the invaded matrigel.

As shown in Figure 12A, the invaded area decreased significantly after exposing
the spheroids of SKLU-1 cells for 24 h at 800 and 1000 µg/mL; this decrease was even
more significant than cisplatin. In Figure 12B, the invaded perimeter shows that CSE
concentrations inhibited tumor invasion. The changes that originated in the spheroids due
to the cytotoxicity caused by the treatments can be observed in Figure 12C. As shown in
Figure 12C, the beginning of the angiogenesis process in the control group can be noticed,
confirming the dissociation of the tumor cells from the spheroid, which crossed the BM
and ECM gaining new territories. When observing the images of the treated cells, it was
concluded that CSE did not allow the detachment of cells from the tumor. These results
indicated that CSE could directly inhibit the invasive potential of SKLU-1 cells.
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reported using an ethanol extract from the algae C. lentillifera [51]. The flavonoids obtained 
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species C. racemosa and C. lentillifera (24.52 ± 2.17 and 4.93 ± 0.27 mg QE/g of dry extract, 
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in the chemical components of the same species and/or genus due to seasonal changes, 
geographical and environmental conditions, extraction method used, and solvent used, 
among others [52]. 

Figure 12. Inhibition of tumor invasion in SKLU-1 spheroids. The area and perimeter of the invaded
matrigel determine invasion. Spheroids were exposed to 800 and 1000 µg/mL of CSE and 9.94 µg/mL
of cisplatin for 24 h. Mean values and standard deviation of relative units of fluorescence by Dunnett
post hoc test (p ≤ 0.05) n = 6. Different letters represent significant differences between types of
treatment. (A) Invasion area (µm2); (B) Invasion perimeter (µm); (C) Images of spheroids taken under
an inverted microscope with a scale of 100 µm and an amplification of 20×. The black line represents
the delimitation of the spheroid, while the white line represents the edge of the invading cells.

3. Discussion

The total phenols content obtained from the algae C. sertularioides in this work was
higher than those reported with a methanolic extract of Caulerpa racemosa and Caulerpa
lentillifera (10.33 ± 0.02 and 4.52 ± 0.42 mg GAE/g dry extract, respectively) [49]. A
similar phenol content was reported using a methanol extract from the algae C. racemosa
(19.8 ± 2.01 mg GAE/g dry extract) [50]. Values such as 73 ± 2.08 mg GAE/g dry extract
were reported using an ethanol extract from the algae C. lentillifera [51]. The flavonoids
obtained in this study were between 2.85 and 14.22 times higher than that reported by [49]
in the species C. racemosa and C. lentillifera (24.52 ± 2.17 and 4.93 ± 0.27 mg QE/g of dry
extract, respectively) using a methanol extract. Previous studies have found significant
variations in the chemical components of the same species and/or genus due to seasonal
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changes, geographical and environmental conditions, extraction method used, and solvent
used, among others [52].

Referring to carotenoids, Balasubramaniam et al. [53] reported a lower carotenoid
content (195 ± 0.00 µg β carotene/g dry extract) compared to that obtained in this study
(207.56 ± 2.67 µg Eq. β carotene/g dry extract). However, these researchers used the
species C. lentillifera as raw material. These variations in the content of β carotene and other
pigments in some macroalgae species vary considerably, as these are affected temporally
and spatially [54].

Antioxidants are essential at nutritional and physiological levels because they pre-
vent, protect, delay, and/or eliminate oxidative damage caused by reactive oxygen species
(ROS) to cell membranes, mitochondria, DNA, lipids, or proteins during aerobic cell
metabolism [55]. The antioxidant capacity evaluated by the ORAC assay in this work
showed that C. sertularioides 80% ethanol extract (CSE) (2171.21 ± 1.35 µmol TE/g dry
extract) has greater antioxidant capacity against peroxyl radicals than an ethanolic extract
of C. racemosa (683.72 ± 15.86 µmol TE/g of dry extract) [53]. Likewise, two aqueous
extracts of the algae Fucus vesiculosus had an antioxidant capacity of 1540 ± 220 and
1840 ± 3 µmol TE/g of the dry extract [56]. The antioxidant capacity of the ethanolic ex-
tract is significant because one of the mechanisms that reduce cell viability and invasion
is fighting the oxidative stress generated in the cellular environment, which is one of the
common imbalances of chronic diseases. Different studies have shown a close relation-
ship between the content of phenolic compounds and the high antioxidant capacity of a
substance or food, which is no exception for macroalgae because these compounds have
been considered one of their most effective antioxidants [52]. Carotenoids have also been
recognized for their anti-oxidative properties due to their ability to eliminate and deactivate
free radicals [57]. Therefore, the high antioxidant capacity of C. sertularioides is attributed to
the high content of phenols, flavonoids, and carotenoids.

