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Abstract: The interest in the consumption of edible flowers has increased since they represent a rich
source of bioactive compounds, which are significantly beneficial to human health. The objective
of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of
unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers
presented pH value of 2.8± 0.00, soluble solids content of 3.4± 0.0 ◦Brix, high moisture content of about
91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable
protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl
(DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was
better than the results observed for other edible flowers (507.8 ± 2.7 µM TE and 783.9 ± 30.8 µM TE,
respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These
flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives,
kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting
that the extract has no directly harmful effects to cells. The important bioactive compound identified in
this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential
without showing cytotoxicity.

Keywords: vinagreira-roxa; bioactive compounds; antioxidant; delphinidin; myricetin

1. Introduction

The growing interest in edible flowers is also due their commercial value and to their
intrinsic characteristics, such as aroma, exotic textures, delicate flavor, attractive color, but
mainly to their chemical composition rich in anthocyanins, flavonoids, and phenolic acids
reported as beneficial to human health [1] and that justifies the biological properties that
edible flowers have [2,3].

The edible flowers have been consumed as food in several cultures worldwide as
part of traditional cuisine or alternative medicine [2,4]. They may contain several natural
constituents with antioxidant potential. Studies with more common species, such as
calendula, rose, hibiscus, jasmine, or lavender flowers, pointed to their antioxidant potential
related to the polyphenol content [5,6]. However, there is a shortage of information about
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its antioxidant and nutraceutical potential. Information on the derivatives of flavonol
and anthocyanin in edible flowers of the genus Hibiscus is still limited, and their chemical
compositions indicate the importance of further studies on the antioxidant and nutritional
potential of Hibiscus flowers.

Hibiscus species are native to tropical and subtropical regions, producing antioxidant
phenolic compounds and flavonoids in plant tissues as protection against oxidative damage
derived from exposure to ultraviolet light [7]. Some reports have indicated that the genus
Hibiscus contains about 275 species of flowering plants widely cultivated in the tropics and
subtropics, as well revealing excellent anticancer activity in the lungs, breast, and liver [8].
Roselle (H. sabdariffa) is reported to prevent obesity-related insulin resistance [9], which can
progress to a number of metabolic disorders.

The most studied species from the genus Hibiscus is H. sabdariffa L., known as hibisco.
The flower’s calyx is considered a food rich in lutein, chlorogenic acids, and anthocyanins,
mainly delphinidin 3-O-sambubioside. The Hibiscus extract is effective in breast cancer
and may complement chemotherapy regimens as an adjuvant to reduce chemotherapy
dosages and toxicity. This species has been widely used in traditional medicine due to
its high content of polyphenols. In addition, there is an important perspective on its
therapeutic uses due to the presence of a bioactive that acts in the prevention of chronic
and degenerative diseases associated with oxidative stress [10].

The Hibiscus acetosella Welw. Ex Hiern species is a member of the Malvaceae family,
native to Africa and commonly consumed as a green vegetable. In traditional medicine
in West and Central Africa, decoction drinks are prepared from leaf and bud extracts
due to their anti-anemic and antipyretic properties. In Brazil, H. acetosella is known as
“vinagreira-roxa”, “vinagreira”, “groselheira (gooseberry bush)”, “rosela”, “quiabo azedo
(sour okra)”, and “quiabo roxo (purple okra)”. It is a sub-woody shrub presenting 1.5 to
3.0 m in height and is considered a non-conventional food plant (known in Brazil as
“PANC”) with simple leaves that vary from green to completely purple and has solitary
flowers with purple petals. It is cultivated throughout the country for ornamental purposes,
and its leaves are consumed in natura; however, its flowers have been also consumed in
salads and gourmet dishes [11].

The main objective of this study was to determine the centesimal composition, physic-
ochemical properties, bioactive compounds (polyphenols and phenolic acid), health-
promoting properties (antioxidant), and cytotoxicity of edible flowers of H. acetosella Welw.
Ex Hiern. These unpublished data can significantly contribute to new directions on the use
of edible flowers presenting pro-health properties, as well as contribute with significant
knowledge to the scientific community on the chemistry of the edible flowers of the purple
vinegar tree.

