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Abstract: As part of the valorization of agricultural waste into bioactive compounds, a series of
structurally novel oleanolic acid ((3β-hydroxyolean-12-en-28-oic acid, OA-1)-phtalimidines (isoin-
dolinones) conjugates 18a–u bearing 1,2,3-triazole moieties were designed and synthesized by treating
an azide 4 previously prepared from OA-1 isolated from olive pomace (Olea europaea L.) with a wide
range of propargylated phtalimidines using the Cu(I)-catalyzed click chemistry approach. OA-1 and
its newly prepared analogues, 18a–u, were screened in vitro for their antibacterial activity against two
Gram-positive bacteria, Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative bac-
teria, Salmonella thyphimurium and Pseudomonas aeruginosa. Attractive results were obtained, notably
against L. monocytogenes. Compounds 18d, 18g, and 18h exhibited the highest antibacterial activity
when compared with OA-1 and other compounds in the series against tested pathogenic bacterial
strains. A molecular docking study was performed to explore the binding mode of the most active
derivatives into the active site of the ABC substrate-binding protein Lmo0181 from L. monocytogenes.
Results showed the importance of both hydrogen bonding and hydrophobic interactions with the
target protein and are in favor of the experimental data.

Keywords: oleanolic acid; phtalimidines; triazole; click chemistry; antibacterial activity;
molecular docking

1. Introduction

Agricultural waste has emerged as a huge pool of fine chemicals that can be turned
into high-value compounds with many pharmaceutical applications [1]. Triterpenic acids,
such as Oleanolic Acid (OA-1, Figure 1) extracted from olive pomace [2], are typical exam-
ples of such high-value compounds. A number of studies have demonstrated that OA-1
has a wide range of biological activities, including anti-inflammatory [3], hepatoprotec-
tive [4], antioxidant [5], antitumor [6,7], anti-HIV [8], antidiabetic [9], and antiparasitic [10]
effects. It has also been found that OA-1 and its derivatives have significant antibacterial
activity with a wide range of MIC values [11–13]. The antibacterial activity of OA-1 is
thought to be due to its ability to influence peptidoglycan structure and composition, gene
expression, and biofilm formation, thereby preventing bacterial growth [14]. On the other
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hand, Nitrogen-containing heterocyclic compounds are omnipresent in bioactive molecules
and are invaluable sources of therapeutic agents [15–17]. Among them, Phtalimidine
(1-isoindolinone and C3 1-isoindolinone-derived) derivatives [18] play an important role
in drug discovery due to their broad and abundant biological activities [19–21].Many of
them have been prepared and examined as antihypertensive [22], antipsychotic [23–25],
anti-inflammatory [26], anesthetic [27], and vasodilatory [28] agents. Antiviral [29–32], anti-
cancer [33–36], antimicrobial [37,38], and anxiolytic [39] activities have also been observed
in this class of structures (Figure 1). As a result, a lot of study has been completedover
the past few decades to synthesize and to explore various therapeutic prospective of this
moiety [18,40,41].
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Figure 1. Oleanolic acid (OA-1) and representative biologically active molecules including Isoin-
dolinone and 1,2,3-Triazole.

Despite its multiple potential applications, OA-1 has not yet been developed as a
medicine due to its instability and limited water solubility. To overcome these drawbacks,
several studies have been designed to modify the structure of OA-1 with the hope of
improving its physical properties to obtain better bioavailability and higher bioactivity.
Among the plethora of strategies used, molecular hybridization, which is a new concept in
drug design and development based on the combination of two different bioactive com-
pounds to produce a new hybrid substance, has emerged as an essential tool for design and
construction of novel hybrid molecules with improved biological activities [42–48]. Given
the rising incidence of multidrug-resistant pathogens caused by the widespread use of an-
tibiotics [49], the intriguing biological activities of isoindolinones and OA-1, and our current
research interest in the valorization of agricultural waste into eco-efficient, bioactive prod-
ucts, we present here the synthesis of novel triazole-tethered isoindolinones oleanolic acid
hybrids by means of click chemistry-mediated fusion between isoindolinones and oleanolic
acid derivatives. To that end, a Cu(I)-catalyzed azide alkyne Huisgen 1,3-cycloaddition
was used [50–53]. Moreover, we hope that the introduction of triazole linkers, known by
their broad and abundant biological properties (antiviral [54], antioxidant [55,56], antimi-
crobial [57], anticancer [58,59], antimalarial [60,61]...) could contribute to the improvement
of the overall biological activity of the hybrid molecules [62–66]. The antibacterial activity
of OA-1 and the target compounds werescreened, followed by in silico molecular docking
studies for the most potent derivatives, in order to obtaina better understanding about the
interactions and binding mode in the active sites of the target protein.
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2. Results and Discussion
2.1. Chemistry
2.1.1. Isolation of Oleanolic Acid OA-1

OA-1 (Figure 1) was isolated from olive pomace (Olea. europaea L.) cultivar, Chemlali,
by using a solid–liquid and ultrasound-assisted extraction strategy, as previously described
by us [67]. This method is low-cost, selective, and provides a large amount of OA-1 of
around 6.8 g (3.4 mg/g DW)

2.1.2. Synthesis

The new hybrid molecules 18 were designed to include OA-1 on one hand and isoin-
dolinones 6–8 and (±)-12–17 on the other, by connecting them via linker chains of different
length. The Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) was chosen as the linking
methodology. Starting from the naturally occurring triterpene OA-1, azidoacetyl 4, as the
first precursor, was synthesized in three steps according to a previously reported procedure
(Scheme 1) [68,69].
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Scheme 1. Synthesis of the azidoacetyl 4. Reagents and Conditions: (i) K2CO3, BnBr, DMF, rt;
(ii) ClCH2COCl, DMAPcat., DCM, 0 ◦C; and (iii) NaN3, DMF, 75 ◦C.

The second precursors, namely N/O-propargylated isoindolinones 6–8, were also
synthesized using previously published protocols [70–76]. Substrates 6a–g were prepared
through two synthetic routes involving base-assisted N-alkylation of phtalimide 5a, hydan-
toin 5b, succinimide 5c, and saccharin 5d rings with propargyl bromide resulting in the
isolation of the precursors 6a–d in well isolated yields (87 to 97%). Under the same condi-
tions, deprotonation and then alkylation of N-hydroxyphthalimide5g afforded compound
6g in 67% isolated yield. Applied to isoindolinone 5a and successively but-3-yn-1-ol or
but-3-yn-2-ol, the mitsunobu reaction [77] (Ph3P/DEAD/THF) provided isoindolinones
6e and 6f in 97% and 57% isolated yields, respectively (Scheme 2). Wishing to study the
effect of the presence of a hydroxy and or acetoxy group on the antibacterial activity of
our molecules, we subsequently prepared the hydroxylactams 7a and 7e, as well as the
acetoxylactam 8g. In this sense, the selective reduction of propargylatedisoindolinones
6a and 6e was performed by using excess of NaBH4 (4 equiv) in a dry MeOH at 0 ◦C [78]
leading to the hydroxylactams 7a and 7e in 95% and 50% isolated yields, respectively
(Scheme 2). Using our recently reported one-pot reduction–acetylation protocol, imide 6g
afforded the α-acetoxy-lactam 8g in a 98% overall yield (Scheme 2) [79].

Subsequently, phtalimidines(±)-12–17, the other precursors for the Cu(I)-catalyzed
Huisgen 1,3-dipolar cycloaddition reaction, were obtained straightforwardly, starting with
homophthalic acid (HPA-9), as previously described by our group [80–82]. Phtalimidines
(±)-12a–f, as starting materials, were obtained by using our well-known 3-step sequence,
including (i) esterification of diacid (HPA-9) under reflux in the presence of gaseous HCl,
(ii) radical bromination of the obtained diester 10 (e.g., NBS, AIBNcat, CCl4 at reflux),
and(iii) condensation of excess of primary amine (α-bromophthalate11, R-NH2, CH3CN, rt).
Next, the C3-alkylated derivatives (±)-13 and (±)-14, were prepared by the deprotonation
of the α-position of the nitrogen of phtalimidines (±)-12a–f with potassium carbonate,
followed by the reaction of various halogenated electrophiles. Under these conditions,
substrates (±)-13a–d and (±)-14b–f, were obtained in good to excellent isolated yields 87%
to 90% for (±)-13a–d and 81% to 93% for (±)-14b–f (Scheme 3).
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Scheme 3. Straightforward synthesis of substrates (±)-12–17. Reagents and Conditions for syn-
thesis of phtalimidines (±)-12: (i) homophtalic acid 9, gaseous HCl, reflux; (ii) ethyl homophtalate
10 (1 equiv), NBS (1.5 equiv), AIBNcat, CCl4, 60 ◦C. (iii) diethyl α-bromophthalate 11 (1 equiv),
amine (2 equiv), CH3CN, rt; Reagents and Conditions for synthesis of phtalimidines (±)-13 and
(±)-14:(iv) phtalimidines (±)-12a–f (1 equiv),K2CO3, alkylyl bromide (1.2 equiv), CH3CN, reflux;
Reagents and Conditions for (±)-15f: (v) phtalimidine (±)-14f (1 equiv), NaOH (2 equiv), EtOH/H2O,
rt then aqueous 1M HCl, 0 ◦C; Reagents and Conditions for (±)-16b: (vi) acid (±)-15b (1 equiv),
EDCI (1 equiv), DMF, rt; Reagents and Conditions for (±)-17e: (vii) phtalimidine (±)-14e (1 equiv),
LiBH4 (2 equiv), DCM, rt.
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In order to evaluate the binding mode, particularly the effect of an hydroxy, amide,
or carboxy group at C-3, on the antibacterial activity, acid (±)-15f, amide (±)-16b and
alcohol (±)-17e were then prepared. The reduction of the ester group at C-3 of (±)-14e
with LiBH4 in dichloromethane at room temperature gave phtalimidine alcohol (±)-17e in
80% isolated yield. Saponification of ester functions of esters (±)-14b and (±)-14f under
standars conditions (excess of aqueous NaOH, EtOH, rt then diluted HCl at 0 ◦C) gave
the corresponding carboxylic acids (±)-15b and (±)-15f in, respectively, 93% and 72%
isolated yields. In order to obtain amide (±)-16b, acid (±)-15b was treated, in a next
step, with methyl glycinate in the presence of EDCI/DMF at room temperature leading to
compound (±)-16b in 75% isolated yield (Scheme 3) [83]. With azide 4 and propargylated
phthalimidines 6–8 and (±)-12–17 in hand, we next directed our attention to explore the
1,3-dipolar cycloaddition to form the new hybrid molecules 18. Thus, as shown in Scheme 4,
treatment of 4 and 6a used as a model for our study under the Cu(I)-catalyzed Huisgen
1,3-dipolar cycloaddition (e.g., CuSO4.5H2O, sodium ascorbate (NaC6H7O6), DCM/H2O, rt
24 h) [84] resulted in the formation of the 1,2,3-triazole conjugate 18a in 84% isolated yield.
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6a (1 equiv), azide 4 (1 equiv), CuSO4

.5H2O (0.2 equiv), sodium ascorbate (0.4 equiv), DCM/H2O, rt,
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The above selected conditions were used with the rest of the substrates 6–8 and (±)-
12–17, which cyclized to afford the hybrids molecules 18b–t with yields of 70 to 98% after
silica gel column chromatography, and the results are summarized in Scheme 5.
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It is worth noting that in the presence of the C,N-bispropargylatedphtalimidine (±)-
13d under standard conditions, the 1,3-dipolar cycloaddition became non-selective and
lead to a mixture of non-separable products, including the mono-cycloaddition product
on the C-propargylated alkyne, the mono-cycloaddition on the N-propargylated alkyne
and the bis cycloadduct 18u. After rigorous investigations, it was observed that the double
cycloaddition occurred seamlessly to give 18u in 80% yield when CuSO4.5H2O (0.2 equiv),
sodium ascorbate (0.4 equiv), and 2 equivalents of 4 were used (Scheme 6).
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2.2. Antibacterial Activity

