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Abstract: Fungal infections represent a relevant issue in agri-food and biomedical fields because they
could compromise quality of food and humans’ health. Natural extracts represent a safe alternative to
synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes
and by-products offer an eco-friendly source of bioactive natural compounds. In this paper, phenolic-
rich extracts from Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L.
peel, and Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis. Finally,
these extracts were tested as antimicrobial agents against pathogenic filamentous fungi and dermato-
phytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton interdigitale.
The experimental results evidenced that all extracts exhibited a significant growth inhibition for
Trichophyton interdigitale. Punica granatum L., Castanea sativa Mill., and Vitis vinifera L. extracts showed
a high activity against Alternaria sp. and Rhizopus stolonifer. These data are promising for the potential
applications of some of these extracts as antifungal agents in the food and biomedical fields.

Keywords: phenolic-rich extracts; circular economy; green chemistry; antifungal activity; filamentous
fungi; dermatophytes

1. Introduction

Fungal infections pose a major challenge to academia and industry operating in agri-
food and biomedical fields. Annually, fungal pathogens can lead to losses of up to 30%
in crops and orchards, endangering the quality and safety of food and feed even through
the production of mycotoxins such as aflatoxins by Aspergillus, which represent a serious
threat for humans due to their carcinogenicity and large diffusion among different food
matrices [1–3].

Fungi are major concerns throughout the entire food supply chain, including post-
harvest phases, where losses can lead to resources depletion, increased safety risks for
consumers, and waste production [4]. The occurrence across supply chains of microbial
pathogens, including fungi and the consequent insurgence of food-borne diseases, could
be mitigated and prevented through the application of food safety principles according to
the Hazard Analysis and Critical Control Point (HACCP) methodology and ISO 22000:2018
standard [5–7]. The presence of yeasts and fungi may be investigated in food and feed by
certified laboratories according to standard horizontal ISO methods [8,9].

Aside from food contamination, humans can be affected by fungi even by inhalation,
leading to the onset of life-threatening illness, especially in immunocompromised subjects,
such as aspergillosis, allergies, and asthma [10,11]. In addition to invasive diseases, cuta-
neous infections could be caused by fungal species and dermatophytes responsible for a
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series of human disorders of nails, hair, and skin due to their ability to degrade keratin [12].
The increased tolerance and resistance to synthetic antifungal agents are reflected in the
enhancement of morbidity rates [13].

Within this framework, natural compounds could offer concrete opportunities for
the development of novel antifungal agents to fight fungal pathogens affecting humans,
animals, and foods in compliance with the principles of sustainability and green chem-
istry [14–17]. Among natural compounds, polyphenols represent an interesting group
of secondary metabolites widely diffused in the plant world. They include several thou-
sand compounds with a huge variability of molecular weight as phenolic acids, stilbenes,
flavonoids, lignans, and tannins deriving from the acetate and shikimate pathways [18].
These compounds have multiple physiological activities: they act as defense agents against
various abiotic and biotic stresses and in response to pathogen attacks, are signaling
compounds, attract pollinating insects, are responsible for the color of flowers and some
fruits, protect against UV-Vis radiation, and show structural functions [18]. They are also
well known for their beneficial effects on human health in the prevention and treatment
of chronic diseases such as diabetes, cancer, and cardiovascular and neurodegenerative
diseases for their strong antioxidant, anti-inflammatory, antiaging, antiproliferative and
antimicrobial activities [19–23].

Polyphenols are also found in food and agro-industrial by-products and wastes [24–27].
According to the green chemistry and circular economy concept, strategies aimed at the
valorization of these materials should be designed and developed for the sustainability of
production processes and the environment [28].

Olive (Olea europaea L.), chestnut (Castanea sativa Mill.), pomegranate (Punica granatum L.),
and vine (Vitis vinifera L.) are typical cultivated plants in the Mediterranean area. Their
stems, branches, leaves, and fruits contain polyphenols. Processing them produces large
amounts of by-products and wastes that represent a cost to agri-business because they
require proper disposal to ensure environmental sustainability. Alternatively, they can
be valorized by recovering the active ingredients for use in various applications with
significant economic and environmental benefits [28].

The production of extra-virgin olive oil from Olea europaea L. results in olive leaves,
wastewaters, and pomace. These by-products and wastes contain phenolic alcohols and
acids, and secoiridoids and flavonoids. Only 2% of the total polyphenols is found in olive
oil; 53% and 45% are in wastewaters and pomace, respectively [29]. Chestnut (Castanea
sativa Mill.) is mainly utilized for wood and fiber production. The corresponding wastes,
rich in hydrolysable tannins with antioxidant and antimicrobial activity, are used as tanning
agents for leather; mordants for textiles, paper, and wood; and as natural agents to clarify
wine and stabilize the organoleptic characteristics [30,31]. Pomegranate juice production
generates waste consisting mainly of peels and seeds. Peels constitute 50% of the total
fruit and ellagitannins account for >99% of the total polyphenolic content of pomegranate.
These compounds have shown promising therapeutic properties as anti-inflammatory
and antibacterial agents [32,33]. Grape (Vitis vinifera L.) processing produces stalks, lees,
marc, and grape seeds. The pomace accounts for about 20–30% of the original weight
of the grapes, and the grape seeds for about 38–52% of the solid waste [34]. These by-
products are valuable raw materials due to their high polyphenol content and antioxidant
activity [35,36].