CSE decreased the cell viability in a 2D culture model with an IC50 of 80.28 µg/mL
after 24 h treatment exposure. The HPLC-MS analysis revealed the presence of caulerpin
(CLP), an alkaloid, in 80% of the algae species of the Caulerpa genus; however, it can be
found in other algae genera [58]. Various biological activities have been attributed to it,
including anticancer, antiviral, and antimalarial activities [50]. Table 5 shows the cytotoxic
effect of caulerpin (CLP), the main compound that was identified in CSE by HPLC-MS
but isolated and purified from other seaweed species on different cancer cell lines in a
2D culture model with relatively low IC50 (from 7.97 to 47.4 µg/mL in a dose-dependent
manner) [59–63]. These variations in the IC50 might depend on the cancer cell line, the
initial cell seeding density, and CLP’s nature, source, and extraction method. According to
He et al. [64], IC50 errors due to differences in the proliferation rates and enzyme activity
of cancer cells were not mentioned in any articles. The authors reported that only 27.6%
(8/29) of the manuscripts said per-well seeding numbers (i.e., cell densities), and the other
papers did not provide such information. Carnosic acid was detected, the main phenolic
diterpene of the Rosmarinus officinalis L. plant (commonly known as rosemary). In a
dose-dependent manner, carnosic acid inhibited the cell viability of three colorectal cancer
cell lines from a two-dimensional model: Caco-2, HT29, and LoVo, with IC50 values from
7.98 to 31.91 µg/mL [65]. Likewise, the presence of dihydroxyflavanone and pinocembrin
is related to the decrease in cell viability, proliferation, and autophagy in lung carcinoma
cells, A549, in a dose-dependent manner.

In this work, the IC50 in the 2D and 3D culture models was 80.28 and 530 µg/mL,
respectively, after 24 h of CSE exposure on SKLU-1 cells for both models. The IC50 obtained
in the 3D model is understandable because cells in 3D models (spheroids) are more resistant
to pharmacological treatments. Table 6 shows different reports on lung carcinoma cells
(H460, A549, and H1650), showing that the IC50 of the same drug on the same cell line
increases significantly in the 3D model compared to the 2D model [66]. Although the
IC50 of these drugs (Table 6) is very low compared to that of CSE, they cause significant
side effects such as anemia (decrease in erythrocytes), leukopenia (decrease in leukocytes),
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neutropenia (reduction of neutrophils), thrombocytopenia (decrease in platelets), nausea,
and vomiting, among others, causing the patient to be more vulnerable to other diseases
and resulting in a lower quality of life. The IC50 fluctuates between 10.39 and 66.51 times
higher when comparing both models (Table 6) while, in this work, the difference is less
than ten times.

Table 5. Cytotoxic effect of caulerpin isolated from various algae genera on different cancer cell lines
in a 2D culture model.

Chemical Structure Sources Cell Lines Type of Cell Lines IC50 [µg/mL] Treatment Time References
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In an additional study, the same concentration of fucosterol and its combination with
5-fluorouracil, which causes cytotoxicity in a 2D colon carcinoma model (HCT116 and
HT29), was ineffective in the three-dimensional model [67]. Likewise, Malhão et al. [68] did
not detect cytotoxic and antiproliferative activity in the three-dimensional breast carcinoma
model (MDA-MB-231) after exposing the cells to 2.06 µg/mL of fucosterol for 96 h. In
the same way, a concentration of 6.59 µg/mL of fucoxanthin did not present a cytotoxic
effect on the spheroids of MDA-MB-231 cells until its combination with 0.54 µg/mL of
doxorubicin, decreasing cell viability by 22% through the MTT assay. Similarly, cytotoxicity
was generated on the spheroids MDA-MB-231 through the LDH assay because of combining
13.18 µg/mL of fucoxanthin with 1.09 and 2.72 µg/mL of doxorubicin, releasing LDH at 56
and 77 %, respectively [69].