All the newly synthesized compounds were evaluated in vitro for their antibacterial
activity against the following human pathogen strains, two Gram-positive bacteria, Staphy-
lococcus aureus ATCC 25923 and Listeria monocytogenes ATCC 19115, and two Gram-negative
bacteria, Salmonella thyphimurium ATCC 14080 and Pseudomonas aeruginosa ATCC 27853. The
activity of all the tested derivatives was compared with that of Tetracycline and Chlorhexi-
dine used as standard reference antibiotics. The determination of the inhibition zone “IZ”
(in mm), MIC and MBC (in µM) was carried out in this study. Overall, attractive results were
obtained against certain strains. Indeed, the values of the IZ diameters, as a preliminary
test, given in Table 1 for certain compounds were found to be in agreement with those of
the MIC and MBC describedin Table 2. These results showed that the starting product OA-1
was active against S. aureus, S. thyphimurium, and P. aeruginosa, but inactive towards L. mono-
cytogenes. In certain circumstances, the activity of this compound exceeds that of specific
derivatives and reference antibiotics. It was discovered to be more active against S. aureus
and P. aeruginosa than all of its derivatives 18a–u, but only slightly more active against S. ty-
phimurium than 18f, 18k, and 18q. The results showed, on the other hand, that most of the
tested compounds demonstrated a certain level of selectivity towards L. monocytogenes. For
more details, the most interesting results in terms of MIC were noted with the derivatives
18a–h in addition to 18k, 18m, and 18q which showed good inhibitory effects on the growth
of L. monocytogenes, compared to that of the reference antibiotics TET (MIC = 576.01 µM)
and CHX (MIC = 253.24 µM). Thus, from a structural point of view, the compound 18g
exhibits the highest activity (9.48 µM) towards this Gram-positive strain compared to the
rest of the active compounds followed by derivatives 18d (9.56 µM) and 18h (9.89 µM). The
observed high antibacterial activity of these compounds may be attributed to their sulfonyl
and hydroxyl functional groups, as well as specific arrangements within their structures
that enhance molecular interactions, binding affinity, or target recognition with this Gram-
positive bacterium. It appears that the 3-hydroxyisoindolin-1-one fragment in compound
18h contributes to this activity compared to its analog 18a with an isoindoline-1,3-dione
moiety (MIC = 12.4 µM). This finding shows that the additional hydroxyl group in 18h
instead of the carbonyl function in 18a may account for the noted difference in activity.
On the other hand, the higher activity of compound 18a against L. monocytogenes (Table 2),
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compared to that of its analog 18e allows to conclude that a single methylene binding the
phthalimide to the trizole was better than two methylenes giving, perhaps, to this system
freer rotation and, therefore, less possibility of interaction with the target proteins of the
bacterium. Additionally, we noticed that when the methylene linker directly bonded to the
phthalimide nitrogen atom in 18e (MIC = 39.01 µM and MBC = 2496.67 µM) is replaced by
an oxygen atom in 18g (MIC = 9.48 µM and MBC = 155.65 µM), the antibacterial potential
towards L. monocytogenes was much improved, hence the importance of this new linker
(-O-CH2-) between phatlimide and triazole to better inhibit this strain. In addition, branch-
ing of the ethyl linker in 18e was found to significantly improve the MBC of its analog 18f
(MBC = 624.16 µM). The additional methyl group in 18f compared to 18a, more than dou-
bled the activity. Moreover, we noticed that compound 18a with an isoindoline-1,3-dione
moiety (MIC = 12.4 µM) remains more active against L. monocytogenes than its analogue 18c
with pyrrolidine-2,5-dione moiety (MIC = 21.13 µM). This finding serves as evidence that
the antibacterial potential is affected by the additional aromatic ring. Interestingly, against
P. aeruginosa, compound 18m exhibited the highest antibacterial activity (MIC = 42.79 µM
and MBC = 171.18 µM) compared to the other active compound 18h (MIC = 158.41 µM
and MBC = 633.66 µM) and also to the reference antibiotics. The results discussed above
demonstrated the assumptions about the structural activity relationship (SAR) and also
can be supported with some in silico studies.

Table 1. Antibacterial activity of OA-1 and 18a–u expressed in the Zone of Inhibition (mm).

Compound S. aureus
ATCC 25923

L. monocytogenes
ATCC 19115

S. thyphimurium
ATCC 14080

P. aeruginosa
ATCC 27853

OA-1 12.2 ± 1.7 a na 12.8 ± 1.1 c,d 14.0 ± 1.0 c

18a na 12.0 ± 1.4 b na na
18b na 15.0 ± 0.0 e na na
18c na 9.5 ± 2.1 a na na
18d na 12.0 ± 0.0 b na na
18e na 14.0 ± 0.0 d na na
18f na 9.0 ± 0.0 a 12.0 ± 0.7 c na
18g na 15.0 ± 0.0 e na na
18h na 12.0 ± 0.0 b na 16.0 ± 0.0 d

18i na na na na
18j na na na na
18k na 14.0 ± 0.7 d 10.0 ± 1.4 a na
18l na na na na

18m na 13.0 ± 0.0 c na 13.0 ± 0.0 b

18n na na na na
18o na na na na
18p na na na na
18q na 12.0 ± 0.7 b 11.0 ± 0.0 b na
18r na na na na
18s na na na na
18t na na na na
18u na na na na
TET 18.0 ± 0.0 b 12.5 ± 0.0 b,c 12.0 ± 0.1 c 11.0 ± 1.4 a

CHX 23.2 ± 0.7 13.0 ± 0.0 12.3 ± 1.4 10.0 ± 0.0
TET: tetracycline; CHX: chlorhexidine; na: not active; IZ values followed by the same letter are not significantly
different at p-value less than 0.05.

Table 2. Antibacterial activity of OA-1 and 18a–u expressed in MIC and MBC (µM).

Compound S. aureus
ATCC 25923

L. monocytogenes
ATCC 19115

S. thyphimurium
ATCC 14080

P. aeruginosa
ATCC 27853

MIC MBC MIC MBC MIC MBC MIC MBC

OA-1 78.02 171.18 147.90 1353.18 59.97 633.66 21.39 85.59
18a na na 12.4 1588.22 na na na na
18b na na 59.97 1917.99 na na na na
18c na na 21.13 1353.18 na na na na
18d na na 9.56 151.86 na na na na
18e na na 39.01 2496.67 na na na na
18f na na 39.01 624.16 78.02 312.08 na na
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Table 2. Cont.

Compound S. aureus
ATCC 25923

L. monocytogenes
ATCC 19115

S. thyphimurium
ATCC 14080

P. aeruginosa
ATCC 27853

MIC MBC MIC MBC MIC MBC MIC MBC

18g na na 9.48 155.65 na na na na
18h na na 9.89 633.66 na na 158.41 633.66
18i na na na na na na na na
18j na na na na na na na na
18k na na 18.48 591.63 147.90 591.63 na na
18l na na na na na na na na

18m na na 21.39 85.59 na na 42.79 171.18
18n na na na na na na na na
18o na na na na na na na na
18p na na na na na na na na
18q na na 16.88 540.44 135.11 540.44 na na
18r na na na na na na na na
18s na na na na na na na na
18t na na na na na na na na
18u na na na na na na na na
TET 4.50 288.00 576.01 1152.02 9.00 576.01 576.01 1152.02
CHX 63.31 126.62 253.24 253.24 7.91 506.48 506.48 1012.96

TET: tetracycline; CHX: chlorhexidine; na: not active.

2.3. Molecular Docking Study

The molecular docking simulations applied to antibacterial agents tested in vitro gives
a descriptive explanation of the ligand’s binding mode for the inhibition of the target
bacterium [85,86].

The results of the in vitro antibacterial test which showed the sensitivity of L. mono-
cytogenes for the synthesized compounds, prompted us to obtainfurther insight about the
inhibitory effect involving the active site. Moreover, previous studies have provided sig-
nificant information on the function of the cycloalternan pathway (cycloalternane: ligand
co-complexed with ABC substrate-binding protein Lmo0181) and revealed the mechanism
of regulators of the transcription repressor, open reading frame kinase (ROK). These studies,
which have developed a structural overview, allow us to anticipate the role of the cycloal-
ternan (CA) pathway in the metabolism of starch derivatives and prove its involvement
in the pathogenesis of the ABC substrate-binding protein from L. monocytogenes. They
suggest that CA plays a role in interspecific competition for resources potentially in the
host’s gastrointestinal tract and create the methodological framework for characterizing
bacterial systems of unknown function [87]. All these data motivated us to choose ‘ABC
substrate-binding protein Lmo0181′ as the target receptor of the docking-complex in order
to predict the inhibitory effect of compounds docked in the CA’s active site.

In this context, to pick up the mode of action of the tested derivatives for their antibacte-
rial potentials, the molecular docking study has been used to determine the binding modes
against ABC substrate-binding protein Lmo0181 from L. monocytogenes (PDB ID: 5F7V). As
depicted in Table 3, the listed binding affinities of the formed complex were found to be in
the range of −12.3 to −10.6 kcal/mol. Thus, from these results, it can be suggested that all
tested compounds interact favorably with the target protein and especially for derivatives
18c, 18d, 18h, and 18k which showed the best binding scores (−12.3 to −11.6 kcal/mol)
even better than the docked antibiotic “Tetracycline” (−11.1 kcal/mol) used as a reference
in the in vitro test. Interestingly, as Figures 2 and 3A–D show, the binding modes for these
compounds demonstrate that each ligand was located inside the binding cavity, similar
to the co-crystalized inhibitor. Therefore, the best docking score of compound 18h could
be attributed to its correct orientation in the receptor cavity (Figure 3A) and it depends
on its structure containing the 3-hydroxyisoindolin-1-one moiety, which could contribute
to the stability of the receptor-ligand complex by the formation of three intermolecular
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conventional hydrogen bonds, two by its hydroxyl group with the residues Asn380 (2.55 Å)
and Asp384 (2.12 Å), and another one by its carbonyl function with Thr75 (3.13 Å) amino
acid (Figure 4C′). In addition, the stability of the complex is also perceptible through other
hydrophobic interactions formed via the hydrocarbon skeleton of the molecule: Alkyl,
Pi-Alkyl, and Pi-Pi as depicted in Table 4. The second best score was designated to com-
pound 18d with −12.0 kcal/mol which is also involved in three conventional H-bonds
formed through its benzo[d]isothiazol-3(2H)-one 1,1-dioxide fragment with Glu391 (3.27 Å)
(3.38 Å) and its ester function with Trp271 (3.15 Å). As docking results of compound 18h,
the derivative 18d also displayed some hydrophobic interactions (Figure 4B′). On another
hand, besides other types of interactions, the ligand 18c (−11.7 kcal/mol) showed a single
hydrogen bond through the carbonyl function of its pyrrolidine-2,5-dione pharmacophore
with Trp271 (3.13 Å) (Figure 4A′), while the derivative 18k (−11.6 kcal/mol), besides
forming an hydrogen bond with Trp271 (3.25 Å), displayed diverse interactions which
additionally explain the stability of the docking complex, as well as its inhibitory effect
towards L. monocytogenes (Figure 4D′). Attempt to validate QSAR model by using docking
results demonstrated a high degree of correlation in terms of the ability to form hydrogen
bonds, to display good binding scores and the antibacterial potentials of our synthesized
compounds.

Table 3. Binding energy of the docked compounds in the binding cavity of ABC substrate-binding
protein Lmo0181 from L. monocytogenes.

Compound Binding Energy (kcal/mol)

18a −10.7
18b −10.8
18c −11.7
18d −12.0
18e −10.7
18f −10.9
18g −10.9
18h −12.3
18k −11.6
18m −10.6
18q −11.0

Tetracycline −11.1
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Table 4. Docking results of derivatives with lowest binding energy score and interacting residues the
binding cavity of ABC substrate-binding protein Lmo0181 from L. monocytogenes.

Docked Compounds Interacting Residues Binding Energy (kcal/mol)

18c

van der Waals: Gln193, Val195, Thr196, Asn198, Leu249,
Gln252, Leu272, Phe299, Glu391; H bond: Trp271*(3.13);
Alkyl/Pi–Alkyl:Pro194(3.92)(4.90)(5.06), Pro246(5.14),
Leu253(4.11)(5.26), Pro254(4.85)(5.21), Leu394(5.37);

Pi-Pi: Phe70(4.10), Trp271(4.33).

−11.7

18d

van der Waals: Phe38, Asn71, Val148, Val195, Thr196,
Asn198, Glu199, Pro246, Leu253, Thr268, Gly269,
Asn301, Asn387, Leu394; H bond: Trp271*(3.15),

Glu391**(3.27)(3.38); Alkyl/Pi–Alkyl: Phe70(5.14),
Pro194(4.86), Pro254(4.77), Trp271(4.89), His297(4.07),
Phe299(4.43) (4.76); Pi-Pi: Phe70(3.87), Trp271(4.66);

Pi-Anion: Glu391(3.81).

−12.0

18h

van der Waals: Phe38, Asn71, Asp72, Phe74, Thr196,
Asn198, Glu199, Thr268, Gly269, Asn301, Glu338, Ser383,

Asn387; H-bond: Thr75*(3.13), Asn*380(2.55),
Asp384*(2.12); C-H bond: Thr75(3.28),

Asp384(3.71)(3.76); Alkyl/Pi–Alkyl: Phe70(5.05)(5.26),
Pro194(4.27)(5.19); Pi-Pi: Phe70(5.06),

Trp271(4.47),Phe299(5.16).

−12.3

18k

van der Waals: Phe38, Asn71, Val148, Val195, Thr196,
Asn198, Glu199, Pro246, Leu249, Gln252, Leu253,

Thr268, Gly269, Asn301, Asn387; H-bond: Trp271*(3.25);
Alkyl/Pi–Alkyl: Phe70(5.28),

Trp271(4.89), Pro194(4.69)(4.89)(5.34) (5.36), Pro254(4.58),
His297(3.99), Phe299(4.40)(4.72); Pi-Pi: Phe70(3.77),

Trp271(4.45); Pi-Anion: Glu391(3.68).

−11.6

Tetracycline

van der Waals: Phe38, Ser39, Pro194, Asn198, Glu199,
Leu253, Leu272, Asn301, Asn387; H-bond: Thr196*(2.12),
Glu338*(2.82); Alkyl/Pi-Alkyl: Phe70(4.42), Trp271(5.47);

Pi-Pi: Trp271(4.09)

−11.1

*: One H-bond; **: Two H-bonds.