In this work, phenolic-rich extracts deriving from Olea europaea L. de-oiled pomace,
Castanea sativa Miller wood, Punica granatum L. peel, and Vitis vinifera L. pomace and seeds
were characterized by HPLC-DAD-MS to define the qualitative and quantitative profile
of polyphenols. Finally, they were tested against a panel of pathogenic filamentous fungi
and dermatophytes such as Aspergillus brasiliensis (ex A. niger), Alternaria sp., Rhizopus
stolonifer, and Trichophyton interdigitale. The advantages of using these natural extracts
over synthetic antifungal agents relate to the sustainability of the agri-food chain from
a biorefinery perspective, according to green chemistry methodologies and the circular
economy model.
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2. Results and Discussion
2.1. Phenolic-Rich Extracts

Based on our experience on the valorization of agro-industrial by-products and wastes,
Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and
Vitis vinifera L. pomace and seeds were selected as starting materials for the corresponding
phenolic-rich extracts named OEP, CSW, PGP, VVP, and VVS, respectively. OEP, CSW, and
VVS were commercial industrial fractions obtained by sustainable processes through water
or water–ethanol extraction and purification/concentration by membrane technology [35].
The low percentage of ethanol, in combination with water, increased the yield of extraction
of polyphenols, avoiding high temperatures which would cause their degradation. This
methodology allows for making the production processes sustainable even on an industrial
scale, avoiding the use of pollutants or toxic solvents for both the extraction and refining
steps. In particular, membrane technologies are currently an interesting example of a
sustainable separation and concentration technology, often integrated in biorefineries to
rationalize the processes and the structure of the plants, and to reduce environmental and
economic impacts whilst maintaining the quality of the products. For the extracts under
examination, several refining steps were applied from ultrafiltration up to reverse osmosis
to obtain the concentrated solutions to be spray-dried and the purified water to be reused
for subsequent extraction batches [37].

PGP and VVP were prepared in a laboratory as described in the Section 3 Materials
and Methods.

OEP, CSW, PGP, VVP, and VVS were analyzed by HPLC-DAD-MS to define the qual-
itative and quantitative content of polyphenols (see Tables 1 and 2 and Figures S1–S5;
Tables S1–S5 in Supplementary Materials). As reported in Table 1, OEP, CSW, and PGP
are characterized by a total polyphenol content of 173 ± 5 mg/g, 260 ± 3 mg/g, and
115 ± 2 mg/g, respectively. OEP contains mainly hydroxytyrosol (138 ± 4.0 mg/g)
and tyrosol in lower amount (35.0 ± 0.8) [38]. The most representative phenolic com-
pounds found in CSW and PGP are hydrolysable tannins such as vescalagin (47.6 ± 0.5)
and castalagin (97.7 ± 0.9) in CSW, and α-punicalagin (27.1 ± 0.3) and β-punicalagin
(58.5 ± 0.6) in PGP, together to low amounts of vescalin (9.3 ± 0.2), castalin (8.1 ± 0.2),
α-punicalin (1.25 ± 0.04), and β-punicalin (1.32 ± 0.02) obtained by hydrolysis during
water extraction [39–42].

As reported in Table 2, VVP and VVS are characterized by a total polyphenol content of
425 ± 8 mg/g and 686 ± 20 mg/g, respectively. They are represented by condensed tannins
with different degrees of polymerization, which are stable under water extraction conditions.
The main components are procyanidin tetramers with 293 ± 4 mg/g and 315 ± 9 mg/g in
VVP and VVS, respectively. The monomers catechin and epicatechin were identified in both
samples, although in different amounts (0.414 ± 0.008 mg/g and 0.320 ± 0.008 mg/g in
VVP; 45 ± 1 mg/g and 30.3 ± 0.8 mg/g in VVS). The study of the chromatographic profile
of VVP at 520 nm also allows for the identification and quantification of anthocyanins
retained within the plant material after the winemaking process (total: 3.14 ± 0.07 mg/g).
The absence of aglycones and large amounts of degradation products suggests that the
transformation processes undergone by the plant material were able to keep most of the less
stable compounds intact. However, the low amount of these compounds in a by-product
such as grape marc is plausible, given that they are largely transferred into the wine during
winemaking, and due to their low stability.
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Table 1. Quali-quantitative HPLC-DAD-MS analysis of OEP, CSW, and PGP.