The translocation of phosphatidylserine (PS) from the cytoplasm to the outer layer of the
plasma membrane is one of the most relevant alterations that occur on the cell surface under
the induction of apoptosis. Annexin V is a 35 kDa protein with a high affinity for PS, binding
to a Ca+-dependent phospholipid bilayer containing PS [70]. A total of 43% of apoptotic
hepatocarcinoma cells (HepG2) after 48 h exposure to an ethyl acetate fraction from an ethanol
extract (320 µg/mL) of the algae Turbinaria conoides was observed [71]. A total of 20% of
apoptotic glioblastoma cells (A172) were detected after being exposed to a 250 µg/mL hexane
extract from the algae C. lentillifera [72]. Arumugam et al. [73] observed 20–40% of apoptotic
hepatocarcinoma cells (HepG2) using fucoidan at 50–200 µg/mL concentrations. A 96%
ethanol extract of C. racemosa showed the induction of apoptosis in treated cells. It decreased
HeLa cell viability at 24 h and 48 h post-treatment with a range of 50–200 µg/mL [74].

Regarding the cell cycle, it is essential to remember that DNA replication occurs in the
S phase. In the G2 phase, the cell continues the biosynthetic metabolic phase, verifies the
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fidelity of the replicated DNA, and prepares to enter mitosis. Therefore, the arrest of the
cell cycle in phase S indicates damage to the genetic material. CSE may be inhibiting that
replication by interfering in its organization, inhibiting the regulatory proteins of this phase,
or altering the signaling pathways. When the cell cycle stops during cell division, damage,
and error are challenging to repair [75]. In addition, a marked cell arrest generated by CSE
at 1000 µg/mL in phase G2/M after damage in phase S was observed; this arrest suggests
that the remaining cells depended on the G2/M checkpoint to counteract and/or prevent
the consequences of DNA damage occurring in phase S. All of this confirms the conclusions
of Kuczler et al. [76] that the arrest of the cell cycle allows more extensive repairs of the
DNA or apoptosis in the case of damages that extend beyond the point of repair. ROS
is involved in cell cycle arrest by hindering the repair of damaged genetic material by
inhibiting repair pathways [77]. The HPLC-MS analysis revealed the presence of different
bioactive compounds that interfere with the cell cycle, for example, damnacanthal, an
anthraquinone compound (alkaloid of the quinone family) with anticancer properties [78].
Li et al. [79] said damnacanthal induced cell cycle arrest by increasing p27 protein Kip1
levels in ovarian carcinoma cells SKVO3 and A2780. Kim et al. [80] showed that baicalein
stopped the S-phase cell cycle of human colorectal cancer cells HCT-116. Likewise, baicalein
caused cell cycle arrest in G1/S by inhibiting the Akt/mTOR pathway in H1299 and H1650
lung cancer cells, which decreased the expression of the proteins CDK2, CDK4, and cyclin
E2 [81]. Likely, cell cycle arrest in the S and G2/M phases caused by CSE is due to the
compounds damnacanthal and baicalein. To understand the mechanism of action of CSE on
the cell cycle, the activity of the regulatory proteins of the S phases (cyclin E/CDK2) and G2
(Cyclin B/CDK1) and CDKIs, as well as the generation of ROS and the MAPK/AKT/mTOR
signaling pathways, should be examined due to the essential role they play in the regulation
of the cell cycle.

In carcinogenesis, a tumor microenvironment rich in extracellular ATP is created, conse-
quently increasing the interaction of tumor cells and immune cells [39]. Chauvin et al. [82]
showed that after 24 h exposure of human colon cancer spheroids to a plasma-activated
medium, the ATP level was decreased by 70%. The ATP level of colon cancer cell spheroids
(HT-29) decreased by 62 and 80% after 24 and 48h treatment exposure, respectively, when
treated with 100 µg/mL of doxorubicin. Meanwhile, the antimicrobial peptide gramicidin
decreased the ATP level only by 20 and 50% at 113 µg/mL concentration in the same period
reported [83]. Likewise, Martínez-Rodríguez et al. [84] indicated a significant decrease in
cell viability by ATP quantification after one, four, and seven days of naringenin exposure to
different concentrations in spheroids of cervical cancer cells (HeLa).