2. Results and Discussion
2.1. Physicochemical Characterization, Centesimal Composition, and Antioxidant Capacity

The physicochemical properties of the H. acetosella flowers are important parameters,
especially because there is a lack of information on this species. The obtained results
are shown in Table 1. Part of the results of centesimal composition and physicochemical
properties revealed high moisture (91.76± 0.27%) and low ash (0.45± 0.01%) contents. The
◦Brix values were measured from the soluble solids content of the solution. A 100 g sample
solution measuring 50 ◦Brix has 50 g of sugar and other dissolved solids in addition to 50 g
of water. Sugars are the most abundant soluble solid in fruit and vegetable juices. The ◦Brix
values can be useful in the variety selection, harvest scheduling, flavor, or sweetness [12].

The observed values are usually found in edible flowers of different genus and even
in Hibiscus. Several reports on studies of edible flowers that have been used as food
ingredients in Japan from the point of view of nutraceutical ingredients, report similar
content of proteins, saccharides, and fats [13]. The authors also highlighted that edible
flowers are a potential source of antioxidants, and their addition to the human diet can
bring several health benefits.
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Table 1. Physicochemical characterization, centesimal composition, antioxidant capacity, and total
phenolics content (TPC) of H. acetosella flowers.

Parameters Mean ± SD

pH 2.8 ± 0.0
Soluble solids (◦Brix) 3.4 ± 0.0
Moisture (g/100 g) 91.76 ± 0.27

Ashes (g/100 g) 0.45 ± 0.01
Lipids (g/100 g) 0.90 ± 0.17
Protein (g/100 g) ND

Carbohydrates (g/100 g) 6.89 ± 0.19
Calories (kcal) 34.7 ± 0.45

DPPH (µM TE) 507.8 ± 2.7 c

ABTS (µM TE) 783.9 ± 30.8 a

TPC (mg GAE/g) 568.8 ± 0.8 b

Data are the mean of = 3 determinations ± SD (mean standard deviation). Means that do not share the same letter
are significantly different.

The Hibiscus flower H. sabdariffa L. has been used in traditional Chinese medicine in
the form of tea to treat hypertension and inflammation [14]. Studies have revealed that
H. cannabinus, in addition to presenting food potential, has a wide range of therapeutic
properties, including antioxidant, antimicrobial, anticancer, antihyperlipidemic, antiul-
cerogenic, anti-inflammatory, and hepatoprotective activities [15,16]. The consumption of
H. manihot L. flowers tea present a positive response to vasodilating activity, which is related
to the presence of flavonoids [17]. The tea from edible T. speciosum flowers presented proto-
catechuic acid, quercetin, quercetin pentoside, and quercetin-3-O-glucoside [18]. Polyphe-
nols are natural compounds found abundantly in vegetables and fruits, and they play
a significant role in many physiological and metabolic processes [19], such as reducing
the risk of neurodegenerative diseases, cancer, diabetes, and metabolic disorders associ-
ated with obesity [20]. The results from the DPPH and ABTS assays as well as the TPC
quantification in the extract of H. acetosella flowers are shown in Table 1.

The extract of H. acetosella flowers showed TPC content within a range of expected
values for edible flowers of the Malvaceae family. The T. speciosum extract presented a
slight higher TPC value (640 mg EAG/g) [18], and H. rosa-sinensis L. showed a lower
value of antioxidant activity (DPPH 145 ± 3 mg TE/100 g DW) [21] than the extract of
H. acetosella flowers. Several studies both in vitro and in vivo have shown that extracts of
Hibiscus present a potent antioxidant effect due to its strong scavenging effect on reactive
oxygen and free radicals [19,22]. The results found herein contribute to stimulating the
consumption of edible flowers as a functional food as well as stimulating their use as
sources of natural antioxidants by the food industry [23].