Extract Identification RT (min) λmax (nm) [M − H]− (m/z) mg/g

OEP
Hydroxytyrosol 20.6 280 153 138 ± 4.0

Tyrosol 27.0 276 137 35.0 ± 0.8
Total polyphenols 173 ± 5

CSW

Vescalin 6.9 246, 276 sh 631 9.3 ± 0.2
Castalin 8.8 246, 280 sh 631 8.1 ± 0.2

Pedunculagin I 11.5 258, 378 sh 783 10.0 ± 0.2
Monogalloyl glucose 14.1 274 331 3.81 ± 0.08

Gallic acid 15.4 272 169 16.2 ± 0.3
Vescalagin 18.4 245, 280 sh 933 47.6 ± 0.5

Dehydrated tergallic-C-glucoside 20.8 250, 374 613 9.3 ± 0.2
Castalagin 21.9 248, 280 sh 933 97.7 ± 0.9

Digalloyl glucose 24.1 274 483 19.6 ± 0.2
Trigalloyl glucose 32.4 276 635 20.6 ± 0.2

Tetragalloyl glucose 38.0 276 787 7.7 ± 0.1
Ellagic acid 39.6 254, 370 301 6.1 ± 0.2

Pentagalloyl glucose 40.8 274 939 4.26 ± 0.08
Total polyphenols 260 ± 3

PGP

HHDP glucose 1 10.4 slope 481 0.75 ± 0.01
HHDP glucose 2 11.1 slope 481 0.437 ± 0.009
HHDP glucose 3 12.5 slope 481 0.71 ± 0.01

Gallic acid 15.4 272 169 1.25 ± 0.02
Monogalloyl glucose 15.5 274 331 0.106 ± 0.005

α-Punicalin 17.0 258, 378 781 1.25 ± 0.04
β-Punicalin 17.2 258, 380 781 1.32 ± 0.02

Punicalagin isomer 1 18.4 258, 378 1083 6.90 ± 0.09
Pedunculagin I 18.7 258, 378 sh 783 1.16 ± 0.06

Punicalagin isomer 2 19.6 258, 378 1083 6.91 ± 0.08
Pedunculagin III 21.0 260, 378 933 0.69 ± 0.01
α-Punicalagin 23.7 258, 378 1083 27.1 ± 0.3
β-Punicalagin 25.9 258, 380 1083 58.5 ± 0.6

Ellagic acid hexoside 31.7 254, 362 463 2.10 ± 0.08
Vanoleic acid bilactone 34.7 258, 366 469 0.45 ± 0.01
Ellagitannin m/z 951 35.9 264, 364 951 1.02 ± 0.02

Ellagic acid rhamnoside 37.0 254, 360 447 0.61 ± 0.03
Ellagic acid pentoside 37.4 254, 362 433 0.87 ± 0.04

Ellagic acid 39.1 254, 368 301 2.60 ± 0.08
Total polyphenols 115 ± 2

Results are expressed as mg of each compound per g of extract. Retention times (RT), wavelengths of maximum
UV absorbance (λmax), and the m/z values for the ESI-MS molecular ions after negative ionization of each
compound are reported.

2.2. Antifungal Activity

As already reported in the Introduction, polyphenols showed antimicrobial activity
and several phenolic-rich extracts have been tested against pathogens [43–45].

In this work, the selected fungi in relation to food and biomedical issues were
Alternaria sp., Aspergillus brasiliensis, Rhizopus stolonifer, and Trichophyton interdigitale. Al-
ternaria is a ubiquitous genus that includes about 300 species between saprophytes and
pathogens [46]. Because of its wide diffusion in plants, it could represent a threat during
pre- and post-harvest phases, even through the production of mycotoxins [47]. In particular,
the Alternaria species can produce more than 70 different toxins, which led the European
Food Safety Authority (EFSA) to reveal the exposure levels of the European population to
Alternaria by-toxins, which were troubling owing to higher levels found on toddlers [48,49].
Aspergillus brasiliensis is one of the 18 species included in the black aspergilli group, As-
pergillus section Nigri [50]. Generally confused with A. niger, this biseptate species is
responsible for the production of several secondary metabolites such as deyhidrocarolic
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acid, funalenone, and malformins [51]. Aspergillus brasiliensis ATCC 16,404 is widely used
as a reference microorganism in several European standard ENs for chemical disinfectants
and antiseptics in the medical area [52]. Moreover, the food industry and international orga-
nizations use Aspergillus brasiliensis ATCC 16,404 as a test microorganism in bio validation
assays, i.e., to investigate the effects of UV sterilization treatment on food packaging [53].
Rhizopus stolonifer is a Zygomycete which affects a wide range of fruits and vegetables, as
well as bread. The etiological agent of “soft rot” and “black bread mold” is characterized
by a fast penetration ability and the rapid growth of a hairy gray mycelium, resulting in
one of the most uncontrollable postharvest pathogens [54]. Trichophyton interdigitale is a
clonal anthropophilic line of T. mentagrophytes involved in human dermatophytosis such
as athlete’s foot “tinea pedis” and onychomycosis [55,56]. As other Trichophyton sp. it
may produce biofilms as a virulence factor, reducing the effectiveness of locally applied
antifungal agents or making it necessary for them to be used at high concentrations [57].

Table 2. Quali-quantitative HPLC-DAD-MS analysis of polyphenols in VVP and VVS.