Depolarization of the mitochondrial membrane induced by CSE is characteristic of
a decrease in mitochondrial membrane potential. It should be noted that no studies of
MMP performed in a three-dimensional model have been reported. Therefore, the possible
comparisons are with monolayer culture data. A 62% loss of MMP from MCF-7 cells has
been observed after 24 h exposure to a fucoidan extract [85]. Likewise, Ryu et al. [86]
reported an increase in the depolarization of the mitochondrial membrane of colon cancer
cells HCT116 using an 80% ethanol extract of the algae Ulva fasciata. Sakthivel et al. [87]
reported a 58% decrease in MMP from lung adenocarcinoma cells, A549, after 24 h of
phytol exposure. Similarly, a reduction in MMP using 100 µg/mL of ethanolic, methanolic,
and hexane extracts of the algae Enteromorpha compressa on squamous cell carcinoma of
the pharynx (FaDu) and squamous carcinoma of the tongue (Cal33) was observed [88].
Similar results have been reported using a 250 µg/mL hexane extract from the algae C.
lentillifera on glioblastoma A172 cells [72]. Cancer cells consume more energy to survive
and continue proliferating than cells under normal conditions. It is important to remember
that this alteration has been identified as a hallmark of cancer [40]. Mitochondria is
the energy provider for cancer cells, so it is considered one of the critical organelles in
cancer therapy [89]. It should be emphasized that mitochondria play an essential role in
apoptosis because it contains different proapoptotic molecules, such as cytochrome c, that
can trigger the intrinsic pathway that leads to programmed cell death and molecules such
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as SMAC/DIABLO (second mitochondrial activator of caspases/direct IAP binding protein
with low PI) that favor apoptosis by inhibiting IAPs (inhibitory apoptosis proteins) [33].
The loss of mitochondrial membrane potential is associated with the generation of reactive
oxygen species (ROS) because the oxidative damage caused by ROS is probably a major
cause of mitochondrial genomic instability and respiratory dysfunction [90]. Srinivas
et al. [77] stated that elevated ROS levels could trigger apoptosis by generating ROS. As a
result of oxidative stress, the pores along the mitochondrial membrane can be oxidized,
or the mitochondrial membrane can be depolarized, causing the release of proapoptotic
compounds into the cytoplasm and thus initiating the apoptotic program [77,91]. Therefore,
it is likely that CSE might increase oxidative stress beyond the limit, thus triggering
mitochondria-mediated apoptosis. Consequently, it was concluded that the mitochondrial
damage observed is a result of CSE-induced apoptosis accompanied by the release of
mitochondrial proapoptotic molecules into the cytoplasm and that the generation of ROS
in cells can be examined to strengthen the results and better understand the mechanism of
action of CSE.