2.2. Analysis of Hibiscus acetosella Flowers Extract by 1H NMR

The characteristic signals of carbohydrates, organic acids, and aromatic compounds
were observed and are shown in Figure 1. Signals δH at 5.13 ppm (d, J = 3.7 Hz) and
4.50 ppm (d, J = 7.8 Hz) were assigned to α-glucose and β-glucose, respectively. The
signal δH at 1.49 ppm (d, J = 7.2 Hz) is related to alanine. The signals δH at 4.42 ppm
(dd, J = 7.3:4.3 Hz), 2.63 ppm (dd, J = 16.1:7.3 Hz), and 2.81 ppm (dd, J = 16.3:4.3 Hz)
were attributed to malic acid. Several signals were found in the characteristic region of
aromatic compounds, and the highest intensity is characteristic of a flavonoid skeleton
with a singlet at δH 6.74 ppm referring to the B ring as well as a pair of doublets at δH 6.47
(d, J = 2.0 Hz) and δH 6.21 (d, J = 2.0 Hz) related to the hydrogens of the A ring. Based on
the flavonoid profile and chemical shifts, a myricetin derivative is suggested, which is a
substance previously reported in Hibiscus species [24]. The edible flowers of the Hibiscus
species are rich in bioactive secondary metabolites [21]. In general, the skeletal struc-



Molecules 2023, 28, 4819 4 of 13

tures of anthocyanins detected in the flowers of H. syriacus were cyanidin, delphinidin,
procyanidin, peonidin, pelargonidin, petunidin, malvidin, and dihydroflavonoids [25].
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2.3. Determination of Bioactive Compounds by HRMS and HPLC-DAD

The compounds identified by high resolution mass spectrometry (HRMS) in the
hydroethanolic extract of H. acetosella flowers are described in Table 2 and quantified by
HPLC-DAD (Tables 3 and 4). The compounds were previously described in other species of
Hibiscus [24,26]. The molecule as oxalosuccinic acid was already identified in rosa-sinensis L.
red flowers [27]. The flowers of H. rosa-sinensis are known in the local medicines of India
and China for their antipyretic, analgesic, anti-asthmatic, and anti-inflammatory properties
in addition to their flavoring potential for beverages [28]. It is possible to find flavonoids,
tannins, alkaloids, steroids, terpenoids, amino acids, and glycosides in the ethanolic and
aqueous extracts of the flowers of H. rosa-sinensis [29].

Gallic acid 3-O-β-glucoside was related in Malvaceae [30]. Another phenolic identified
as 5-(3-carboxy-2,5-dihydroxyphenyl)-2,4-dihydroxy-3-methoxybenzoic acid was identi-
fied in Hibiscus spp. [31]. A wide variety of bioactive substances, such as polyphenols,
flavonoids, and anthocyanins, have been reported in the Hibiscus species. Two species
stand out, H. cannabinus and H. sabdariffa, which have been extensively studied due to the
relationship between their biochemical compounds and biofunctional activity, while few
reports have been found on H. acetosella [32]. Different bioactive compounds found in this
study can contribute to revealing their nutraceutical and pharmaceutical potential, as al-
ready reported in in vitro and in vivo studies. Organic acids and phenolic compounds were
identified, mainly the flavonoid derivatives of myricetin, quercetin, and kaempferol and the
anthocyanins of delphinidin and cyanidin. Intaking of flavonoid-rich foods and beverages
lowers the risk of chronic disease and mortality in supervision studies, as demonstrated by
converging evidence from in vitro and clinical studies [33,34].

The results show great variability of bioactive compounds in H. acetosella edible flowers.
Comparing our data with those reported in literature, the bio-accessibility evaluated of
phenolic compounds from eight edible flowers, namely mini-rose, torenia, mini-daisy,
clitoria, cosmos, cravine, begonia, and marigold, through an in vitro digestion system
presented phenolic acids, stilbenes, flavanol, anthocyanin, flavonol, and flavanone in
their compositions in different proportions in each flower, and some of them with greater
bioavailability of phenolic compounds presenting significant antioxidant activity, such as
cosmos and mini-rose [3].

Tables 3 and 4 show the main bioactive compounds quantified using the external stan-
dard method. The sequence is according to its retention time observed in chromatogram
(Figure 2). The bioactive compounds, flavonol and anthocyanin derivatives, were identified
by matching DAD features with those available in literature and quantified by response
factor based on chemical structure of analytical standard; flavonoids derivatives are the
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major constituents, followed by cinnamic acid derivatives. In Figure 2C it is possible to
observe the maximum band absorption of anthocyanin at 520 nm. An intense signal in
19.27 min retention time (Figure 2A) is confirmed through the UV-band maximum absorp-
tion characteristic of the flavonol derivative. That was quantified with the relative response
factor using an analytical standard of flavonol. The amounts of gallic, protocatechuic acid,
and quercetin derivatives, powerful antioxidants, were higher than the values determined
in Hibiscus flowers (Hibiscus rosa-sinensis L.) [21].