Extract Identification RT (min) λmax (nm) [M + H]+ (m/z) mg/g

VVP

Delphinidin-3-glucoside 8.2 522 465 0.262 ± 0.007
Cyanidin-3-glucoside 9.0 514 449 0.0097 ± 0.0003
Petunidin-3-glucoside 9.3 524 479 0.365 ± 0.008
Peonidin-3-glucoside 10.6 518 163 0.089 ± 0.003
Malvidin-3-glucoside 11.0 526 493 1.30 ± 0.02

Delphinidin-3-coumaroyl glucoside 15.8 530 611 0.130 ± 0.004
Cyanidin-3-acetyl glucoside 17.6 524 491 0.0100 ± 0.0005

Petunidin-3-coumaroyl glucoside 18.0 532 625 0.173 ± 0.005
Malvidin-3-coumaroyl glucoside 20.0 532 639 0.80 ± 0.02

Gallic acid 16.0 272 169 [M − H]− 2.37 ± 0.06
Procyanidin dimer B3 30.6 280 579 7.0 ± 0.2

Catechin 33.9 280 291 0.414 ± 0.008
Procyanidin trimers 57.4 280 867 2.01 ± 0.05

Procyanidin dimer B6 59.0 280 579 2.85 ± 0.08
Procyanidin dimer B2 64.0 280 579 10.2 ± 0.3

Epicatechin 76.5 280 291 0.320 ± 0.008
Procyanidin trimer 77.0 280 867 50 ± 2

Epicatechin gallate dimers 79.0 280 883 0.85 ± 0.02
Procyanidin tetramers 90.9 280 1155 293 ± 4

Epicatechin gallate dimers 104.4 280 883 53 ± 1
Total polyphenols 425 ± 8

VVS

Gallic acid 16.0 272 169 [M − H]− 1.50 ± 0.02
Procyanidin dimer B3 30.6 280 579 26 ± 1

Catechin 33.9 280 291 45 ± 1
Procyanidin trimer 57.4 280 867 8.8 ± 0.2

Procyanidin dimer B6 59.0 280 579 11.2 ± 0.3
Procyanidin dimer B2 64.0 280 579 13.6 ± 0.3

Epicatechin 76.5 280 291 30.3 ± 0.8
Procyanidin dimers gallate 88.3 280 731 20.1 ± 0.5

Procyanidin trimers digallate 89.7 280 1171 315 ± 9
Procyanidin tetramers (I) 90.0 280 1155 54.7 ± 0.16

Epicatechin gallate 92.2 280 443 6.24 ± 0.08
Procyanidin tetramers (II) 95.0 280 1155 11.6 ± 0.5

Procyanidin dimers digallate 98.5 280 883 142 ± 5
Total polyphenols 686 ± 20

Results are expressed as mg of each compound per g of extract. Retention times (RT), wavelengths of maximum
UV absorbance (λmax), and the m/z values for the ESI-MS molecular ions after positive or negative ionization of
each compound are reported.

In the experimental design of this work, for each pathogen three different concentra-
tions of OEP, CSW, PGP, VVP, and VVS were tested (1.0%, 0.5% and 0.1% w/v) using a
diffusion assay [58,59]. Even though, in the literature, higher concentrations are tested by
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diffusion assays (up to 5–10–15% w/v) [60–62], the maximum concentration evaluated in
this work was 1%, both for technical reasons related to the influence of the extract on the
technological properties of the PDA medium and for economic evaluation in view of the
potential industrial application of extracts that should prove to be active. Benzoic acid (BA,
E210) and potassium sorbate (SK, E202) were used as positive controls. These compounds
are largely employed as food additives with antifungal properties. BA, in the limit of 0.1%,
and SK are Generally Recognized as Safe (GRAS) by the Food and Drug Administration
(FDA), and their use in Europe is regulated by EC 1333/2008 [63,64]. Moreover, BA is a
component of Whitfield’s ointment, a topical treatment of tinea dermatophytosis still used
today in developing countries [65,66].

The data of the antifungal activity of OEP, CSW, PGP, VVP, and VVS against Alternaria sp.,
Aspergillus brasiliensis, Rhizopus stolonifer, and Trichophyton interdigitale are reported in
Tables 3–5 and Figures 1–4.

Table 3. Antifungal activity of phenolic-rich extracts against Alternaria sp.

Extract/Compound
Growth Inhibition (%) at Different Extract Concentration (w/v)

1.0% 0.5% 0.1%

OEP 48.3 ± 2.7 c 35.8 ± 8.7 bc 18.2 ± 14.4 c

CSW 100 a 32.1 ± 7.9 c 4.7 ± 4.4 c

PGP 100 a 100 a 100 a

VVP 62.6 ± 9.9 b 46.3 ± 13.1 b 34.7 ± 8.8 b

VVS 17.6 ± 8.0 d 24.1 ± 1.8 c 5.0 ± 3.6 c

BA 100 a 100 a 100 a

SK 100 a 100 a 100 a

Sign. code *** *** ***
Mean ± SD (n = 6). Values within each column followed by different letters are significantly different according to
Tukey’s HSD test (p < 0.05). Sign. code expresses results of ANOVA analysis (*** corresponding to p < 0.001).

Table 4. Antifungal activity of phenolic-rich extracts against Rhizopus stolonifer.