3. Materials and Methods
3.1. General Experimental Procedure

Commercially available compounds were used without further purification (suppliers:
Thermo Fisher Scientific Inc., and Sigma-Aldrich Co. (Asnières-sur-Seine and Saint-Quentin-
Fallavier, France)). All glass apparatus was oven dried and cooled under vacuum before use.
Before their usage, precautions were taken to eliminate moisture by refluxing over CaH2
while distilling the solvents (CH3CN, CH2Cl2). Column chromatographies were carried out
with a BUCHI Pure Flash/Prep C-850 chromatography system using puriFlash® packed
columns. Distilled solvents were employed as eluents for column chromatography in all
cases. Thin layer chromatographies (TLC) wererealized on sheets of silica gel 60 precoated
with fluorescent indicator UV254 (Merck). Detection was performed by irradiation with
a UV lamp and by using an ethanolic solution of p-anisaldehyde. Melting points were
measured using a Stuart Scientific SMP10 apparatus and are uncorrected. IR spectra
were recorded on a Perkin-Elmer FT-IR Paragon 1000 spectrometer. 1H NMR and 13C
NMR spectra were recorded on a Bruker AvanceIIITM 300 MHz spectrometer at room
temperature (rt) with tetramethylsilane (TMS) serving as internal standard. Chemical shifts
are expressed in parts per million (δ). Splitting patterns are designed, s, singlet; d, doublet;
dd, doublet of doublets; t, triplet; m, multiplet; and br. s, broaden singlet. Employed
abbreviations refers to Ph: Phenyl, Trz: Triazole, Hyd: Hydantoin, and Fur: Furane.
Coupling constants (J) are reported in Hertz (Hz). Mass spectra (GC-MS) were obtained
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on a ThermoFinniganAutomass III spectrometer coupled with a gas chromatograph Trace
GC 2000. An agilent 6530 Q-Tof MS system was used to conduct the measurement of
high-resolution mass spectra (HRMS).

3.2. Chemistry
General Procedure for the Preparation of Compounds 18

CuSO4.5H2O (0.2 equiv.) and sodium ascorbate (0.4 equiv) were added to a mixture
of equimolar amounts of azide 4 and propargylated phtalimidines 6–8 and (±)-12–17 in
CH2Cl2 (1 mL) and H2O (1 mL). After stirring at room temperature for 24h, the resulting
residue was concentrated under vacuum conditions and then extracted with CH2Cl2
(3 × 10 mL). The combined organic layers were washed with brine, dried using MgSO4,
filtered, and concentrated. The residue was then purified by flash column chromatography
using a mixture of cyclohexane/EtOAc as eluent.

The structures of all the synthesized compounds 18 were confirmed by spectroscopic
analysis. For example, the IR spectrum of 18e shows a sharp intense band at 1714 cm−1

attributed to the four C=O functions. The 1H NMR spectrum of the same compound
shows a singlet at δH 7.56 corresponding to the triazole proton and two triplets at δH
4.02 and 3.17 (J = 7.3 Hz) corresponding to the two methylene groups at the junction
of the phthalimide and the triazole moities. The 13C NMR spectrum of 18e shows two
characteristic signals at δC 177.5 and 168.2 corresponding to the C=O of the ester and the
acetoxy groups, respectively, and an additional signal at δC 166.1 attributable to the two
C=O moieties of the Phtalimide group was also observed

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-((1,3-dioxoisoindolin-2-yl)methyl)-1H-
1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,
12b,13,14b-icosahydropicene-4a-carboxylate (18a), This derivative was isolated as a white
solid in 84% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.5; mp = 84–86 ◦C; [α]D

20 +57 (c
0.95 mg/mL, CH2Cl2); IR (νmax/cm−1) 2922.91 (CH str.), 1716.51 (4 × C=O); 1H NMR
(300 MHz, CDCl3)δH 7.90–7.83 (m, 2H, 2 × CHaro), 7.79–7.71 (m, 3H, 3 × CHaro), 7.41–7.30
(m, 5H, 5 × CHaro), 5.29 (t, J = 3.8 Hz, 1H, CH=C), 5.15–5.02 (m, 6H, NCH2Trz, TrzCH2CO2,
OCH2Ph), 4.54 (dd, J = 10.8, 5.2 Hz, 1H, CHCO2), 2.91 (dd, J = 14.2, 4.4 Hz, 1H, C=CCHCH2),
2.05–1.72 (m, 4H, 2 × CH2), 1.70–1.55 (m, 8H, 4 × CH2), 1.50–1.33 (m, 4H, 2 × CH2),
1.30–1.20 (m, 4H, 2 × CH2), 1.18 (d, J = 3.7 Hz, 1H, CH), 1.12 (s, 3H, CH3), 1.07–1.01
(m, 1H, CH), 0.95–0.90 (m, 6H, 2 × CH3), 0.85 (s, 3H, CH3), 0.79 (s, 3H, CH3), 0.64 (s,
3H, CH3), 0.60 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3)δC 177.57 (C=O), 167.71 (C=O),
165.88 (2 × NC=O), 143.88 (Cq), 136.57 (2 × Cq), 134.23 (2 × CHaro), 132.19 (2 × Cq), 128.55
(2 × CHaro), 128.10 (2 × CHaro), 128.04 (CHaro), 124.55 (CHaro/Trz), 123.59 (2 × CHaro),
122.41 (CH=C), 83.97 (CHCO2), 66.05 (OCH2Ph), 55.27 (CH), 51.31 (TrzCH2CO2), 47.61
(CH), 46.87 (Cq), 45.98 (CH2), 41.80 (Cq), 41.50 (C=CCHCH2), 39.39 (Cq), 38.07 (CH2), 37.79
(Cq), 36.95 (Cq), 33.98 (NCH2Trz), 33.23 (CH3), 33.09 (CH2), 32.69 (CH2), 32.49 (CH2), 30.83
(Cq), 28.15 (CH3), 27.73 (CH2), 25.97 (CH3), 23.78 (CH3), 23.49 (2 × CH2), 23.16 (CH2), 18.22
(CH2), 16.98 (CH3), 16.54 (CH3), 15.41 (CH3); HRMS (+ESI) calculated for C50H63N4O6
[M + H]+: 815.4703, found: 815.4775.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 2,2,6a,6b,9,9,12a-heptamethyl-10-(2-(4-((3,4,4-
trimethyl-2,5-dioxoimidazolidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl) acetoxy)-1,2,3,4,4a,5,6,6a,6b,7,
8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylate (18b), This derivative was
isolated as a white solid in 92% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.4; mp = 92–94 ◦C;
[α]D

20 +51 (c 1 mg/mL, CH2Cl2); IR (νmax/cm−1) 2923.14 (CH str.), 1770.86 (2 × C=O),
1711.07 (2× C=O); 1H NMR (300 MHz, CDCl3)δH 7.72 (s, 1H, CHaro/Trz), 7.38–7.28 (m, 5H,
5 × CHaro), 5.27 (t, J = 3.5 Hz, 1H, CH=C), 5.17–5.00 (m, 4H, TrzCH2CO2, OCH2Ph), 4.81 (s,
2H, NCH2Trz), 4.55 (dd, J = 9.9, 6.0 Hz, 1H, CHCO2), 2.94–2.83 (m, 4H, C=CCHCH2,NCH3),
2.02–1.78 (m, 4H, 2 × CH2),1.72–1.65 (m, 2H, CH2), 1.55–1.42 (m, 4H, 2 × CH2), 1.36 (s, 6H,
2× COCH3CN), 1.30–1.19 (m, 10H, 5× CH2), 1.16 (d, J = 3.7 Hz, 1H, CH), 1.10 (s, 3H, CH3),
1.04–1.00 (m, 1H, CH), 0.93–0.78 (m, 12H, 4 × CH3), 0.71 (s, 3H, CH3), 0.58 (s, 3H, CH3);
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13C NMR (75 MHz,CDCl3)δC 177.45 (C=O), 176.03 (NC=O), 165.81 (C=O), 154.68 (NC=O),
143.75 (Cq), 143.01 (Cq), 136.43 (Cq), 128.42 (2 × CHaro), 127.98 (2 × CHaro), 127.92 (CHaro),
124.38 (CHaro/Trz), 122.29 (CH=C), 83.79 (CHCO2), 65.93 (OCH2Ph), 61.39 (Cq), 55.17 (CH),
51.12 (TrzCH2CO2), 47.49 (CH), 46.73 (Cq), 45.84 (CH2), 41.68 (Cq), 41.36 (C=CCHCH2),
39.27 (Cq), 37.97 (CH2), 37.73 (Cq), 36.85 (Cq), 33.80 (NCH2Trz), 33.11 (CH3), 32.57 (CH2),
32.36 (CH2), 30.71 (Cq), 29.71 (CH2), 28.09 (CH3), 27.59 (CH2), 25.85 (CH3), 24.41 (NCH3),
23.65 (CH3), 23.38 (2 × CH2), 23.03 (CH2), 22.00 (2 × COCH3CN), 18.14 (CH2), 16.85 (CH3),
16.56 (CH3), 15.31 (CH3); HRMS (+ESI) calculated for C48H68N5O6 [M + H]+: 810.5125,
found: 810.5169.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-((2,5-dioxopyrrolidin-1-yl)methyl)-1H-
1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,
12b,13,14b-icosahydropicene-4a-carboxylate (18c), This derivative was isolated as a white
solid in 83% yield; Rf (cyclohexane/EtOAc: 50/50) = 0.3; mp = 145–147 ◦C; [α]D

20+108
(c 0.5 mg/mL, CH2Cl2); IR (νmax/cm−1) 2926.82 (CH str.), 1741.39 (C=O), 1721.47 (C=O),
1701.29 (2 × C=O); 1H NMR (300 MHz, CDCl3) δH 7.71 (s, 1H, CHaro/Trz), 7.38–7.28 (m,
5H, 5 × CHaro), 5.27 (t, J = 3.6 Hz, 1H, CH=C), 5.17–4.99 (m, 4H, OCH2Ph, NCH2Trz), 4.80
(s, 2H, TrzCH2CO2), 4.54 (dd, J = 9.8, 6.1 Hz, 1H, CHCO2), 2.88 (dd, J = 13.6, 4.5 Hz, 1H,
C=CCHCH2), 2.71 (s, 4H, 2 × CH2CON), 2.03–1.79 (m, 4H, 2 × CH2), 1.72–1.62 (m, 4H,
2 × CH2), 1.56–1.41 (m, 4H, 2 × CH2), 1.38–1.18 (m, 8H, 4 × CH2), 1.15 (d, J = 3.9 Hz, 1H,
CH), 1.10 (s, 3H, CH3), 1.04–0.99 (m, 1H, CH), 0.93–0.85 (m, 9H, 3 × CH3), 0.81 (s, 3H,
CH3), 0.71 (s, 3H, CH3), 0.58 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3)δC 177.51 (C=O),
176.54 (2 × NC=O), 165.90 (C=O), 143.82 (Cq), 142.37 (Cq), 136.49 (Cq), 128.49 (2 × CHaro),
128.06 (2 × CHaro), 127.99 (CHaro), 124.72 (CHaro/Trz), 122.35 (CH=C), 83.91 (CHCO2),
66.00 (OCH2Ph), 55.24 (CH), 51.16 (TrzCH2CO2), 47.56 (CH), 46.79 (Cq), 45.91 (CH2), 41.75
(Cq), 41.43 (C=CCHCH2), 39.33 (Cq), 38.03 (CH2), 37.80 (Cq), 36.92 (Cq), 33.92 (NCH2Trz),
33.68 (CH2), 33.18 (CH3), 32.63 (CH2), 32.43 (CH2), 30.78 (Cq), 28.30 (2 × CH2CON), 28.16
(CH3), 27.66 (CH2), 25.93 (CH3), 23.73 (CH3), 23.46 (2 × CH2), 23.10 (CH2), 18.22 (CH2),
16.92 (CH3), 16.60 (CH3), 15.40 (CH3); HRMS (+ESI) calculated for C46H63N4O6 [M + H]+:
767.4703, found: 767.4751.