Studying the caspases family is essential to understanding the mechanism and path-
way of triggering the apoptotic program. An upward regulation of caspases-3, -8, and -9 in
a 2D model of MCF-7 cells was reported after 24, 48, and 72 h exposure to a methanolic
extract of Sargassum muticum [92]. Similar results were obtained by Gomes et al. [93] after
having exposed a 2D model of HeLa cells to 500 µg/mL of methanol extract from the
algae Dictyota cilliolata and D. menstrualis. Pradhan et al. [89] observed a positive regula-
tion of caspases-3/7 using 100 µg/mL of ethanolic, methanolic, and hexane extracts of
Enteromorpha compressa on squamous cell carcinoma of the pharynx (FaDu) and squamous
carcinoma of the tongue (Cal33) from a 2D model. Martínez-Rodríguez et al. [84], did not
record caspase activity -3/7, -8 and -9 after 12, 24 and 72 h of exposure of 136.13 µg/mL
of naringenin on 3D model of HeLa cells. A 96% methanolic extract of C. racemosa at
200 µg/mL significantly increased the expression of pro-apoptotic proteins Bax and cleaved
caspase-3 in a 2D culture model compared to the control [74]. The HPLC-MS showed differ-
ent bioactive compounds with pro-apoptotic activity, of which baicalein can be mentioned.
This flavone has excellent potential to treat and prevent cancer without causing severe side
effects [94]. This compound activated caspases-3 and -9 in colon carcinoma cells, HT-29,
and apoptosis [95]. Likewise, Klimaszewska-Wiśniewska et al. [96] reported that quercetin,
a flavonol, induced apoptosis in lung adenocarcinoma cells A549 through the negative
and positive regulation of the anti- and proapoptotic proteins Bcl-2 and Bax, respectively.
Pinocembrin-induced apoptosis of A549 cells is accompanied by an upward increase in
caspase-3 activity [97]. The pro (Bax, Bok, Bak, Bik, Blk, Bad, Bid, Puma, and Noxa) and
antiapoptotic (Bcl-2, Bcl-XL, Bcl-w, Boo, and Mcl-1) proteins of the Bcl-2 family are known
to regulate the mitochondrial pathway of apoptosis. The effect of CSE on caspase-9 is more
evident than on caspase-8; the intrinsic pathway would preferably carry out the apoptotic
process. The induction of apoptosis through the intrinsic pathway was correlated with
the results obtained from the loss of MMP because this is an event before the activation
of caspase-9. This activation occurs when the proapoptotic protein Bax is translocated
to the mitochondrial membrane, inducing its permeability (MOMP: mitochondrial outer
membrane permeabilization). In contrast, the antiapoptotic proteins maintain control of
mitochondrial permeability by blocking the activity of the proapoptotic proteins of that
family. MOMP allows the release of different molecular compounds, such as cytochrome
c, to the cytosol that, together with dATP and Apaf-1, bind to procaspase-9 forming the
apoptosome complex and converting procaspase-9 into its active form (caspase-9) [44].
Therefore, it is likely that intrinsic pathway-mediated apoptosis is due to the balance
generated by quercetin between the Bax and Bcl-2 proteins accompanied by the effect
of baicalein and pinocembrin on caspases-3 and -9. Therefore, the activity of pro- and
anti-apoptotic proteins, including some essential protein compounds on the inner side of
the mitochondrial membrane, can be examined to better understand CSE’s mechanism
of action.
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The greatest terror in carcinogenesis is the sequence of events that lead to metastasis.
Metastasis is the spread of cancer cells from a primary tumor to secondary and tertiary
tissues and/or organs. In addition, it is the main event that causes the death of most cancer
patients [98]. Lee et al. [99] reported that 200 µg/mL of fucoidan extracted from the algae
F. vesiculosus decreased the invasion of lung cancer cells A549 by 86% compared to the
control in a 2D model after 48h of exposure. Similarly, a decrease in the invasion of colon
carcinoma cells HT-29 in a 2D model by inhibiting MMP-2 after 48 h of exposure of these
to 200 µg/mL of fucoidan was reported [100]. Martínez-Rodríguez et al. [84] reported that
naringenin at 136.12 µg/mL significantly decreased the invasion of HeLa cancer cells in
a three-dimensional model. It is important to remember that cancer cells express matrix
metalloproteinases (MMPs), for example, MMP-2/-9, which degrade the ECM-generating
pathways that allow migratory cells to invade freely [101]. These secrete substances that
modify the expression of proteins that control motility and migration so that the tumor
initiates the process of angiogenesis, without which it would not develop [47]. The HPLC-
MS analysis revealed the presence of different bioactive compounds capable of inhibiting the
invasive capacity of tumor cells. Li et al. [79] reported that damnacanthal inhibited migration
and invasion in SKVO3 and A2780 ovarian carcinoma cells. According to Gao et al. [102],
the proliferation and migration of ovarian cancer cells can be suppressed by pinocembrin
through decreased expression of N-cadherin and the gamma-aminobutyric acid receptor,
also confirming that treatment with pinocembrin led to a decrease in the proliferation,
migration, and invasiveness of colorectal cancer cells. Barni et al. [65] reported that carnosic
acid inhibited cell adhesion and migration of the colon cancer line Caco-2, possibly reducing
the activity of secreted proteases such as urokinase plasminogen activators (uPAs) and
metalloproteinases (MMPs). In addition, Klimaszewska-Wiśniewska et al. [96] confirmed
that quercetin repressed the migration of A549 cells, proposing and explaining that the
influence of quercetin disassembly on vimentin filaments, microtubules, and microfilaments
accompanied by its suppressive effect on N-cadherin and vimentin expression could be
responsible for reduced migration of A549 cells in response to quercetin therapy. Therefore,
the decreased invasion in SKLU-1 cells might be due to these compounds’ activity on ECM-
degrading proteins. Consequently, it is suggested to analyze the expression of essential
proteins (MMP-2/9, N-cadherin, among others) that actively participate in the invasive and
metastatic process to understand better how CSE directly inhibited the invasive potential of
SKLU-1 cells.

4. Materials and Methods
4.1. Collection of Macroalgae

The specimen was collected at Carreyeros Beach, Bahía de Banderas, Nayarit, Mexico,
in February 2022. The collected biological material was frozen in plastic bags in the
Biopolymers laboratory of the Department of Biochemical Engineering of the National
School of Biological Sciences-IPN Zacatenco Unit. The macroalgae were washed with
distilled water to remove all epiphytes and impurities and stored in an ultra-freezer at
−74 ◦C for further analysis. The observation of taxonomic characteristics and a histological
examination of the specimen based on dichotomous keys in the literature were conducted
to identify the species. The specimen’s internal and external morphology was analyzed
using a microscope [103] for this identification.