Extract/Compound
Growth Inhibition (%) at Different Extract Concentration (w/v)

1.0% 0.5% 0.1%

OEP No effect No effect No effect
CSW 82.0 ± 8.7 b 83.4 ± 3.7 c 82.1 ± 5.5 b

PGP 100 a 92.8 ± 6.6 b 68.4 ± 6.6 c

VVP 42.0 ± 5.7 c 7.0 ± 7.9 de No effect
VVS 13.7 ± 6.2 d No effect No effect
BA 100 a 100 a 100 a

SK 100 a 100 a 100 a

Sign. code *** *** ***
Mean ± SD (n = 6). Values within each column followed by different letters are significantly different according to
Tukey’s HSD test (p < 0.05). Sign. code expresses results of ANOVA analysis (*** corresponding to p < 0.001).

As showed in Figure 1, OEP, CSW, PGP, and VVS did not reveal any inhibitory
activity against Aspergillus brasiliensis also at 1.0% (w/v). The only extract exhibiting an
activity, albeit modest, was VVP, with a growth inhibition of 48.0 ± 3.9% at 1.0% w/v,
but a dramatic decrease in activity was observed at 0.5 and 0.1% w/v. Similar to other
dark septate endophytes, some Aspergillus species, including A. niger, can degrade tannins
using tannase enzymes. In particular, the Aspergillus niger GH1 strain showed the ability
to degrade ellagitannins from pomegranate peel due to the activity of the ellagitannase
enzyme, releasing ellagic acid from punicalagin [67–69]. The growth inhibition observed
with VVP could be related to the presence of anthocyanins [70].
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Table 5. Antifungal activity of phenolic-rich extracts against Trichophyton interdigitale.

Extract/Compound
Growth Inhibition (%) at Different Extract Concentration (w/v)

1.0% 0.5% 0.1%

OEP 66.5 ± 2.9 b 25.3 ± 1.2 b 14.0 ± 1.0 d

CSW 100 a 100 a 100 a

PGP 100 a 100 a 100 a

VVP 100 a 100 a 45.3 ± 4.9 c

VVS 100 a 100 a 52.2 ± 4.9 b

BA 100 a 100 a 100 a

SK 100 a 100 a 100 a

Sign. code *** *** ***
Mean ± SD (n = 6). Values within each column followed by different letters are significantly different according to
Tukey’s HSD test (p < 0.05). Sign. code expresses results of ANOVA analysis (*** corresponding to p < 0.001).
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Figure 1. Antifungal activity of phenolic-rich extracts against Aspergillus brasiliensis.

Table 3 and Figure 2 report the antifungal activity of OEP, CSW, PGP, VVP, and VVS
against Alternaria sp. At 1.0% w/v, all extracts inhibited the growth of the pathogen, even if
some differences of activity were observed. The lowest growth inhibition was evidenced
for VVS (17.6 ± 8.0%) and the highest for CSW and PGP (100%). The inhibitory effect
of CSW drastically decreased starting from 0.5% w/v while PGP retained the maximum
activity also at 0.1% w/v. Due to this high effect, PGP was tested at a lower concentration
(0.01% w/v), evidencing a significant decrease in activity, with an EC50 value of 0.026%,
corresponding to 260 mg/L of extract and 29.9 mg/L of polyphenols. These data are
in accordance with the literature [71,72]. In fact, sweet chestnut offers different waste
matrices with antimicrobial activity against Alternaria. An aqueous extract from burs rich
in hydrolysable tannins affects mycelial growth and spore germination against Alternaria
alternata [71]. The main phenolic component of PGP, punicalagin, has been proved the
most efficient pomegranate peel compound against Alternaria alternata AL19, with an
inhibitory activity starting from 92.9 µM [72]. Satisfactory activity was observed for VVP at
1.0% w/v (62.6 ± 9.9%), which decreased proportionally with the concentration up to
34.7 ± 8.8% at 0.1% w/v. This activity was quantified to an EC50 value of 0.37% (3.7 g/L of
the extract, 1.6 g/L of polyphenols), lower than CSW (0.54%, 5.4 g/L of the extract, 1.4 g/L
of polyphenols). As expected, both BA and SK completely inhibited fungal growth from
1.0% to 0.1% w/v. The results of OEP at 0.1% w/v were influenced by guttation, which
consists of the production of fungal exudates composed by liquid droplets. It caused a
reduced growth of the mycelium, resulting in a fake enhanced antimicrobial activity and a
high variability of data (18.2 ± 14.4%). However, during guttation, fungal species could
produce secondary metabolites, including phenolic compounds and toxins involved in
several key ecological roles [73].



Molecules 2023, 28, 4374 8 of 17

Molecules 2023, 28, 4374 8 of 18 
 

 

 

 
(a) 

 
(b) 

Figure 2. Antifungal activity of phenolic-rich extracts against Alternaria sp. (a) Histogram reporting 
the growth inhibitory activity of the extracts at different concentrations. Data expressed by mean ± 
SD (n = 6). Bars with different letters are significantly different according to Tukey’s HSD test (p < 
0.05). (b) Graphical representation of results with pictures of petri dishes at the end of the diffusion 
assay. 