Table 2. Bioactive compounds identified by HRMS in H. acetosella flower extract.

Compound Molecular Ion [M − H]− m/z [M − H]− m/z
(Error in ppm)

Mallic acid C4H5O5 133.0142 133.0142 (0.5)
Oxalosuccinic acid C6H5O7 189.0041 189.0043 (−1.0)

Quercetin C15H9O7 301.0354 301.0352 (0.7)
Myricetin C15H9O8 317.0303 317.0295 (2.3)

Gallic acid 3-O-β-glucoside C13H15O10 331.0671 331.0640 (9.4)
5-(3-Carboxy-2,5-dihydroxyphenyl)-

2,4-dihydroxy-3-methoxybenzoic acid C15H11O9 335.0409 335.0410 (−0.3)

Caffeoyl-hydroxycitric acid C15H13O11 369.0463 369.0476 (−3.4)
Quercetin 3-O-rhamnoside (quercitrin) C21H19O11 447.0933 447.0930 (0.5)

Quercetin 3-O-glucoside C21H19O12 463.0882 463.0863 (4.1)
Myricetin 3-O-glucoside C21H19O13 479.0831 479.0833 (0.3)

3,5-di-O-galloylquinic acid C21H19O14 495.0780 495.0788 (1.6)
Quercetin 3-O-β-D-(1′′-O-malonyl)-xylopyranoside C23H17O14 517.0624 517.0627 (0.7)

Quercetin 3-O-(6′-O-malonyl)galactoside C24H19O15 547.0729 547.0731 (0.3)
Delphinidin 3-O-(6′′-O-malonyl)-β-glucoside C24H21O15 549.0886 549.0896 (−1.8)

Kaempferol-3-O-sambubioside C26H27O15 579.1355 579.1351 (−0.7)
Quercetin-3-O-sambubioside C26H27O16 595.1305 595.1298 (1.1)

Cyanidin 3-O-β-D-caffeoylglucoside C30H25O14 609.1250 609.1258 (−1.3)
Myricetin-3-arabinogalactoside C26H27O17 611.1254 611.1264 (−1.7)

Miricetin 3-O-β-D-glucosil-(1→2)-β-D-glucoside C27H29O18 641.1359 641.1388 (4.4)

Compound Molecular Ion [M + H]+ m/z [M + H]+ m/z
(error in ppm)

Delphinidin C15H11O7 303.0499 303.0409 (−3.1)
Cyanidin 3-O-β-D-glucoside C21H21O11 449.1078 449.1088 (−2.1)

Delphinidin 3-glucoside C21H21O12 465.1028 465.1035 (−1.6)
Cyanidin 3-sambubioside C26H29O15 581.1501 581.1495 (1.1)

Delphinidin 3-sambubioside C26H29O16 597.1450 597.1453 (0.5)
Delphinidin 3,5-O-diglucoside C27H31O17 627.1556 627.1558 (0.4)

Table 3. Retention time (RT), maximum absorbance (λmax), and validation parameters of the
HPLC-DAD methodology for the determination of the target bioactive compounds in H. acetosella
edible flowers.

RT
(min) Bioactive Compound λmax (nm) Conc.

(µg/mL) SD * RSD% } R R2 Calibration Curve

7.68 Gallic acid 271 322 0.06 19.91 0.998 0.996 y = 0.75 × 106 X + 12,790.7
10.19 Protocatechuic acid 293 44 0.01 18.64 0.998 0.996 y = 2.85 × 106 X + 50,231.1
11.62 Cyanidin 3-O-glucoside 279/529 201 0.09 42.33 0.968 0.937 y = 0.44 × 106 X − 11,172
12.54 Cyanidin 519 10 0.00 19.85 0.993 0.987 y = 3.88 × 106 X + 85,884