4.2. Macroalgae Extract

Once the species was identified, Caulerpa sertularioides was freeze-dried for 72h at
−50 ◦C and 0.014 mbar and sprayed to obtain a fine powder of average size less than
1/2 mm. Then, the extract was obtained using an ultrasonic bath for 1 h with cold stirring
using 80% ethanol [104]. Finally, the extract was dried in centrifugal concentrators (Genevac
TM miVac Duo Concentrator) for further trials.
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4.3. Characterization of Macroalgae Extract
4.3.1. Quantification of Total Phenolic Compounds

The content of total phenolic compounds was determined by the Folin-Ciocalteu
method with some modifications. The researchers added 90 µL of 10% Folin-Ciocalteu
reagent to 20 µL of C. sertularioides ethanol extract. After five min., 90 µL of Na2CO3 solution
(60 g/L) was added to the mixture. Subsequently, the preparation was incubated for 90 min
in a microplate reader (SYNERGY H1, BioTek, Winooski, VT, USA), and the absorbance
was measured at 750 nm [105]. The content of phenolic compounds was expressed as mg
of gallic acid (GAE) equivalent/g of sample.

4.3.2. Quantification of Total Flavonoids

According to Fattahi et al. [106], the colorimetric method evaluated flavonoid content
with some modifications. Briefly, 0.5 mL of C. sertularioides ethanol extract was mixed with
2 mL of distilled H2O and 150 µL of 5% NaNO2. After five min., 150 µL of 10% AlCl3 was
added, and finally, 2 mL of NaOH at 0.5 M after three min. The mixture was then incubated
for 30 min. The absorbance was read at 510 nm on a spectrophotometer (GENESYS 10S,
Thermo Fisher Scientific, Waltham, MA, USA). The total flavonoid content was expressed
in mg of quercetin (QE) equivalent/g of the sample.

4.3.3. Quantification of Total Carotenoids

The total carotenoid content was evaluated by spectrophotometry according to some
modifications by Osuna-Ruiz et al. [105]. Briefly, 0.01 g of powdered sample was mixed
with 5 mL of acetone, leaving it to stand for 10 min. Then, 5 mL of petroleum ether was
added to the mixture. The solution was washed with distilled water until the acetone
was removed, and the wastewater was removed with anhydrous sulfate. Subsequently,
absorbance was read at 450 nm using a spectrophotometer (GENESYS 10S, Thermo Fisher
Scientific, Waltham, MA, USA). The total carotenoid content was expressed as µg/g of
β carotene

X (µg/g) = A × y (mL) × 106/A1%1 cm × 100

x (µg/g) = x (µg)/sample weight (g) × FD

where:

A: Absorbance
y: Volume of the solution that gave the absorbance
A1%1 cm: Carotenoid absorption coefficient
FD: Dilution Factor

4.3.4. Determination of Antioxidant Capacity by ORAC

With some modifications, oxygen radical absorption capacity (ORAC) was determined
according to Quek et al. [107]. Briefly, 20 µL of a 10 mM fluorescein solution and 50 µL of
2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) 12 mM were added to 20 µL of the
C. sertularioides sample or 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox).
The readings were performed by recording the loss of fluorescence every two minutes for
two hours at an excitation length of 485 and 515 nm of emission using a microplate reader
(SYNERGY H1, BioTek, Winooski, VT, USA). All samples were prepared in PBS at pH 7.4
in a 1:2000 ratio.

The ORAC value was calculated using the following equation, and the results were
expressed as TEAC values (µmol of Trolox/g dry base sample).

ORAC value = [(AUC sample − AUC control)/(AUC Trolox − AUC control)] · FD

where:

AUC sample = area under the sample curve
AUC control = area under the control curve and
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AUC Trolox = area under the curve using the Trolox as a standard sample
FD = dilution factor of extracts

4.3.5. Liquid Chromatography Profiling Coupled to Mass Spectrometry (HPLC-MS)

It was carried out in agreement with Chia et al. [50] with some modifications. The CSE
extract was subjected to HPLC-MS after testing its antitumor activity. The samples (500 µL)
were injected and analyzed with the LCMS Triple Quadrupole system, Agilent brand model
G6410 with dual ESI source. The solution was filtered with a 0.45 µm Nylon syringe filter.
The dimension of the column used was 4.6 × 150 mm. The binary mobile phase consisted
of solvents A (water with 0.1% formic acid) and B (100% acetonitrile). The flow rate was
10 L/min. The data were analyzed with Agilent MasHunter Qualitative Analysis B.05.00
software (https://www.agilent.com/en-us/support/software-informatics/masshunter-
workstation-software/, accessed on 20 April 2023). The compounds were identified by
searching METLIN: Metabolite and Tandem MS Database. The HPLC-MS parameters were
as follows: ionization chamber temperature, 100 ◦C; gas temperature, 300 ◦C; capillary
voltage, 4 KV; fragments voltage, 95 and 135 V; and gas flow, 10 L/min. The electrospray
ionization (ESI) source was established in positive and negative modes to acquire all mass
spectrometric data.