As depicted in Table 4 and Figure 3, the antifungal activity of OEP, CSW, PGP, VVP, 
and VVS against Rhizopus stolonifer depended on the plant materials. At 1.0% w/v, OEP 
did not inhibit the growth; VVS and VVP produced a modest effect (13.7 ± 6.2 and 42.0 ± 
5.7%, respectively); CSW showed significant activity (82.0 ± 8.7%); and PGP a total 
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Figure 2. Antifungal activity of phenolic-rich extracts against Alternaria sp. (a) Histogram report-
ing the growth inhibitory activity of the extracts at different concentrations. Data expressed by
mean ± SD (n = 6). Bars with different letters are significantly different according to Tukey’s HSD
test (p < 0.05). (b) Graphical representation of results with pictures of petri dishes at the end of the
diffusion assay.

As depicted in Table 4 and Figure 3, the antifungal activity of OEP, CSW, PGP, VVP,
and VVS against Rhizopus stolonifer depended on the plant materials. At 1.0% w/v, OEP
did not inhibit the growth; VVS and VVP produced a modest effect (13.7 ± 6.2 and
42.0 ± 5.7%, respectively); CSW showed significant activity (82.0 ± 8.7%); and PGP a
total inhibitory effect. These last extracts also retained the activity at lower concentrations
(0.5 and 0.1% w/v) with 83.4 ± 3.7% and 82.1 ± 5.5%; 92.8 ± 6.6% and 68.4 ± 6.6% of growth
inhibition, respectively. The antifungal activity of pomegranate aqueous peel extract from
the “shishe kab” Iranian cultivar against Rhizopus stolonifer was previously recorded using
the poisoned food technique [74].
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Figure 3. Antifungal activity of phenolic-rich extracts against Rhizopus stolonifer. (a) Histogram
reporting the growth inhibitory activity of the extracts at different concentrations. Data expressed by
mean ± SD (n = 6). Bars with different letters are significantly different according to Tukey’s HSD
test (p < 0.05). (b) Graphical representation of results with pictures of petri dishes at the end of the
diffusion assay.

Table 5 and Figure 4 evidenced that all extracts exhibited a relevant growth inhibition
against Trichophyton interdigitale. Except for OEP, which showed a growth inhibition of
66.5 ± 2.9% at 1.0% w/v [75,76], the extracts evidenced total inhibition. To the best of
our knowledge, this is the first work investigating the antimicrobial activities of extracts
of Castanea sativa Mill. against dermatophytes. No growth was observed using CSW at
concentrations ranging from 1.0% to 0.1%, showing the best performance compared to both
extracts and controls. With this extract, the test was carried out at lower concentrations.
Only at 0.005% w/v was a drastic decay of antimicrobial activity recorded, resulting in an
EC50 value of 0.0063%, corresponding to 63 mg/L of extract and 16.38 mg/L of polyphe-
nols. PGP completely inhibited fungal growth until 0.1%, with an EC50 value of 0.014%,
corresponding to 140 mg/L of extract 16.1 mg/L of polyphenols. In the literature, it was
already reported that hydrolysable tannins possess antifungal activity against dermato-
phytes [77]. Crude extracts of pomegranate peels, as well as isolated punicalagin, showed
inhibitory activity on conidia germination and mycelium growth of dermatophytes [78].
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A strong performance was revealed even for VVS, in accordance with other works that
highlighted the inhibitory effects of flavan-3-ols from different Vitis vinifera L. matrices
against dermatophytes [79].
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test (p < 0.05). (b) Graphical representation of results with pictures of petri dishes at the end of the
diffusion assay.

3. Materials and Methods
3.1. Chemicals

All solvents for HPLC-DAD-MS analyses (HPLC grade), formic acid, and epigallocat-
echin gallate (analytical grade) were purchased from Sigma Aldrich Chemical Company
Inc. (Milwaukee, WI, USA). Tyrosol, gallic acid, ellagic acid, catechin, and malvidin
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3-O-glucoside were supplied by Extrasynthèse S.A. (Lyon, Nord-Genay, France). Hydrox-
ytyrosol was synthetized in the laboratory [80]. HPLC-grade water was obtained via
distillation and purification with a Labconco Water Pro PS polishing station (Labconco
Corporation, Kansas City, MO, USA). Potassium sorbate, benzoic acid, potassium hydrox-
ide, and hydrochloric acid 37% were purchased from Carlo Erba Reagents Srl (Cornaredo,
Milan, Italy), Tween 20 from Biolife Italiana Srl (Milan, Italy), and Potato Dextrose Agar
from Oxoid Ltd. (Basingstoke, Hampshire, UK). Sterile plasticware and cotton swabs were
purchased from Unifo Srl (Zero Branco, Treviso, Italy).