(4aS,6aS,6bR,10S,12aR)-benzyl 10-(2-(4-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-
1H-1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,
12a,12b,13,14b-icosahydropicene-4a-carboxylate (18d), This derivative was isolated as a
white solid in 89% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.5; mp = 113–116 ◦C; [α]D

20

+80 (c 0.7 mg/mL, CH2Cl2); IR (νmax/cm−1) 2921.46 (CH str.), 1725.07 (3 × C=O), 1181.72
(2 × S=O); 1H NMR (300 MHz, CDCl3)δH 8.12–7.78 (m, 5H, 5 × CHaro), 7.39–7.28 (m,
5H, 5 × CHaro), 5.27 (t, J = 3.69 Hz, 1H, CH=C), 5.21–4.97 (m, 6H, NCH2Trz, TrzCH2CO2,
OCH2Ph), 4.53 (dd, J = 10.2, 5.6 Hz, 1H, CHCO2), 2.89 (dd, J = 13.7, 4.4 Hz, 1H, C=CCHCH2),
2.03–1.77 (m, 4H, 2 × CH2), 1.76–1.63 (m, 4H, 2 × CH2), 1.59–1.48 (m, 4H, 2 × CH2) 1.47–
1.19 (m, 8H, 4 × CH2), 1.16 (d, J = 3.3 Hz, 1H, CH), 1.10 (s, 3H, CH3), 1.01 (m, 1H, CH),
0.93–0.87 (m, 6H, 2 × CH3), 0.83 (s, 3H, CH3), 0.78 (s, 3H, CH3), 0.65 (s, 3H, CH3), 0.58
(s, 3H, CH3); 13C NMR (75 MHz,CDCl3)δC 177.56 (C=O), 165.77 (C=O), 158.59 (NC=O),
143.87 (Cq), 137.87 (Cq), 136.56 (2 × Cq), 135.09 (CHaro), 134.56 (CHaro), 128.54 (2 × CHaro),
128.09 (2 × CHaro), 128.03 (CHaro), 127.31 (Cq), 125.48 (2 × CHaro), 122.40 (CHaro/Trz),
121.24 (CH=C), 84.00 (CHCO2), 66.04 (OCH2Ph), 55.28 (CH), 47.59 (CH), 46.85 (Cq), 45.97
(TrzCH2CO2), 45.94 (CH2), 41.79 (Cq), 41.49 (C=CCHCH2), 39.38 (Cq), 38.07 (CH2), 37.80
(Cq), 36.94 (Cq), 33.98 (NCH2Trz), 33.96 (CH2), 33.21 (CH3), 32.67 (CH2), 32.47 (CH2), 30.82
(Cq), 28.18 (CH3), 27.72 (CH2), 25.96 (CH3), 23.76 (CH3), 23.48 (2 × CH2), 23.15 (CH2), 18.22
(CH2), 16.97 (CH3), 16.59 (CH3), 15.38 (CH3); HRMS (+ESI) calculated for C49H63N4O7S
[M + H]+: 851.4373, found: 851.4464.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-1H-
1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,
12b,13,14b-icosahydropicene-4a-carboxylate (18e), This derivative was isolated as a white
solid in 92% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.4; mp = 94–96 ◦C; [α]D

20 +65 (c
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0.85 mg/mL, CH2Cl2); IR (νmax/cm−1) 2929.05 (CH str.), 1714.31 (4 × C=O); 1H NMR
(300 MHz, CDCl3)δH 7.86–7.79 (m, 2H, 2 × CHaro), 7.74–7.67 (m, 2H, 2 × CHaro), 7.56 (s,
1H, 1H, CHaro/Trz), 7.39–7.28 (m, 5H, 5 × CHaro), 5.27 (t, J = 3.6 Hz, 1H, CH=C), 5.14–4.99
(m, 4H, TrzCH2CO2, OCH2Ph), 4.54 (dd, J = 10.0, 5.9 Hz, 1H, CHCO2), 4.02 (t, J = 7.3 Hz,
2H, NCH2CH2Trz), 3.17 (t, J = 7.3 Hz, 2H, NCH2CH2Trz), 2.89 (dd, J = 14.0, 4.5 Hz, 1H,
C=CCHCH2), 2.02–1.76 (m, 4H, 2 × CH2), 1.75–1.66 (m, 2H, CH2), 1.60–1.55 (m, 2H, CH2)
1.55–1.39 (m, 4H, 2 × CH2), 1.38–1.19 (m, 8H, 4 × CH2), 1.16 (d, J = 4.0 Hz, 1H, CH), 1.11 (s,
3H, CH3), 1.04–0.99 (m, 1H, CH3), 0.92–0.86 (m, 9H, 3 × CH3), 0.81 (s, 3H, CH3), 0.71 (s, 3H,
CH3), 0.58 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3)δC 177.55 (C=O), 168.28 (C=O), 166.13
(2×NC=O), 144.80 (Cq), 143.86 (Cq), 136.54 (Cq), 134.08 (2× CHaro), 132.17 (2× Cq), 128.53
(2 × CHaro), 128.09 (2 × CHaro), 128.03 (CHaro), 123.43 (2 × CHaro), 122.88 (CHaro/Trz),
122.40 (CH=C), 83.84 (CHCO2), 66.04 (OCH2Ph), 55.30 (CH), 51.20 (TrzCH2CO2), 47.60
(CH), 46.84 (Cq), 45.96 (CH2), 41.79 (Cq), 41.48 (C=CCHCH2), 39.38 (Cq), 38.08 (CH2), 37.84
(Cq), 37.45 (NCH2CH2Trz), 36.96 (Cq), 33.96 (CH2), 33.21 (CH3), 32.68 (CH2), 32.47 (CH2),
30.81 (Cq), 28.19 (CH3), 27.71 (CH2), 25.96 (CH3), 24.96 (NCH2CH2Trz), 23.76 (CH3), 23.49
(2 × CH2), 23.14 (CH2), 18.25 (CH2), 16.96 (CH3), 16.64 (CH3), 15.43 (CH3); HRMS (+ESI)
calculated for C51H65N4O6 [M + H]+: 829.4859, found: 829.4959.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-(1-(1,3-dioxoisoindolin-2-yl)ethyl)-1H-
1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,
12b,13,14b-icosahydropicene-4a-carboxylate (18f), This derivative was isolated as a white
solid in 80% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.5; mp = 82–84 ◦C; [α]D

20 +40 (c
1 mg/mL, CH2Cl2); IR (νmax/cm−1)2942.80 (CH str.), 1776.94 (C=O), 17113.95 (3 × C=O);
1H NMR (300 MHz, CDCl3) δH 7.84–7.77 (m, 3H, 3× CHaro), 7.73–7.66 (m, 2H, 2 × CHaro),
7.38–7.28 (m, 5H, 5 × CHaro), 5.81 (q, J = 7.3 Hz, 1H, NCHCH3), 5.27 (t, J = 3.6 Hz, 1H,
CH=C), 5.21–5.00 (m, 4H, TrzCH2CO2, OCH2Ph), 4.53 (dd, J = 10.5, 5.4 Hz, 1H, CHCO2),
2.89 (dd, J = 13.6, 4.4 Hz, 1H, C=CCHCH2), 2.06–1.89 (m, 2H, CH2), 1.86 (d, J = 7.3 Hz,
3H, NCHCH3), 1.84–1.76 (m, 2H, CH2), 1.74–1.63 (m, 4H, 2 × CH2) 1.58–1.44 (m, 4H,
2 × CH2), 1.42–1.18 (m, 8H, 4 × CH2),1.16 (d, J = 3.7 Hz, 1H, CH), 1.10 (s, 3H, CH3), 1.01
(d, J = 10.7 Hz, 1H, CH), 0.93–0.87 (m, 6H, 2 × CH3), 0.84 (s, 3H, CH3), 0.78 (s, 3H, CH3),
0.64 (s, 3H, CH3), 0.58 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC 177.54 (C=O), 167.76
(C=O), 165.67 (2 × NC=O), 147.82 (Cq), 143.85 (Cq), 136.53 (2 × Cq), 134.13 (2 × CHaro),
132.05 (Cq), 128.53 (2 × CHaro), 128.08 (2 × CHaro), 128.02 (CHaro), 123.84 (CHaro/Trz),
123.40 (2 × CHaro), 122.39 (CH=C), 83.94 (CHCO2), 66.03 (OCH2Ph), 55.26 (CH), 51.32
(TrzCH2CO2), 47.58 (CH), 46.83 (Cq), 45.94 (CH2), 42.62 (NCHCH3), 41.77 (Cq), 41.46
(C=CCHCH2), 39.35 (Cq), 38.05 (CH2), 37.78 (Cq), 36.93 (Cq), 33.95 (CH2), 33.21 (CH3),
32.65 (CH2), 32.45 (CH2), 30.81 (Cq), 28.15 (CH3), 27.70 (CH2), 25.95 (CH3), 23.75 (CH3),
23.46 (2 × CH2), 23.13 (CH2), 18.42 (NCHCH3), 18.21 (CH2), 16.95 (CH3), 16.58 (CH3), 15.40
(CH3); HRMS (+ESI) calculated for C51H65N4O6 [M + H]+: 829.4859, found: 829.4942.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-(((1,3-dioxoisoindolin-2-yl)oxy)methyl)-
1H-1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,
12a,12b,13,14b-icosahydropicene-4a-carboxylate (18g), This derivative was isolated as
a white solid in 89% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.4; mp = 107–109 ◦C;
[α]D

20 +77 (c 0.7 mg/mL, CH2Cl2); IR (νmax/cm−1) 2945.81 (CH str.), 1791.82 (C=O),
1729.79 (3 × C=O); 1H NMR (300 MHz, CDCl3)δH 8.00 (s, 1H, CHaro/Trz), 7.82–7.69 (m,
4H, 4 × CHaro), 7.38–7.28 (m, 5H, 5 × CHaro), 5.39 (s, 2H, OCH2Trz), 5.28 (t, J = 3.5 Hz,
1H, CH=C), 5.17 (s, 2H, OCH2Ph), 5.12–4.99 (m, 2H, TrzCH2CO2), 4.58 (t, J = 7.9 Hz,
1H, CHCO2), 2.89 (dd, J = 13.9, 4.3 Hz, 1H, C=CCHCH2), 2.09–1.73 (m, 4H, 2 × CH2)
1.71–1.61 (m, 6H, 3 × CH2), 1.52–1.43 (m, 2H, CH2), 1.42–1.18 (m, 8H, 4 × CH2), 1.16 (d,
J = 3.7 Hz, 1H, CH), 1.11 (s, 3H, CH3), 1.05–1.00 (m, 1H, CH), 0.94–0.82 (m, 12H, 4 × CH3),
0.75 (s, 3H, CH3), 0.59 (s, 3H, CH3); 13C NMR (75 MHz, CDCl3)δC 177.56 (C=O), 165.87
(C=O), 163.56 (2 × NC=O), 143.86 (Cq), 142.13 (Cq), 136.54 (Cq), 134.61 (2 × CHaro), 128.95
(2 × Cq), 128.53 (2 × CHaro), 128.09 (2 × CHaro), 128.03 (CHaro), 126.09 (CHaro/Trz), 123.73
(2 × CHaro), 122.39 (CH=C), 84.05 (CHCO2), 70.52 (OCH2Trz), 66.04 (OCH2Ph), 55.30 (CH),
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51.30 (TrzCH2CO2), 47.60 (CH), 46.84 (Cq), 45.95 (CH2), 41.79 (Cq), 41.47 (C=CCHCH2),
39.37 (Cq), 38.09 (CH2), 37.87 (Cq), 36.96 (Cq), 33.96 (CH2), 33.21 (CH3), 32.67 (CH2), 32.46
(CH2), 30.82 (Cq), 28.22 (CH3), 27.70 (CH2), 25.96 (CH3), 23.76 (CH3), 23.51 (2 × CH2), 23.14
(CH2), 18.25 (CH2), 16.96 (CH3), 16.68 (CH3), 15.44 (CH3); HRMS (+ESI) calculated for
C50H63N4O7 [M + H]+: 831.4652, found: 831.4703.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-((1-hydroxy-3-oxoisoindolin-2-yl)methyl)-
1H-1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,
12a,12b,13,14b-icosahydropicene-4a-carboxylate (18h), This derivative was isolated as a
white solid in 96% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.4; mp = 88–90 ◦C; [α]D

20 +24
(c 1 mg/mL, CH2Cl2); IR (νmax/cm−1) 3350 (OH), 2928.90 (CH str.), 1699.10 (3 × C=O); 1H
NMR (300 MHz, CDCl3)δH7.77 (s, 1H, CHaro/Trz), 7.70 (d, J = 7.4 Hz, 1H,CHaro), 7.61–7.40
(m, 3H, 3 × CHaro), 7.39–7.27 (m, 5H, 5 × CHaro), 5.92 (s, 1H, CHOH), 5.25 (t, J = 3.8 Hz,
1H, CH=C), 5.17–4.98 (m, 4H, TrzCH2CO2,OCH2Ph), 4.90 (d, J = 13.4 Hz, 1H, NCH2

bTrz),
4.70 (d, J = 15.4 Hz, 1H, NCH2

aTrz), 4.49 (dd, J = 10.5, 5.5 Hz, 1H, CHCO2), 2.89 (dd, J =
14.0, 4.4 Hz, 1H, C=CCHCH2), 2.19–1.77 (m, 4H, 2 × CH2), 1.76–1.61 (m, 4H, 2 × CH2),
1.53–1.38 (m, 4H, 2 × CH2), 1.37–1.19 (m, 8H, 4 × CH2), 1.16 (d, J = 4.4 Hz, 1H, CH), 1.09
(s, 3H, CH3), 1.03–0.99 (m, 1H, CH), 0.92–0.86 (m, 6H, 2 × CH3), 0.79 (s, 3H, CH3), 0.76
(s, 3H, CH3), 0.62 (s, 3H, CH3), 0.57 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC 177.53
(C=O), 167.40 (NC=O), 165.89 (C=O), 144.25 (Cq), 143.80 (Cq), 136.49 (Cq), 132.42 (Cq),
131.46 (Cq), 129.65 (2 × CHaro), 128.50 (2 × CHaro), 128.04 (2 × CHaro), 127.99 (CHaro),
123.60 (2 × CHaro), 123.26 (CHaro/Trz), 122.35 (CH=C), 83.93 (CHCO2), 81.59 (CHOH),
66.00 (OCH2Ph), 55.19 (CH), 51.25 (TrzCH2CO2), 47.53 (CH), 46.79 (Cq), 45.91 (CH2), 41.73
(Cq), 41.42 (C=CCHCH2), 39.32 (Cq), 37.99 (CH2), 37.73 (Cq), 36.87 (Cq), 34.49 (NCH2Trz),
33.92 (CH2), 33.18 (CH3), 32.61 (CH2), 32.42 (CH2), 30.77 (Cq), 28.09 (CH3), 27.66 (CH2),
25.93 (CH3), 23.73 (CH3), 23.42 (2 × CH2), 23.10 (CH2), 18.15 (CH2), 16.91 (CH3), 16.51
(CH3), 15.35 (CH3); HRMS (+ESI) calculated for C50H64N4O6Na [M+Na]+: 839.4718, found:
839.4752.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-(2-(1-hydroxy-3-oxoisoindolin-2-yl)ethyl)-
1H-1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,
12a,12b,13,14b-icosahydropicene-4a-carboxylate (18i), This derivative was isolated as a
white solid in 98% yield; Rf (cyclohexane/EtOAc: 40/60) = 0.5; mp = 111–113 ◦C; [α]D