4.4. Antitumor Activity
4.4.1. Cell Line

The SKLU-1 lung cancer cell line (ATCC®CCL-2™) was grown in RPMI GIBCO™
(Thermo Fisher Scientific) medium supplemented with 10% fetal bovine serum (FBS)
GIBCO™ (Thermo Fisher Scientific) and 1% antifungal and antibiotic GIBCO™ (Thermo
Fisher Scientific) under a temperature of 37 ◦C in an atmosphere of 5% CO2, with 95% of
relative humidity.

4.4.2. Study Design

The experiments were carried out according to the study design divided into four
phases, depicted in Figure 13.

In Phase 1, the cytotoxic effects of six CSE concentrations and one concentration of
Cis were examined by the membrane permeability assay in the 2D culture model of lung
adenocarcinoma cells SKLU-1. Considering the results obtained in Phase 1, (500, 800, and
1000 µg/mL, IC50x4, IC50x6, and IC50x12, respectively) were selected to be tested in a 3D
culture model. According to the results obtained in Phase 2, the two best concentrations of
CSE were chosen to conduct annexin V, apoptosis morphology, and cell-cycle studies in a
2D model. In Phase 4, these two concentrations were tested in 3D cultures by analyzing
ATP level, mitochondrial membrane permeability, caspase activity, and cell invasion.

In all the experiments, control cells (negative control) were incubated in a culture
medium with 0.1% DMSO.

4.4.3. Cell Viability in a 2D and 3D Culture Model by Plasma Membrane Integrity

This trial was carried out according to Martínez-Rodríguez et al. [84] with some
modifications. For the 2D model, 5.0 × 103 cells were seeded in 96 wells of adhesion
plates (Corning®). SKLU-1 cells were exposed to 25, 50, 75, 100, 150, 200 µg/mL CSE and
9.94 µg/mL of Cis for 24 h. After the treatment, the dye Sytox Green® was added, and the
fluorescence was read in a microplate reader (SYNERGY H1, BioTek, Winooski, VT, USA).
The 3D model was carried out the same way as the 2D model with some modifications. The
researchers seeded 1.2 × 103 cells in ultra-low adhesion plates from 96 wells (Corning®).
After the spheroid’s formation, the SKLU-1 cells were exposed to 500, 800, and 1000 µg/mL
of CSE and 9.94 µg/mL of cisplatin for 24 h.

https://www.agilent.com/en-us/support/software-informatics/masshunter-workstation-software/
https://www.agilent.com/en-us/support/software-informatics/masshunter-workstation-software/
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4.4.4. Annexin V Test in a 2D Culture by Flow Cytometry

The annexin V test was performed with the Annexin V-FITC Apoptosis kit (Calbiochem®)
following the manufacturer’s specifications. Briefly, 800 × 103 cells per mL were seeded in
3.5 cm plates from 6 wells (Nest®) exposed to 800 and 1000 µg/mL of CSE and 9.94 µg/mL of
cisplatin for 24 h. The cells were stained with annexin V-FITC and propidium iodide to be
later analyzed in BD LSRFortessa cytometer (BD Biosciences).

4.4.5. Nuclear Staining with Hoechst 33258 for the Study of Cell Morphology

This trial was performed as described by Wang et al. [95] with some modifications.
Briefly, 5 × 103 cells were seeded in 96-well (Corning®) plates exposed to 800, 1000 µg/mL
of CSE, and 9.94 µg/mL of cisplatin for 24 h. Subsequently, the harvested cells were washed
with PBS and fixed with 4% paraformaldehyde for 20 min. The cells were stained with
Hoechst 33258 for 10 min, then observed under an inverted microscope Zeiss Axiovert 25
(Carl Zeiss) at a magnification of 20× and analyzed in the ImageJ software (http://imagej.
nih.gov/ij, accessed on 20 April 2023).