3.2. Phenolic-Rich Extracts

All extracts were derived from circular economy processes and were obtained by
sustainable extraction methodologies. OEP was furnished by Bionap Srl (Piano Tavola
Belpasso, Italy) and CSW was a gift of Gruppo Mauro Saviola Srl (Viadana, Italy). The
commercially available Saviotan® Feed was produced in the plant operating in Radicofani
(Italy) by a sustainable, green process of hot water extraction and concentration/purification
by membrane technology, described by us in a previous paper [37]. PGP was obtained from
pomegranate peel (Punica granatum L., cv. Wonderful) collected in Grosseto, Italy. The peels
were separated from the fresh fruits, finely chopped, put in a polypropylene filter bag, and
then extracted for 1 h in boiling water (10% w/v) under magnetic stirring. The extraction
mixture was left to cool down to room temperature and kept under maceration for 24 h;
then, the extract was filtered under vacuum, frozen at −20 ◦C and lyophilized to obtain
the final powder (yield: 9.2%). VVP was obtained from dried grape pomace furnished by
Cantina Cesarini Sartori (Loc. Purgatorio, Gualdo Cattaneo, Italy). The powder (60 g) was
extracted with ethanol/water = 70:30 (300 mL) adjusted at pH 2.5 by adding HCOOH for
24 h, under mechanical stirring. After filtration under vacuum, the solvent was evaporated;
finally, the extract was rinsed with distilled water, frozen at −20 ◦C and lyophilized to
obtain the final powder (yield: 0.9%). VVS was furnished by Consulente Enologica Srl
(Pietraia di Cortona, Italy).

3.3. Characterization of Phenolic-Rich Extracts

OEP, CSW, PGP, VVP, and VVS were analyzed by HPLC-DAD-MS using a HP-1260
liquid chromatograph equipped with a DAD detector and an MSD API-electrospray (Ag-
ilent Technologies, Santa Clara, CA, USA) operating in negative and positive ionization
mode. Mass spectrometer operating conditions were the following: gas temperature 350 ◦C
at a flow rate of 10.0 L/min, nebulizer pressure 30 psi, quadrupole temperature 30 ◦C, and
capillary voltage 3500 V. The fragmentor was set at 120 eV. For CSW and PGP, a Luna, C18
250 × 4.60 mm, 5 µm column (Phenomenex, Torrance, CA, USA) operating at 26 ◦C was
used. The eluents were H2O (adjusted to pH 3.2 with HCOOH) and CH3CN. A four-step
linear solvent gradient starting from 100% H2O up to 100% CH3CN was performed with
a flow rate of 0.8 mL/min over a 55 min period, as previously described [37,45]. Gallic
acid, flavanols, and procyanidins of VVP, VVS, and OEP were analyzed by using a column
Lichrosorb RP18 250 × 4.60 mm i.d, 5 µm (Merck Darmstadt, Germany). The eluents were
H2O adjusted to pH 3.2 with HCOOH and CH3CN. A four-step linear solvent gradient
was used, starting from 100% H2O up to 100% CH3CN, for 117 min at a flow rate of
0.8 mL/min [25]. For anthocyanins of VVP, a Luna, C18 250 × 4.60 mm, 5 µm column
(Phenomenex, Torrance, CA, USA) operating at 26 ◦C was used. The eluents were H2O
(adjusted to pH 1.8 with HCOOH) and CH3CN. A multi-step linear solvent gradient was
used, starting from 95% H2O up to 100% CH3CN, for 26 min at a flow rate of 0.8 mL/min.

Polyphenols present in the extracts were identified by using their chromatographic,
spectrophotometric, and spectrometric data. Their retention times and data from HPLC-
DAD and HPLC-MS were compared with those of the available specific commercial stan-
dards, also taking into account our previous results obtained by LC-MS-MS and/or LC-
MS-TOF analysis of the same matrices, and data in the literature [81,82]. Each compound
was quantified by HPLC-DAD using a five-point regression curve built with the available
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standards. Calibration curves with r2 ≥ 0.9998 were considered. The concentrations of the
individual compounds were calculated by applying the appropriate corrections for changes
in molecular weight. Ellagic acid and ellagitannins were calibrated at 254 nm with ellagic
acid; gallic acid and gallotannins at 280 nm with gallic acid; epicatechin gallate (ECG)
and epigallocatechin gallate (EGCG) at 280 nm with EGCG; catechin, epicatechin, and
procyanidins at 280 nm with catechin hydrate; tyrosol and hydroxytyrosol at 280 nm with
pure standards; and anthocyanins at 520 nm using malvidin-3-O-glucoside as reference.
The evaluation of the polyphenol content was carried out in triplicate and the results were
recorded as mean values with standard deviations ≤5%.

3.4. Fungal Pathogens

Extracts were tested against filamentous fungi Aspergillus brasiliensis (ex A. niger)
derived from ATCC 16404, Alternaria sp. derived from ATCC 20,084 (Microbiologics,
St. Cloud, MN, USA), Rhizopus stolonifer derived from ATCC 14,037, and Trichophyton
interdigitale derived from ATCC 9533 (Kairosafe, Trieste, Italy). Fungi were maintained on
Potato Dextrose Agar (PDA) at 25 ◦C.