20 +40
(c 1 mg/mL, CH2Cl2); IR (νmax/cm−1)3350 (OH), 2931.46 (CH str.), 1729.50 (3 × C=O);
1H NMR (300 MHz, CDCl3) δH 7.68 (d, J = 7.4 Hz, 1H, CHaro/Trz), 7.59–7.40 (m, 4H,
4 × CHaro), 7.37–7.28 (m, 5H, 5 × CHaro), 5.83 (d, J = 6.6 Hz, 1H, CHOH), 5.39 (br. s, 1H,
OH), 5.27 (t, J = 3.7 Hz, CH=C), 5.14–4.98 (m, 4H, TrzCH2CO2,OCH2Ph), 4.52 (t, J = 8.0 Hz,
1H, CHCO2), 3.92 (t, J = 6.7 Hz, 2H, NCH2CH2Trz), 3.17 (t, J = 6.8 Hz, 2H, NCH2CH2Trz),
2.89 (dd, J = 13.8, 4.5 Hz, 1H, C=CCHCH2), 2.04–1.79 (m, 4H, 2 × CH2), 1.74–1.67 (m, 2H,
CH2), 1.53–1.47 (m, 2H, CH2), 1.47–1.35 (m, 4H, 2 × CH2), 1.31–1.21 (m, 8H, 4 × CH2),1.16
(d, J = 3.8 Hz, 1H, CH), 1.11 (s, 3H, CH3), 1.04–1.00 (m, 1H, CH), 0.92–0.85 (m, 9H, 3× CH3),
0.79 (s, 3H, CH3), 0.72 (s, 3H, CH3), 0.58 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC 177.57
(C=O), 167.70 (C=O), 166.06 (NC=O), 144.23 (Cq), 143.87 (Cq), 136.52 (Cq), 132.26 (CHaro),
131.67 (2 × Cq), 129.63 (CHaro), 128.53 (2 × CHaro), 128.09 (2 × CHaro), 128.03 (CHaro),
123.48 (2 × CHaro), 123.20 (CHaro/Trz), 122.38 (CH=C), 84.10 (CHCO2), 82.51 (CHOH), 66.04
(OCH2Ph), 55.27 (CH), 51.39 (TrzCH2CO2), 47.59 (CH), 46.83 (Cq), 45.95 (CH2), 41.78 (Cq),
41.46 (C=CCHCH2), 39.36 (Cq), 38.93 (NCH2CH2Trz), 38.06 (CH2), 37.84 (Cq), 36.94 (Cq),
33.95 (CH2), 33.22 (CH3), 32.65 (CH2), 32.46 (CH2), 30.82 (Cq), 28.20 (CH3), 27.70 (CH2),
25.97 (CH3), 24.87 (NCH2CH2Trz), 23.76 (CH3), 23.49 (2 × CH2), 23.13 (CH2), 18.24 (CH2),
16.95 (CH3), 16.65 (CH3), 15.44 (CH3); HRMS (+ESI) calculated for C51H67N4O6 [M + H]+:
831.5016, found: 831.5037.

Methyl2-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,11,
14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2-
oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-oxoisoindoline-1-carboxylate (18j), This deriva-
tive was isolated as a white solid in 95% yield; Rf (cyclohexane/EtOAc: 50/50) = 0.5;
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mp = 86–88 ◦C; [α]D
20 +52 (c 0.9 mg/mL, CH2Cl2); IR (νmax/cm−1) 2926.94 (CH str.),

1732.76 (4×C=O); 1H NMR (300 MHz, CDCl3) δH 7.96 (s, 1H, CHaro/Trz), 7.79 (d, J = 7.8 Hz,
1H, CHaro), 7.64–7.43 (m, 3H, 3 × CHaro), 7.38–7.30 (m, 5H, 5 × CHaro), 7.03 (s, 1H,
CH3CO2CH), 5.33 (d, J = 1.7 Hz, 2H, OCH2Trz), 5.28 (t, J = 4.0 Hz, 1H, CH=C), 5.17 (s,
2H, OCH2Ph), 5.13–4.99 (m, 2H, TrzCH2CO2), 4.57 (dd, J = 9.4, 6.6 Hz, 1H, CHCO2), 2.90
(dd, J = 14.0, 4.4 Hz, 1H, C=CCHCH2), 2.17 (s, 3H, CH3CO2), 1.51–1.38 (m, 4H, 2 × CH2),
1.32–1.23 (m, 8H, 4 × CH2), 1.16 (d, J = 3.7 Hz, 1H, CH), 1.11 (s, 3H, CH3), 1.04–0.99 (m,
1H, CH), 0.93–0.85 (m, 9H, 3 × CH3), 0.83 (s, 3H, CH3), 0.73 (s, 3H, CH3), 0.59 (s, 3H, CH3);
13C NMR (75 MHz,CDCl3) δC 177.56 (C=O), 170.81 (C=O), 165.92 (C=O), 165.66 (NC=O),
143.88 (Cq), 142.91 (Cq), 138.67 (Cq), 136.56 (Cq), 133.51 (CHaro), 130.71 (CHaro), 129.34,
(Cq), 128.54 (2 × CHaro), 128.10 (2 × CHaro), 128.04 (CHaro), 125.85 (CHaro), 124.22 (CHaro),
124.06 (CHaro/Trz), 122.41 (CH=C), 84.01 (CHCO2), 80.82 (CH3CO2CH), 66.05 (OCH2Ph),
62.01 (OCH2Trz), 55.31 (CH), 51.27 (TrzCH2CO2), 47.61 (CH), 46.85 (Cq), 45.96 (CH2), 41.80
(Cq), 41.49 (C=CCHCH2), 39.39 (Cq), 38.09 (CH2), 37.87 (Cq), 36.97 (Cq), 33.98 (CH2), 33.22
(CH3), 32.69 (CH2), 32.48 (CH2), 30.83 (Cq), 28.22 (CH3), 27.72 (CH2), 25.97 (CH3), 23.77
(CH3), 23.52 (2 × CH2), 23.15 (CH2), 21.18 (CH3CO2), 18.26 (CH2), 16.97 (CH3), 16.66 (CH3),
15.45 (CH3); HRMS (+ESI) calculated for C52H67N4O8 [M + H]+: 875.4914, found: 875.4983.

Ethyl2-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,11,
14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2-
oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-3-oxoisoindoline-1-carboxylate (18k), This deriva-
tive was isolated as a white solid in 71% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.5;
mp = 91–93 ◦C; [α]D

20 +47 (c 0.95 mg/mL, CH2Cl2); IR (νmax/cm−1) 2943.22 (CH str.),
1702.18 (4 × C=O); 1H NMR (300 MHz, CDCl3)δH 7.82 (d, J = 7.3 Hz, 1H, CHaro), 7.74
(s, 1H, CHaro/Trz), 7.65–7.45 (m, 3H, 3 × CHaro), 7.39–7.29 (m, 5H, 5 × CHaro), 5.43–5.34
(m, 1H, OCH2

bPh), 5.31–5.23 (m, 2H, CH=C, OCH2
aPh), 5.14–5.00 (m, 4H, NCH2

bTrz,
CHCO2CH2CH3, TrzCH2CO2), 4.62–4.46 (m, 2H, CHCO2, NCH2

aTrz), 4.40–4.20 (m, 2H,
CH3CH2O), 2.91 (dd, J = 13.2, 4,1 Hz, 1H, C=CCHCH2), 2.07–1.72 (m, 4H, 2 × CH2), 1.70–
1.55 (m, 8H, 4 × CH2), 1.54–1.37 (m, 4H, 2 × CH2), 1.33 (t, J = 7.1 Hz, 3H, CH3CH2O),
1.28–1.21 (m, 4H, 2 × CH2),1.16 (d, J = 3.7 Hz, 1H, CH), 1.09 (s, 3H, CH3), 1.05–0.96 (m, 1H,
CH), 0.93–0.86 (m, 6H, 2 × CH3), 0.82 (s, 3H, CH3), 0.74 (s, 3H, CH3), 0.61–0.52 (m, 6H,
2 × CH3); 13C NMR (75 MHz,CDCl3) δC 177.58 (C=O), 168.50 (C=O), 168.08 (C=O), 165.81
(NC=O), 143.78 (Cq), 139.72 (Cq), 135.56 (2 × Cq), 132.20 (CHaro), 129.32 (CHaro), 128.92
(Cq) 128.55 (2 × CHaro), 128.09 (2 × CHaro), 128.04 (CHaro), 124.52 (CHaro), 124.05 (CHaro),
123.16 (CHaro/Trz), 122.40 (CH=C), 83.96 (CHCO2), 66.05 (OCH2Ph), 62.45 (CH3CH2O),
62.01 (CHCO2CH2CH3), 61.15 (NCH2Trz), (55.23 (CH), 51.29 (TrzCH2CO2), 47.58 (CH),
46.85 (Cq), 45.95 (CH2), 41.78 (Cq), 41.48 (C=CCHCH2), 39.37 (Cq), 38.03 (CH2), 37.76 (Cq),
36.92 (Cq), 33.98 (CH2), 33.22 (CH3), 32.66 (CH2), 32.48 (CH2), 30.83 (Cq), 28.13 (CH3), 27.71
(CH2), 25.96 (CH3), 23.77 (CH3), 23.47 (2 × CH2), 23.14 (CH2), 18.20 (CH2), 16.97 (CH3),
16.47 (CH3), 15.40 (CH3), 14.33 (CH3CH2O); HRMS (+ESI) calculated for C53H69N4O7
[M + H]+: 873.5122, found: 873.5161.

Ethyl2-benzyl-1-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,
6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-
yl)oxy)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-3-oxoisoindoline-1-carboxylate (18l), This
derivative was isolated as a white solid in 83% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.5;
mp = 105–106 ◦C; [α]D

20+13 (c 0.7 mg/mL, CH2Cl2); IR (νmax/cm−1) 2927.79 (CH str.), 1710
(2×C=O), 1700.90 (2×C=O); 1H NMR (300 MHz, CDCl3)δH 7.78 (d, J = 7.5 Hz, 1H, CHaro),
7.60–7.39 (m, 5H, 5× CHaro), 7.36–7.27 (m, 6H, 6× CHaro), 7.25–7.20 (m, 1H, CHaro), 6.18 (d,
J = 9.4 Hz, 1H, CHaro), 5.27 (t, J = 3.7 Hz, 1H, CH=C), 5.13–5.00 (m, 2H, OCH2Ph), 4.94–4.62
(m, 4H, 2 × CH2, TrzCH2CO2, NCH2Ph), 4.53–4.43 (m, 1H, CHCO2), 3.90–3.74 (m, 3H,
CH3CH2

bO, CCH2Trz), 3.53 (dqd, J = 14.4, 7.1, 5.0 Hz, 1H, CH3CH2
aO), 2.89 (dd, J = 13.6,

4.4 Hz, 1H, C=CCHCH2), 2.09–1.71 (m, 4H, 2× CH2), 1.70–1.48 (m, 10H, 5× CH2),1.47–1.27
(m, 6H, 3× CH2), 1.25 (t, J = 7.5 Hz, 3H, CH3CH2O), 1.18 (d, J = 9.3 Hz, 1H, CH), 1.10 (s, 3H,
CH3), 1.04–0.99 (m, 1H, CH), 0.93–0.87 (m, 9H, 3 × CH3), 0.78 (s, 3H, CH3), 0.68 (s, 3H, CH3),
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0.59 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC177.56 (C=O), 169.99 (C=O), 169.38 (C=O),
165.84 (NC=O), 143.87 (Cq), 143.76 (Cq), 140.77 (Cq), 137.17 (Cq), 136.54 (2 × Cq), 132.35
(CHaro), 129.37 (3 × CHaro), 128.53 (4 × CHaro), 128.11 (2 × CHaro), 128.04 (CHaro), 127.69
(CHaro), 124.06 (CHaro), 123.08 (CHaro/Trz), 122.41 (CH=C), 122.00 (CHaro), 83.72 (CHCO2),
70.76 (Cq), 66.05 (OCH2Ph), 62.33 (CH3CH2O), 55.28 (CH), 50.94 (TrzCH2CO2), 47.61 (CH),
46.84 (Cq), 45.96 (CH2), 44.87 (NCH2Ph), 41.79 (Cq), 41.47 (C=CCHCH2), 39.38 (Cq), 38.08
(CH2), 37.86 (Cq), 36.95 (Cq), 33.97 (CH2), 33.22 (CH3), 32.68 (CH2), 32.47 (CH2), 30.82 (Cq),
29.85 (CCH2Trz), 28.18 (CH3), 27.71 (CH2), 25.96 (CH3), 23.76 (CH3), 23.48 (2 × CH2), 23.15
(CH2), 18.26 (CH2), 16.96 (CH3), 16.65 (CH3), 15.43 (CH3), 13.61 (CH3CH2O); HRMS (+ESI)
calculated for C60H75N4O7 [M + H]+: 963.5591, found: 963.5641.