4.4.6. Cell Cycle Test in a 2D Model by Flow Cytometry

This trial was performed according to Gomes et al. [93] with some modifications. The
SKLU-1 cells were seeded in a 3.5 cm plate of 6 wells (Nest®) (200 × 103/mL). After 24 h
of exposure to the treatments, these were harvested and fixed in 4% paraformaldehyde
for 60 min. Subsequently, Rnase A and propidium iodide (30 µg/mL) was added. The
DNA content was analyzed using a BD LSRFortessaTM (BD Biosciences) flow cytometer. A
total of 20,000 events were purchased. For data analysis, FlowlogicTM Analysis Software,
version 8.6, was used. The data presented are representative of those obtained in three
independent experiments conducted in duplicate.

http://imagej.nih.gov/ij
http://imagej.nih.gov/ij
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4.4.7. ATP Quantification in a 3D Culture Model

The cell viability assay by ATP quantification was performed with the CellTiter-
Glo® kit, Reagent 2.0 (Promega Corp., Madison, WI, USA), following the manufacturer’s
specifications. Briefly, 300 cells were seeded per well. After 24 h of exposure to the spheroids
with 800 and 1000 µg/mL of CSE and 9.94 µg/mL of cisplatin, the CellTiter-Glo® reagent
was added and incubated for 30 min. to then quantify the luminescence in a microplate
reader (SYNERGY H1, BioTek). The detection is based on using the luciferin-luciferase
reaction to measure the amount of ATP of viable cells where the amount of light detected is
directly proportional to the ATP content and indicates the presence of metabolically active
(viable) cells.

4.4.8. Mitochondrial Membrane Potential (∆Ψm) Assay in a 3D Model

This trial was conducted in agreement with Wang et al. [95] with some modifications.
The researchers seeded 1.2 × 103 cells in ultra-low adhesion plates from 96 wells (Corning®).
After forming the spheroid, it was exposed to 800 and 1000 µg/mL of CSE and 9.94 µg/mL
of cisplatin for 24 h. Subsequently, rhodamine 123 was added, and fluorescence was read
in a microplate reader (SYNERGY H1, BioTek).

4.4.9. Caspases 3/7, -8, and -9 Test in a 3D Model

Caspase activity was determined with the Caspase-Glo®, -3/7, -8, and -9 kit (Promega
Corp., Madison, WI, USA) following the manufacturer’s specifications. Briefly, 300 cells
were seeded per well, and after 24 h of exposure to the spheroids with 800 and 1000 µg/mL
of CSE and 9.94 µg/mL of cisplatin, the corresponding Caspase-Glo® reagent was added.
Subsequently, it was incubated for an hour and quantified the luminescence in a microplate
reader (SYNERGY H1, BioTek). The luminescence detected is proportional to the amount
of caspase activity present.

4.4.10. Invasion Test in a 3D Culture Model

The invasion test was performed as described by Martínez-Rodríguez et al. [84] with
some modifications. Briefly, 1.2 × 103 cells were seeded per well, and after the formation of
the spheroid, it was treated with 800 and 1000 µg/mL of CSE and 9.94 µg/mL of cisplatin
for 24 h. Subsequently, 100 µL of Matrigel® Matrix (Corning®) per well and then RPMI
medium was added. The invasion was determined using an inverted Zeiss Axiovert
25 microscope (Carl Zeiss) and ImageJ software and calculated by measuring the area and
perimeter between the spheroids’ edge and the invading cells’ edge.

5. Conclusions

The results found in this work show that C. sertularioides extract is a potential ther-
apeutic adjuvant capable of significantly reducing cell viability in SKLU-1 lung cancer
spheroids. In addition, it generated mitochondrial damage and induced apoptosis through
both signaling pathways. CSE also caused biochemical and morphological changes typical
of apoptosis and directly inhibited the invasive potential of SKLU-1 tumor cells. It stopped
the cell cycle in the S and G2/M phases in response to genetic damage by preventing
damaged DNA from replicating further and thus inhibiting the proliferative capacity of
cells. As observed, CSE has antioxidant, antiproliferative, proapoptotic, and anti-invasive
abilities, so it becomes a potential candidate for an alternative treatment with bioactive
compounds that can act as adjuvants, decreasing the dose of chemotherapeutic drugs and,
at the same time, the aggressivity of them. Additional studies are required to strengthen
and better understand CSE’s mechanism of action on lung cancer’s carcinogenesis.

6. Recommendations for Future Work

The current study suggests using the CSE’s primary component, caulerpin, to deter-
mine its effect and mechanism of action. A multi-approach with molecular and histological
analysis and combination with first-line drugs must be included.
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