13.20 Delphinidin
3-O-glucoside 521 243 0.43 23.84 0.994 0.988 y = 0.10 × 106 X + 3339.92

13.76 Caffeic acid 324 237 0.04 18.08 0.993 0.987 y = 1.57 × 106 X + 26,680
17.00 Sinapic acid 324 65 0.01 17.79 0.998 0.996 y = 2.19 × 106 X 36,087.4
20.32 Myricetin 256/375 363 0.15 25.24 0.996 0.992 y = 0.05 × 106 X − 9668.84
21.63 Quercitrin 254/371 65 0.00 15.93 0.998 0.997 y = 4.02 × 106 X + 54,454.1
22.12 Luteolin 255/349 13 0.00 16.36 0.999 0.999 y = 0.83 × 106 X + 5952.23

* = standard deviation; } = relative standard deviation.
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Table 4. Bioactive compounds content (%, w/w, as internal standard) quantified by relative response
factor (RF).

RT (min) Bioactive Compound λmax (nm) * RF ** Content *** LOQ **** LOD

Anthocyanidin standard 1.92974 × 10−6 −1.73 × 10−9 −5.70 × 10−9

11.95 Anthocyanin derivative 277/529 9.90959 × 10−7 0.080
Cinnamic standard 837,181.4346 6.03 × 10 1.99 × 10

12.70 Cinnamic acid 326 72,848.10127 0.021
14.67 Cinnamic derivative 326 32,050.63291 0.009

Flavonol standard 20,175.78773 4.27 × 10 1.41 × 10
15.27 Flavonol rutinoside derivative 355 184,461.5385 0.070
15.48 Flavonol rutinoside derivative 346 267,748.7179 0.102
18.11 Flavonol derivative 369 117,369.146 0.082
19.27 Flavonol derivative 254/370 1.28163 × 10−7 5.46
19.70 Flavonol derivative 252/370 154,988.9807 0.108

Flavone standard 518,203.8567 9.28 × 10 3.06 × 10
20.81 Flavone derivative 369 3870.52091 0.002

* (mAU/µg mL−1); ** (%, w/w); *** = limit of quantification (10 × SD/b); **** = limit of detection (3.3 × SD/b).
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The flowers of H. syriacus are consumed mainly by their delicate and colorful flowers
that vary among white, pink and purple. According to previous reports, the flowering
period extends from May to October, but the individual flowers stage is relatively short,
lasting only one day. This can cause some difficulties in collecting and storing fresh flowers;
all strains of H. syriacus were collected in the city of Senshan, Yiwu Zhejiang province,
China, on 14 August 2019 for the analyses. The study highlights that the stability of an-
thocyanins in H. syriacus flowers is easily affected by environmental and chemical factors,
such as light, pH, ascorbic acid, H2O2, and Na2SO3. However, the collection period is
not mentioned as an interfering factor for the stability of anthocyanins. In the methanolic
extracts of three strains of H. syriacus, the total anthocyanin contents were analyzed by
the pH differential method. As a result, the red flowers of H. syriacus accumulated more
anthocyanins than the purple and white flowers, with values of 3.2 mg/g, 1.87 mg/g, and
1.61 mg/g, respectively [25]. This preliminary study associating the color variations of
H. syriacus flowers with their chemical compositions may help to understand the antho-
cyanin value found in the reddish flowers of H. acetosella (approximately 3.18 mg/g of
flowers). These values are similar with that presented in this study to flowers of H. acetosella
whose petals are light red with a dark red. In hibiscus flowers, the most abundant chemical
class is flavonols, and several flavonols were identified and described for the first time in
H. acetosella flowers in this work.

2.4. Cytotoxicity Evaluation

The extract exhibited no cytotoxicity effects on the cell lineages used (different 2D-cell
cultures were used to measure in vitro renal, embryonic, hepatic, cardiac, and blood), even
in the maxima concentration used (Figure 3). The result suggested that the extract is safe
for the cells with no directly harmful effects to cells. Previous studies on Hibiscus spp.
flowers have already proven the non-toxicity of the flowers as well as the isolated chemical
constituents from these flowers, which makes them edible [35,36]. There are several studies
on the cytotoxicity of leaves and other parts of the species H. acetosella, but no reports on
the toxicity of its flowers have been found in scientific literature.
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HEPG2 cell (B), HEK cells (C), RAW cells (D), L6 cells (E). The CC50 values (cytotoxic concentration
that decreases cell viability by 50%) correspond to the average of three independent experiments.