Ethyl1-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,11,
14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2-
oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-3-oxo-2-phenethylisoindoline-1-carboxylate (18m),
This derivative was isolated as a white solid in 90% yield; Rf (cyclohexane/EtOAc: 70/30) = 0.5;
mp = 93–95 ◦C; [α]D

20 +73 (c 0.75 mg/mL, CH2Cl2); IR (νmax/cm−1) 2936.05 (CH str.),
1708.51 (4× C=O); 1H NMR (300 MHz, CDCl3) δH 7.77 (d, J = 7.4 Hz, 1H, CHaro), 7.62–7.54
(m, 2H, 2 × CHaro), 7.53–7.45 (m, 1H, CHaro), 7.40–7.27 (m, 9H, 9 × CHaro), 7.25–7.18 (m,
1H, CHaro), 6.53 (d, J = 18.8 Hz, 1H, CHaro), 5.27 (t, J = 3.7 Hz, 1H, CH=C), 5.12–5.01 (m,
2H, OCH2Ph), 4.88 (qd, J = 17.43, 17.43, 17.42, 2.38 Hz, 2H, TrzCH2CO2), 4.52–4.43 (m,
1H, CHCO2), 4.28–4.10 (m, 2H, CH3CH2O), 4.03–3.93 (m, 1H, CCH2

bTrz), 3.87–3.77 (m,
1H, CCH2

aTrz), 3.67 (t, J = 7.9 Hz, 2H, NCH2CH2Ph), 3.18–2.98 (m, 2H, NCH2CH2Ph),
2.90 (dd, J = 13.7, 4.5 Hz, 1H, C=CCHCH2), 2.05–1.73 (m, 4H, 2 × CH2), 1.71–1.52 (m, 8H,
4 × CH2), 1.49–1.24 (m, 8H, 4 × CH2), 1.20 (t, J = 7.1 Hz, 3H, CH3CH2O), 1.16 (d, J = 8.6
Hz, 1H, CH), 1.10 (s, 3H, CH3), 1.00 (d, J = 3.9 Hz, 1H, CH), 0.93–0.84 (m, 9H, 3 × CH3),
0.76 (s, 3H, CH3), 0.68 (s, 3H, CH3), 0.59 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3)δC 177.55
(C=O), 170.31 (C=O), 169.22 (C=O), 165.83 (NC=O), 143.86 (Cq), 143.28 (Cq), 142.99 (Cq),
140.92 (Cq), 139.24 (Cq), 136.54 (2 × Cq), 132.29 (CHaro), 129.61 (CHaro), 129.05 (2 × CHaro),
128.68 (2 × CHaro), 128.54 (2 × CHaro), 128.11 (2 × CHaro), 128.04 (CHaro), 126.54 (CHaro),
123.81 (CHaro), 122.84 (CHaro/Trz), 122.41 (CH=C), 122.24 (CHaro), 83.79 (CHCO2), 71.45
(Cq), 66.05 (OCH2Ph), 62.77 (CH3CH2O), 55.27 (CH), 51.06 (TrzCH2CO2), 47.60 (CH), 46.85
(Cq), 45.96 (CH2), 44.25 (NCH2CH2Ph), 41.79 (Cq), 41.48 (C=CCHCH2), 39.37 (Cq), 38.06
(CH2), 37.83 (Cq), 36.94 (Cq), 34.36 (NCH2CH2Ph), 33.97 (CH2), 33.22 (CH3), 32.68 (CH2),
32.47 (CH2), 30.82 (Cq), 30.69 (CCH2Trz), 28.17 (CH3), 27.71 (CH2), 25.96 (CH3), 23.77 (CH3),
23.48 (2 × CH2), 23.15 (CH2), 18.25 (CH2), 16.96 (CH3), 16.65 (CH3), 15.39 (CH3), 14.09
(CH3CH2O); HRMS (+ESI) calculated for C61H77N4O7 [M + H]+: 977.5748, found: 977.5807.

Methyl2-allyl-1-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,
6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-
yl)oxy)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-3-oxoisoindoline-1-carboxylate (18n), This
derivative was isolated as a white solid in 70% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.4;
mp = 98–100 ◦C; [α]D

20 +80 (c 0.7 mg/mL, CH2Cl2); IR (νmax/cm−1) 2935.43 (CH str.),
1710.09 (4 × C=O); 1H NMR (300 MHz, CDCl3) δH 7.75 (d, J = 7.4, 1.3 Hz, 1H, CHaro),
7.61–7.43 (m, 3H, 3 × CHaro), 7.37–7.29 (m, 5H, 5 × CHaro), 6.55 (d, J = 21.3 Hz, 1H,
CHaro), 5.98–5.81 (m, 1H, CH=CH2), 5.36–5.16 (m, 3H, CH=C, CH=CH2), 5.14–4.99 (m, 2H,
OCH2Ph), 4.98–4.77 (m, 2H, TrzCH2CO2), 4.53–4.35 (m, 2H, CHCO2, NCH2

bCH=CH2),
4.11–4.00 (m, 1H, NCH2

aCH=CH2), 3.88 (qd, J = 15.72, 15.71, 15.71, 4.49 Hz, 2H, CCH2Trz),
3.65 (s, 3H, CH3O), 2.89 (dd, J = 13.5, 4.3 Hz, 1H, C=CCHCH2), 2.03–1.73 (m, 4H, 2 × CH2),
1.72–1.62 (m, 4H, 2 × CH2), 1.61–1.57 (m, 2H, CH2), 1.51–1.43 (m, 2H, CH2),1.41–1.18
(m, 8H, 4 × CH2), 1.16 (d, J = 3.8 Hz, 1H, CH), 1.10 (s, 3H, CH3), 1.04–0.99 (m, 1H, CH),
0.94–0.82 (m, 9H, 3× CH3), 0.77 (s, 3H, CH3), 0.69 (s, 3H, CH3), 0.58 (s, 3H, CH3); 13C NMR
(75 MHz,CDCl3) δC 177.56 (C=O), 170.80 (C=O), 168.70 (C=O), 165.87 (NC=O), 143.86
(Cq), 142.38 (Cq), 140.86 (Cq), 136.53 (2 × Cq), 133.11 (CH=CH2), 132.35 (CHaro), 129.61
(CHaro), 128.53 (2 × CHaro), 128.10 (2 × CHaro), 128.04 (CHaro), 124.03 (CHaro), 122.91
(CHaro/Trz), 122.40 (CH=C), 121.93 (CHaro) 118.54 (CH=CH2), 83.80 (CHCO2), 70.35 (Cq),
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66.04 (OCH2Ph), 55.28 (CH), 53.10 (CH3O), 51.04 (TrzCH2CO2), 47.60 (CH), 46.84 (Cq),
45.95 (CH2), 44.15 (NCH2CH=CH2), 41.78 (Cq), 41.47 (C=CCHCH2), 39.37 (Cq), 38.07
(CH2), 37.86 (Cq), 36.94 (Cq), 33.96 (CH2), 33.22 (CH3), 32.68 (CH2), 32.46 (CH2), 30.82 (Cq),
30.02 (CCH2Trz), 28.16 (CH3), 27.70 (CH2), 25.95 (CH3), 23.76 (CH3), 23.47 (2 × CH2), 23.14
(CH2), 18.25 (CH2), 16.95 (CH3), 16.64 (CH3), 15.42 (CH3); HRMS (+ESI) calculated for
C55H71N4O7 [M + H]+: 899.5278, found: 899.5327.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-((2-benzyl-1-((2-methoxy-2-oxoethyl)
carbamoyl)-3-oxoisoindolin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-heptamethyl1,
2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylate (18o), This
derivative was isolated as a white solid in 94% yield; Rf (cyclohexane/EtOAc: 40/60) = 0.5;
mp = 120–122 ◦C; [α]D

20 +41 (c 1 mg/mL, CH2Cl2); IR (νmax/cm−1) 3300 (NH), 2931.02 (CH
str.), 1726.01 (3 × C=O), 1677.77 (C=O); 1H NMR (300 MHz, CDCl3) δH 7.72 (d, J = 7.4 Hz,
1H, CHaro), 7.63–7.39 (m, 6H, 6 × CHaro), 7.36–7.27 (m, 6H, 6 × CHaro), 7.25–7.19 (m,
1H, CHaro), 6.32 (d, J = 11.7 Hz, 1H, CHaro), 5.86 (br. s, 1H, NH), 5.27 (t, J = 3.8 Hz, 1H,
CH=C), 5.12–4.76 (m, 5H, NCH2

bPh,TrzCH2CO2, OCH2Ph), 4.65 (dd, J = 15.2, 6.7 Hz, 1H,
NCH2

aPh), 4.55–4.44 (m, 1H, CHCO2), 3.96 (d, J = 15.6 Hz, 1H, CCH2
bTrz), 3.85–3.56 (m,

5H, CCH2
aTrz, NHCH2

bCO2, CH3O), 3.28–3.14 (m, 1H, NHCH2
aCO2), 2.89 (dd, J = 13.8,

4.4 Hz, 1H, C=CCHCH2), 2.04–1.79 (m, 4H, 2 × CH2), 1.69–1.63 (m, 2H, CH2), 1.52–1.46 (m,
2H, CH2), 1.44–1.31 (m, 4H, 2 × CH2), 1.29–1.19 (m, 8H, 4 × CH2), 1.16 (d, J = 4.0 Hz, 1H,
CH), 1.10 (s, 3H, CH3), 1.04–1.00 (m, 1H, CH), 0.92–0.87 (m, 9H, 3 × CH3), 0.78 (s, 3H, CH3),
0.68 (s, 3H, CH3), 0.59 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC 177.55 (C=O), 169.83
(NHC=O), 169.18 (2 × C=O), 165.83 (NC=O), 144.31 (Cq), 143.85 (Cq), 141.05 (Cq), 137.54
(Cq), 136.52 (Cq), 132.81 (CHaro), 130.95 (Cq), 129.66 (CHaro), 129.42 (2 × CHaro), 128.83
(2 × CHaro), 128.52 (2 × CHaro), 128.09 (2 × CHaro), 128.02 (CHaro), 127.83 (CHaro), 124.19
(CHaro), 123.54 (CHaro), 122.63 (CHaro/Trz), 122.39 (CH=C), 83.73 (CHCO2), 71.66 (Cq), 66.04
(OCH2Ph), 55.27 (CH), 52.34 (CH3O), 50.98 (TrzCH2CO2), 47.60 (CH), 46.83 (Cq), 45.94
(CH2), 44.84 (NCH2Ph), 41.78 (Cq), 41.46 (C=CCHCH2), 41.29 (NHCH2CO2), 39.36 (Cq),
38.07 (CH2), 37.86 (Cq), 36.94 (Cq), 33.95 (CH2), 33.20 (CH3), 32.67 (CH2), 32.46 (CH2), 30.81
(Cq), 29.81 (CCH2

bTrz), 28.16 (CH3), 27.69 (CH2), 25.95 (CH3), 23.75 (CH3), 23.47 (2 × CH2),
23.13 (CH2), 18.24 (CH2), 16.95 (CH3), 16.64 (CH3), 15.41 (CH3); HRMS (+ESI) calculated
for C61H75N5O8Na[M+Na]+: 1028.5508, found: 1028.5584.