3.5. In Vitro Antifungal Activity Assay

The fungal inoculum was prepared from fresh culture of about 4 days for Rhizopus
stolonifer, 7 days for Alternaria sp. and Aspergillus brasiliensis, and 15 days for Trichophyton
interdigitale following a procedure based on the EUCAST E.DEF 9.4 [83] with minor changes.
Briefly, 5 mL of sterile water with Tween 20 (0.1% v/v) was added to the culture. To
promote conidial suspension, the culture was gently scraped using a sterile cotton swab.
The obtained suspension was recovered, shaken for about 15 s with a vortex and filtered
to remove hyphae and clumps. The inoculum was spectrophotometrically adjusted to an
equivalent final concentration of McFarland 0.5 (approximately 1–5 × 106 CFU/mL).

Testing media were obtained by adding different amounts of extracts to PDA to obtain
final concentrations of 1.0%; 0.5%; and 0.1% (w/v). As control, two food and cosmetic
preservative SK and BA were used. After solubilization, pH was adjusted to 5.6 ± 0.2 using
KOH 1 M or HCl 1 M. The media were then sterilized at 121 ◦C for 15 min and transferred
to 55 mm petri dishes.

The antifungal activity assay was performed based on a diffusion method according to
the literature with slight modifications [58,59]. A total of 10 µL of conidial suspension was
inoculated in the center of the agar plate. Plates were incubated at 25 ◦C in darkness and
growth was observed daily until the mycelium of the negative control (PDA only) touched
the edge of the plate. Growth inhibition (GI), expressed as a percentage, was calculated by
measuring the colony diameter and using the following equation:

GI(%) = [(dc − dt)/dc] × 100

where dc is the mean diameter of the negative control (PDA only) and dt is the mean
diameter of the treatment.

3.6. Statistical Analysis

Data analysis was performed using RStudio Desktop (version 2023.13.0+386, Posit
Software, PBC, Boston, MA, USA). To determine the differences between treatments, a
one-way analysis of variance (ANOVA) was performed with significance level set at
p = 0.05. Means separation was carried out using Tukey’s HSD test. EC50 was calculated
using the “LL.2” function of the “drc” package, corresponding to a log-logistic model,
where the lower limit was fixed at 0 (negative control dc for PDA only) and the upper limit
was fixed at 1 (corresponding to total inhibition) [84].

4. Conclusions

In this paper, five phenolic-rich extracts (OEP, CSW, PGP, VVP, and VVS) derived from
Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and
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Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis to define
their qualitative and quantitative phenolic profiles. Based on these analyses, OEP was
found to be rich in hydroxytyrosol; CSW and PGP in hydrolysable tannins (vescalagin,
castalagin, α-punicalagin, and β-punicalagin); and VVP and VVS in condensed tannins
(procyanidins, trimers, and tetramers).

All extracts were tested against selected pathogenic filamentous fungi and dermato-
phytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton
interdigitale at three different concentrations (1.0%, 0.5%, and 0.1% w/v) using a diffusion
assay. OEP, CSW, PGP, and VVS did not reveal any inhibitory activity against Aspergillus
brasiliensis also at 1.0% (w/v). On the contrary, at the same concentration, VVP showed
a (modest) growth inhibition. CSW and PGP exhibited a total growth inhibition against
Alternaria sp. at 1.0% w/v, but VVP was also very effective at the same concentration.
PGP retained the activity until 0.1% w/v with an EC50 value of 0.026%, corresponding to
260 mg/L of extract and 29.9 mg/L of polyphenols. Against Rhizopus stolonifer, PGP showed
a total growth inhibition at 1.0% w/v, but strong performances were also observed at lower
concentrations (up 0.1% w/v); CSW behaved similarly. Interestingly, CSW, PGP, VVS, and
VVP showed a complete growth inhibition of Trichophyton interdigitale at 1.0% (w/v) and the
activity was retained at lower concentrations. CSW was active until 0.005% w/v correspond-
ing to an EC50 value of 0.0063% (63 mg/L of extract, 16.38 mg/L of polyphenols). PGP
completely inhibited fungal growth until 0.1%, with an EC50 value of 0.014% (140 mg/L of
extract, 16.1 mg/L of polyphenols).

Based on these data, we could conclude that the chemical composition is crucial for the
biological activity of the extracts against the selected pathogens. In particular, hydrolysable
and condensed tannins play a relevant role in the activity. The data obtained from this
research seem promising for the potential application of some of these extracts as antifungal
agents in the food and biomedical fields according to the green chemistry and circular
economy concepts.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28114374/s1. Figure S1. Chromatographic
profile of OEP at 280 nm; Table S1. Quali-quantitative analysis of OEP; Figure S2. Chromato-
graphic profile of CSW at 254 and 280 nm; Table S2. Quali-quantitative analysis of CSW; Figure S3.
Chromatographic profile of PGP at 254 and 280 nm; Table S3. Quali-quantitative analysis of PGP;
Figure S4. Chromatographic profile of VVP at 520 and 280 nm; Table S4. Quali-quantitative analysis
of VVP; Figure S5. Chromatographic profile of VVS acquired at 280 nm; Table S5. Quali-quantitative
analysis of VVS.
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