(4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-benzyl 10-(2-(4-((2-((1,5-dimethyl-1H-pyrrol-2-yl)methyl)
-1-(hydroxymethyl)-3-oxoisoindolin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetoxy)-2,2,6a,6b,9,9,12a-
heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylate
(18p), This derivative was isolated as a yellow solid in 70% yield; Rf (cyclohexane/EtOAc:
40/60) = 0.5; mp = 85–87 ◦C; [α]D

20 +64 (c 0.85 mg/mL, CH2Cl2); IR (νmax/cm−1) 3400 (OH),
2923.75 (CH str.), 1726.83 (C=O), 1678.10 (2 × C=O); 1H NMR (300 MHz, CDCl3) δH 7.78
(d, J = 7.5 Hz, 1H, CHaro), 7.63–7.40 (m, 3H, 3 × CHaro), 7.39–7.28 (m, 6H, 6 × CHaro), 6.44
(d, J = 16.9 Hz, 1H, CHaro), 6.16 (t, J = 2.6 Hz, 1H, CHaro), 5.84 (d, J = 3.3 Hz, 1H, CHaro),
5.27 (t, J = 3.7 Hz, 1H, CH=C), 5.19–4.79 (m, 5H, NCH2

bHyd, TrzCH2CO2, OCH2Ph),
4.64–4.45 (m, 2H, NCH2

aHyd, CHCO2), 3.82–3.70 (m, 2H, CH2OH), 3.53–3.36 (m, 5H,
CH3N, CCH2Trz), 2.89 (dd, J = 14.0, 4.6 Hz, 1H, C=CCHCH2), 2.18 (s, 3H, NCCH3),
1.99–1.81 (m, 4H, 2 × CH2), 1.74–1.65 (m, 2H, CH2), 1.59–1.56 (m, 2H, CH2), 1.37–1.19 (m,
8H, 4 × CH2), 1.16 (d, J = 2.8 Hz, 1H, CH), 1.11 (s, 3H,CH3), 1.54–1.39 (m, 4H, 2 × CH2),
1.05–1.00 (m, 1H, CH), 0.93–0.86 (m, 9H, 3 × CH3), 0.79 (s, 3H, CH3), 0.69 (s, 3H, CH3), 0.59
(s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC 177.55 (C=O), 168.51 (C=O), 165.93 (NC=O),
146.14 (Cq), 143.86 (Cq), 141.70 (Cq), 136.53 (Cq), 132.29 (Cq), 132.10 (CHaro), 130.78 (Cq),
128.90 (CHaro), 128.52 (2 × CHaro), 128.09 (2 × CHaro), 128.03 (CHaro), 127.19 (Cq), 123.92
(CHaro), 123.09 (CHaro/Trz), 122.39 (CH=C), 121.92 (CHaro), 108.56 (CHaro), 105.93 (CHaro),
83.83 (CHCO2), 70.12 (Cq), 66.72 (CH2OH), 66.04 (OCH2Ph), 55.29 (CH), 51.05 (TrzCH2CO2),
47.60 (CH), 46.84 (Cq), 45.96 (CH2), 41.79 (Cq), 41.47 (C=CCHCH2), 39.38 (Cq), 38.08 (CH2),
37.87 (Cq), 36.95 (Cq), 35.98 (NCH2Hyd), 33.96 (CH2), 33.21 (CH3), 32.68 (CH2), 32.46 (CH2),
30.88 (CH3N), 30.81 (Cq), 29.82 (CCH2Trz), 28.19 (CH3), 27.71 (CH2), 25.96 (CH3), 23.75
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(CH3), 23.49 (2 × CH2), 23.14 (CH2), 18.26 (CH2), 16.96 (CH3), 16.67 (CH3), 15.44 (CH3),
12.66 (NCCH3); HRMS (+ESI) calculated for C58H75N5O6Na [M+Na]+: 960.5610, found:
960.5708.

1-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,11,14b
-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2
-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-2-(furan-2-ylmethyl)-3-oxoisoindoline-1-carboxylic acid
(18q), This derivative was isolated as a yellow solid in 60% yield; Rf (cyclohexane/EtOAc:
60/40) = 0.4; mp = 81–83 ◦C; [α]D

20 +76 (c 0.5 mg/mL, CH2Cl2); IR (νmax/cm−1) 2924.69
(CH str.), 1724.90 (3× C=O), 1711 (C=O); 1H NMR (300 MHz, CDCl3) δH 7.79 (d, J = 7.4 Hz,
1H, CHaro), 7.55–7.27 (m, 10H, 10 × CHaro), 6.34 (dd, J = 6.9, 2.8 Hz, 2H, 2 × CHaro), 5.27 (t,
J = 4.2 Hz, 1H, CH=C), 5.23–4.78 (m, 6H, NCH2Fur, TrzCH2CO2, OCH2Ph), 4.58–4.35 (m,
2H, CHCO2, CCH2

bTrz), 3.51 (s, 1H, CCH2
aTrz), 2.89 (dd, J = 14.1, 4.5 Hz, 1H, C=CCHCH2),

2.05–1.80 (m, 4H, 2 × CH2), 1.73–1.61 (m, 4H, 2 × CH2), 1.57–1.44 (m, 4H, 2 × CH2),
1.43–1.19 (m, 8H, 4 × CH2), 1.16 (d, J = 3.7 Hz, 1H, CH), 1.10 (s, 3H, CH3), 1.05–1.00 (m, 1H,
CH), 0.93–0.86 (m, 9H, 3 × CH3), 0.80 (s, 3H, CH3), 0.72 (s, 3H, CH3), 0.59 (s, 3H, CH3);
13C NMR (75 MHz,CDCl3) δC 177.53 (C=O), 171.42 (C=O), 168.26 (C=O), 165.83 (NC=O),
150.45 (Cq), 144.47 (Cq), 143.85 (Cq), 142.66 (CHaro), 136.51 (2 × Cq), 132.25 (Cq), 131.88
(CHaro), 128.56 (2 × CHaro), 128.51 (2 × CHaro), 128.08 (2 × CHaro), 128.02 (CHaro), 123.91
(CHaro), 122.68 (CHaro/Trz), 122.37 (CH=C), 110.65 (CHaro), 108.94 (CHaro), 83.87 (CHCO2),
68.76 (Cq), 66.02 (OCH2Ph), 55.28 (CH), 51.71 (TrzCH2CO2),47.59 (CH), 46.82 (Cq), 45.94
(CH2), 41.77, (Cq), 41.46 (C=CCHCH2), 39.36 (Cq), 38.07 (CH2), 37.86 (Cq), 37.06 (NCH2Fur),
36.94 (Cq), 33.94 (CH2), 33.20 (CH3), 32.66 (CH2), 32.44 (CH2), 30.80 (Cq), 29.80 (CCH2Trz),
28.18 (CH3), 27.69 (CH2), 25.94 (CH3), 23.74 (CH3), 23.48 (2 × CH2), 23.12 (CH2), 18.24
(CH2), 16.94 (CH3), 16.65 (CH3), 15.42 (CH3); HRMS (+ESI) calculated for C56H69N4O8[M +
H]+: 925.5071, found: 925.5109.

Ethyl2-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,11,
14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2-
oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-1-(2-ethoxy-2-oxoethyl)-3-oxoisoindoline-1-carboxylate
(18r), This derivative was isolated as a white solid in 98% yield; Rf (cyclohexane/EtOAc:
60/40) = 0.5; mp = 97–99 ◦C; [α]D

20 +55 (c 1 mg/mL, CH2Cl2); IR (νmax/cm−1) 2936.99
(CH str.), 1710.10 (5 × C=O); 1H NMR (300 MHz, CDCl3)δH 7.88–7.77 (m, 2H, 2 × CHaro),
7.61–7.45 (m, 3H, 3 × CHaro), 7.39–7.28 (m, 5H, 5 × CHaro), 5.27 (t, J = 3.7 Hz, 1H, CH=C),
5.15–4.85 (m, 6H, NCH2Trz, TrzCH2CO2, OCH2Ph), 4.53 (dd, J = 9.5, 6.5 Hz, 1H, CHCO2),
4.26–4.05 (m, 2H, CH3CH2CO2C), 4.03–3.92 (m, 2H, CH3CH2CO2CH2), 3.52 (d, J = 17.1 Hz,
1H, CCH2

bCO2), 3.13 (dd, J = 17.0, 2.6 Hz, 1H, CCH2
aCO2), 2.89 (dd, J = 14.2, 4.4 Hz, 1H,

C=CCHCH2), 2.01–1.80 (m, 4H, 2 × CH2), 1.78–1.63 (m, 4H, 2 × CH2), 1.62–1.54 (m, 4H, 2
× CH2), 1.54–1.27 (m, 8H, 4 × CH2), 1.25 (d, J = 4.6 Hz, 1H, CH), 1.19 (td, J = 7.1, 2.5 Hz,
3H, CH3CH2CO2CH2), 1.11–1.03 (m, 6H, CH3CH2CO2C, CH3), 1.02–0.98 (m, 1H, CH),
0.92–0.83 (m, 9H, 3 × CH3), 0.80 (s, 3H, CH3), 0.69 (s, 3H, CH3), 0.58 (s, 3H, CH3); 13C
NMR (75 MHz,CDCl3) δC 177.55 (C=O), 169.08 (C=O), 169.40 (C=O), 168.92 (C=O), 165.91
(NC=O), 143.85 (Cq), 143.57 (Cq), 136.54 (2 × Cq), 132.40 (2 × CHaro), 131.20 (Cq), 129.52
(CHaro), 128.53 (2 × CHaro), 128.09 (2 × CHaro), 128.03 (CHaro), 123.74 (CHaro), 122.40
(CHaro/Trz+ CH=C), 83.83 (CHCO2), 69.23 (Cq), 66.03 (OCH2Ph), 62.77 (CH3CH2CO2C),
61.12 (CH3CH2CO2CH2), 55.28 (CH), 51.17 (TrzCH2CO2), 47.59 (CH), 46.84 (Cq), 45.95
(CH2), 41.78 (Cq), 41.47 (C=CCHCH2), 40.38 (CCH2

bCO2), 39.37 (Cq), 38.07 (CH2), 37.83
(Cq), 36.94 (NCH2Trz),36.92 (Cq), 33.96 (CH2), 33.21 (CH3), 32.67 (CH), 32.46 (CH2), 30.81
(Cq), 28.18 (CH3), 27.70 (CH2), 25.95 (CH3), 23.76 (CH3), 23.48 (2 × CH2), 23.14 (CH2), 18.23
(CH2), 16.96 (CH3), 16.63 (CH3), 15.40 (CH3), 14.00 (CH3CH2CO2C, CH3CH2CO2CH2);
HRMS (+ESI) calculated for C57H75N4O9 [M + H]+: 959.5489, found: 959.5543.

Ethyl1-allyl-2-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,
11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)
oxy)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-3-oxoisoindoline-1-carboxylate (18s), This
derivative was isolated as a white solid in 90% yield; Rf (cyclohexane/EtOAc: 60/40) = 0.5;
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mp = 100–102 ◦C; [α]D
20 +53 (c 1.5 mg/mL, CH2Cl2); IR (νmax/cm−1) 2943.31 (CH str.),

1731.34 (2 × C=O), 1701.17 (2 × C=O); 1H NMR (300 MHz, CDCl3) δH 7.93 (s, 1H,
CHaro/Trz), 7.80 (d, J = 7.4 Hz, 1H, CHaro), 7.62–7.44 (m, 3H, 3 × CHaro), 7.39–7.28 (m,
5H, 5 × CHaro), 5.26 (t, J = 3.7 Hz, 1H, CH=C), 5.17–4.67 (m, 9H, NCH2Trz, TrzCH2CO2,
OCH2Ph, CH=CH2, CH=CH2), 4.55 (t, J = 8.0 Hz, 1H, CHCO2), 4.18–4.01 (m, 2H, CH3CH2O),
3.26–3.11 (m, 2H, CH2CH=CH2), 2.89 (dd, J = 13.6, 4.4 Hz, 1H, C=CCHCH2), 2.05–1.78
(m, 6H, 3 × CH2), 1.75–1.62 (m, 4H, 2 × CH2),1.57–1.50 (m, 2H, CH2), 1.46–1.23 (m, 8H,
4 × CH2), 1.20 (d, J = 3.1 Hz, 1H, CH), 1.14 (dt, J = 7.1, 3.5 Hz, 3H, CH3CH2O), 1.10 (s, 3H,
CH3), 1.04–0.99 (m, 1H, CH), 0.93–0.85 (m, 9H, 3 × CH3), 0.82 (s, 3H, CH3), 0.73 (s, 3H,
CH3), 0.58 (s, 3H, CH3); 13C NMR (75 MHz,CDCl3) δC 177.58 (C=O), 169.97 (C=O), 169.28
(C=O), 165.87 (NC=O), 144.46 (Cq), 143.85 (Cq), 143.60 (Cq), 136.55 (Cq), 132.35 (CH=CH2),
131.49 (Cq), 129.82 (CHaro), 129.27 (CHaro), 128.54 (2 × CHaro), 128.10 (2 × CHaro), 128.04
(CHaro), 125.88 (CHaro), 123.69 (CHaro), 122.42 (CHaro/Trz, CH=C), 120.29 (CH=CH2), 83.89
(CHCO2), 72.31 (Cq), 66.05 (OCH2Ph), 62.57 (CH2), 55.30 (CH), 51.23 (TrzCH2CO2), 47.60
(CH), 46.85 (Cq), 45.95 (CH2), 41.79 (Cq), 41.48 (C=CCHCH2), 39.38 (Cq), 38.09 (CH2),
37.86 (Cq), 37.77 (CH2CH=CH2), 37.02 (NCH2Trz), 36.96 (Cq), 33.97 (CH2), 33.22 (CH3),
32.69 (CH2), 32.48 (CH2), 30.82 (Cq), 28.22 (CH3), 27.71 (CH2), 25.96 (CH3), 23.77 (CH3),
23.51 (2 × CH2), 23.15 (CH2), 18.25 (CH2), 16.97 (CH3), 16.69 (CH3), 15.43 (CH3), 14.03
(CH3CH2O); HRMS (+ESI) calculated for C56H73N4O7 [M + H]+: 913.5435, found: 913.5466.

Ethyl2-((1-(2-(((3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,11,
14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2-
oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-1-(3-methoxybenzyl)-3-oxoisoindoline-1-carboxylate
(18t), This derivative was isolated as a white solid in 79% yield; Rf (cyclohexane/EtOAc:
60/40) = 0.5; mp = 100–102 ◦C; [α]D

20 +70 (c 1.5 mg/mL, CH2Cl2); IR (νmax/cm−1) 2936.46
(CH str.), 1702.26 (4 × C=O); 1H NMR (300 MHz, CDCl3) δH 7.75, (s, 1H, CHaro/Trz), 7.69
(d, J = 7.5 Hz, 1H,CHaro), 7.63–7.53 (m, 2H, 2 × CHaro), 7.50–7.42 (m, 1H, CHaro), 7.40–7.28
(m, 5H, 5 × CHaro), 6.86 (td, J = 7.9, 2.5 Hz, 1H, CHaro), 6.56 (d, J = 7.8 Hz, 1H, CHaro), 6.16
(t, J = 6.3 Hz, 1H, CHaro), 5.99 (s, 1H, CHaro), 5.27 (t, J = 3.9 Hz, 1H, CH=C), 5.10–4.85 (m, 4H,
TrzCH2CO2, OCH2Ph), 4.86 (s, 2H, NCH2Trz), 4.54 (t, J = 7.9 Hz, 1H, CHCO2), 4.12–4.01
(m, 2H, CH3CH2O), 3.83 (d, J = 14.7 Hz, 1H, CCH2

b3-OMePh), 3.57 (d, J = 14.7 Hz, 1H,
CCH2

a3-OMePh), 3.49 (s, 3H, CH3O), 2.89 (dd, J = 13.8, 4.4 Hz, 1H, C=CCHCH2), 2.18–1.72
(m, 4H, 2 × CH2), 1.70–1.61 (m, 4H, 2 × CH2), 1.58–1.45 (m, 4H, 2 × CH2), 1.43–1.18 (m,
8H, 4 × CH2), 1.16 (d, J = 3.7 Hz, 1H, CH), 1.10 (s, 3H, CH3), 1.08–1.02 (m, 3H, CH3CH2O),
1.01–0.97 (m, 1H, CH), 0.93–0.79 (m, 12H, 4 × CH3), 0.72 (s, 3H, CH3), 0.58 (s, 3H, CH3);
13C NMR (75 MHz,CDCl3) δC 177.52 (C=O), 169.96 (C=O), 169.28 (C=O), 165.83 (NC=O),
158.96 (Cq), 143.95 (Cq), 143.81 (Cq), 136.50 (Cq), 135.19 (Cq), 132.01 (CHaro), 131.55 (2 × Cq),
129.28 (CHaro), 128.86 (CHaro), 128.50 (2× CHaro), 128.06 (2× CHaro), 127.99 (CHaro), 125.74
(CHaro), 123.71 (CHaro), 122.89 (CHaro), 122.38 (CH=C), 122.17 (CHaro/Trz), 114.87 (CHaro),
113.00 (CHaro), 83.81 (CHCO2), 72.80 (Cq), 66.00 (OCH2Ph), 62.64 (CH3CH2O), 55.25 (CH),
54.97 (CH3O), 51.14 (TrzCH2CO2), 47.55 (CH), 46.80 (Cq), 45.91 (CH2), 41.74 (Cq), 41.43
(C=CCHCH2), 39.54 (CCH23-OMePh), 39.33 (Cq), 38.04 (CH2), 37.81 (Cq), 37.65 (NCH2Trz),
36.90 (Cq), 33.92 (CH2), 33.18 (CH3), 32.64 (CH2), 32.43 (CH2), 30.78 (Cq), 28.17 (CH3), 27.66
(CH2), 25.92 (CH3), 23.73 (CH3), 23.45 (2 × CH2), 23.10 (CH2), 18.20 (CH2), 16.92 (CH3),
16.63 (CH3), 15.38 (CH3), 13.84 (CH3CH2O); HRMS (+ESI) calculated for C61H77N4O8
[M + H]+: 993.5697, found: 993.5744.

Ethyl1,2-bis((1-(2-(((3S,4aR,6aR,6bS,8aS,12aR,14aS,14bS)-8a-((benzyloxy)carbonyl)-4,4,6a,6b,11,
11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy)-2-
oxoethyl)-1H-1,2,3-triazol-4-yl)methyl)-3-oxo-2,3-dihydro-1H-isoindole-1-carboxylate (18u), This
derivative was isolated as a white solid in 80% yield; Rf (cyclohexane/EtOAc: 50/50) = 0.4;
mp = 143–145 ◦C; [α]D

20 +63 (c 0.9 mg/mL, CH2Cl2); IR (νmax/cm−1) 2938.94 (CH str.),
1728.35 (6 × C=O); 1H NMR (300 MHz, CDCl3)δH 7.92 (d, J = 6.6 Hz, 1H,CHaro), 7.73–7.61
(m, 2H, 2 × CHaro), 7.46–7.28 (m, 12H, 12 × CHaro), 6.31 (d, J = 16.1 Hz, 1H,CHaro), 5.26
(t, J = 3.6 Hz, 2H, 2 × CH=C), 5.24–4.99 (m, 7H, TrzCH2

aCO2, TrzCH2CO2, 2 × OCH2Ph),
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4.85 (t, J = 3.8 Hz, 2H, 2 × CHCO2), 4.67 (dd, J = 15.8, 4.5 Hz, 1H, TrzCH2
aCO2), 4.60–4.33

(m, 2H, NCH2Trz), 4.30–4.05 (m, 3H, CCH2
bTrz,CH3CH2O), 3.89 (dd, J = 15.3, 4.3 Hz, 1H,

CCH2
aTrz), 2.92 (dd, J = 13.6, 4.4 Hz, 2H, 2 × C=CCHCH2), 2.05–1.74 (m, 8H, 4 × CH2),

1.72–1.62 (m, 8H, 4 × CH2), 1.60–1.51 (m, 8H, 4 × CH2), 1.48–1.24 (m, 16H, 8 × CH2),1.21
(t, J = 3.6 Hz, 3H, CH3CH2O), 1.17–1.14 (m, 2H, 2 × CH), 1.11 (s, 6H, 2 × CH3), 1.04–1.00
(m, 2H, 2 × CH), 0.94–0.80 (m, 24H, 8 × CH3), 0.77–0.67 (m, 6H, 2 × CH3), 0.61 (s,
6H, 2 × CH3); 13C NMR (75 MHz,CDCl3) δC 177.55 (2 × C=O), 169.68 (C=O), 169.61
(C=O), 166.61 (C=O), 166.04 (NC=O), 144.52 (Cq), 143.85 (2 × Cq), 142.98 (Cq), 140.25
(Cq), 136.53 (Cq), 132.45 (CHaro), 130.98 (Cq), 129.39 (CHaro), 128.53 (4 × CHaro), 128.09
(4 × CHaro), 128.03 (2 × CHaro), 126.01 (CHaro), 123.51 (2 × CHaro/Trz), 123.26 (CHaro),
122.38 (2 × CH=C), 84.31 (CHCO2), 83.33 (CHCO2), 72.40 (Cq), 66.04 (2 × OCH2Ph), 62.92
(CH3CH2O), 55.24 (2 × CH), 51.03 (2 × TrzCH2CO2), 47.59 (2 × CH), 46.84 (2 × Cq), 45.97
(2 × CH2), 41.80 (2 × Cq), 41.48 (2 × C=CCHCH2), 39.37 (2 × Cq), 38.08 (2 × CH2), 37.74
(Cq), 37.23 (NCH2Trz), 36.95 (2 × Cq), 33.96 (2 × CH2), 33.23 (2 × CH3), 32.68 (2 × CH2),
32.46 (2 × CH2), 30.81 (2 × Cq), 30.11 (CCH2Trz), 28.20 (2 × CH3), 27.72 (2 × CH2), 25.96
(2 × CH3), 23.76 (2 × CH3), 23.50 (4 × CH2), 23.14 (2 × CH2), 18.27 (2 × CH2), 16.98
(2 × CH3), 16.63 (2 × CH3), 15.46 (2 × CH3), 14.10 (CH3CH2O); HRMS (+ESI) calculated
for C95H125N7O11Na [M+Na]+: 1562.9329, found: 1562.9335.

All 1H, 13C NMR and HRMS spectra are provided as Supplementary Materials.

3.3. Antibacterial Activity

In the present study, the antimicrobial activity of the starting product OA-1 and
its derivatives 18a–u was screened by the agar disc diffusion method according to the
protocol described by Dbeibia et al. (2022) [88] against four bacteria, namely Staphylococcus
aureus ATCC 25923, Listeria monocytogenes ATCC 19115, Salmonella thyphimurium ATCC
14,080, and Pseudomonas aeruginosa ATCC 27853. The inoculums of the microorganisms
were adjusted to 0.1 at OD600 and then streaked onto Muller Hinton (MH) agar plates
using a sterile cotton mop. Sterile filter discs (diameter 6 mm, Biolife Italy) were placed
at the surface of the appropriate agar mediums and 20 µL of the product (10 mg/mL)
was dropped onto each disc. Tetracycline and chlorhexidine (10 mg/mL; 20 µL/disc)
were used as reference antibiotics. After incubation at 37 ◦C for 24 h, the antibacterial
activities were evaluated by measuring an inhibition zone formed around the disc. Each
assay was performed in triplicate. The minimum inhibitory concentration (MIC) was
evaluated as recommended by Dbeibia et al. (2022) [88]. Briefly, serial dilutions of the
synthesized compounds (3.9–2000 µg/mL) were filled in 96 U bottomed-wells plates (Nunc,
Roskilde, Denmark) with MH broth and the target bacteria. The treated plates were left
to incubateovernight at 37 ◦C. The MIC was reported as the lowest concentration of the
sample that did not allow the growth of microorganisms and do not show visible turbidity
of the broth medium. The minimum bactericidal concentration (MBC) was evaluated by
transferring 10 µL from the well showing no bacteria growth after MIC assay, on MH agar.
After a 24 h period of incubation at 37 ◦C, the bacterial growth was examined and the MBC
was determined as the lowest concentration of the sample having bactericidal activity.

3.4. Molecular Docking Procedure

Molecular docking studies were performed by using Auto Dock 4.2 program pack-
age [89]. The optimization of all the geometries of ligands was carried out by ACD (3D
viewer) software (http://www.filefacts.com/acd3d-viewer-freeware-info (accessed on
18 January 2023)) and the three dimensional structure of PDB (PDB: 5F7V) [87] was ob-
tained from the RSCB protein data bank (https://www.rcsb.org/ (accessed on 18 January
2023)). Before docking, the water molecules have been erased and the missing hydrogens
in additionto Gasteiger charges were then added to the system during the receptor prepa-
ration input file. Then, the AutoDock Tools were used for the preparation of all ligands
and protein files (PDBQT). The pre-calculation of grid maps was performed by Auto Grid
for saving a lot of time during the docking procedure and the docking calculation was

http://www.filefacts.com/acd3d-viewer-freeware-info
https://www.rcsb.org/
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carried out by a grid per map with 40 × 40 × 40 Å points ofall PDB used in additionto the
grid-point spacing of 0.375 Å, that was centered on the receptor structure in order to deter-
mine the active site andthe visualization and analysis of interactions were performed using
Discovery Studio 2017R2 (https://www.3dsbiovia.om/products/collaborative-science/
biovia-discovery-studio/, accessed on 5 June 2023). Further, all molecular docked models
for the cavities 3D were prepared via PyMOL viewer v. 0.99 [90].

3.5. Statistical Analysis

Statistical analysis was carried out using Graph Pad Prism 7.0 (Graph Pad Software
Inc., CA, USA). The experimental data of the antibacterial activity expressed in the inhibi-
tion zone are presented as mean ± standard error of the mean (SEM). Student’s t-test was
used to assess the difference between two groups. For significant differences among three
or more groups, one-way ANOVA with post hoc analysis was performed.

4. Conclusions

In summary, oleanolic acid (OA-1) isolated from olive pomace (Olea europaea L.)
was used as a starting material to prepare a series of new (OA-1)-phtalimidines coupled
1,2,3-triazole derivatives by application of the Cu(I)-catalyzed Huisgen 1,3-dipolar cycload-
dition reaction. The designed cycloadducts were assessed for their antibacterial activity
against two Gram-positive (S. aureus and L. monocytogenes) and two Gram-negative (S.
thyphimurium and P. Aeruginosa) strains. Significant antibacterial activities were observed
notably against L. Monocytogenes. Interestingly, the derivative 18g exhibited the highest
activity toward this strain (MIC = 9.48 µmol/L) followed by 18d (MIC = 9.56 µmol/L) and
18h (MIC = 9.89 µmol/L), compared to tetracycline and chlorhexidine (reference antibi-
otics). The in silico molecular docking study revealed that the selected lead compounds
18c, 18d, 18h, and 18k can fit well into the binding cavity of the ABC substrate-binding
protein Lmo0181 from L. monocytogenes. These results constitute a basis for future works
of optimization and expansion of the antibacterial spectrum, especially of derivatives of
(OA-1)-phthalimidines against Gram-positive bacteria. This also makes it possible to better
understand the mechanism of action and the resistance potential of these strains against
this new series of semi-synthetic compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124655/s1.
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