3. Materials and Methods
3.1. Collection and Processing Flower Sample

The flowers of H. acetosella were collected at the PANC site located at the Estrada
do Brasileirinho, 4960, Km 6, Industrial District II, Manaus–AM (3◦6′26′′ S/60◦1′34′′ W,
SISGEN authorization A26CD5E). Flowers were analyzed in fresh form as well as subjected
to an ethanol-water solution (8:2) extraction in an ultrasonic bath for 15 min in triplicate.

3.2. Chemical Physical Analysis and Centesimal Composition

The pH was determined using 5 mL of flower juice using a pH meter (AKSO–AK90)
previously calibrated [37]. The measurement of total soluble solids was determined with a
digital refractometer (HI 96801, Hanna Instruments, Woonsocket, RI, USA) using 3 drops
of the sample; the results are expressed in ◦Brix. All measurements were performed
in triplicate.

Flower moisture was obtained by heating in an oven at 105 ◦C for 3 h. The heating and
cooling operation was repeated until constant weight. The ash content was measured by
carbonization followed by incineration of the flowers in a muffle at 550 ◦C. Determination
of protein content by the classic Kjeldahl method. 0.2 g of the samples were weighed and
transferred to a Kjeldahl tube, and 5 mL of sulfuric acid and 1.2 g of catalytic mixture
(contains copper sulfate, titanium oxide and potassium sulfate) were added. The digestion
process was carried out and after the displacement of the nitrogen present in the sample,
the nitrogen distillation process was carried out, using 2 drops of phenolphthalein and 0.2 g
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of zinc powder; the flask was connected to the distillation system of nitrogen. The excess of
the 0.05 M sulfuric acid was titrated with 0.1 M sodium hydroxide solution until obtaining
50 mL of distillate. This analysis was performed in triplicate. Protein is calculated using
the following Equation (1):

%protein(m/m) =
V× 0.14× f

W
(1)

where V = difference between the volume (mL) of sulfuric acid and sodium hydroxide
spent in the titration; W = weight (g) of the sample; f = conversion factor (6.25).

The extraction of total lipids was performed with 2 g of the sample using the Soxhlet
method with hexane in continuous flow for 8 h [37]. All measurements were performed
in triplicate.

3.3. DPPH• and ABTS•+ Radicals Scavenging Capacity Assay

For the DPPH• (2,2-diphenyl-1-picryl-hydrazyl) radical assay, 100 µL of the sample
was added to 3.9 mL of DPPH• solution (100 µM) and incubated in the dark for 30 min [38].
The absorbance was measured at 515 nm. The scavenging capacity of radical cations ABTS•+

[2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] was performed with a volume of
3.0 mL of the obtained solution (7 mM ABTS) mixed with 30 µL of H. acetosella extract and
was allowed to react in the dark for 6 min. The absorbance was measured at 734 nm [39].
The Trolox standard calibration curve was constructed at different concentrations (250
to 2000 µM). These assays were performed in triplicate, and the results are expressed in
micromolar of Trolox equivalent (µM TE). The assay measure was made with an ultraviolet-
visible spectrophotometer (nova NI 2200, Nova Instruments, Campinas, Brazil).

3.4. Total Phenolic Composition

An aliquot of 200 µL (1 mg/mL) of the hydro-ethanolic extract of flowers was reacted
with 1.5 mL of Folin Ciocalteu reagent/water (1:10) for 5 min. Then, 1.5 mL of sodium
bicarbonate (60 g/L) were added to this previous solution. After 90 min of reaction in the
dark, the absorbance measurements were obtained using an ultraviolet-visible spectropho-
tometer at 725 nm (nova NI 2200, Nova Instruments, Campinas, Brazil). The standard
curve of gallic acid was constructed at different concentrations (31.2 to 1000 µg/mL). This
assay was performed in triplicate, and the results were expressed in milligrams of gallic
acid equivalent per gram (mg GAE/g) [40].

3.5. Bioactive Compounds Identification
3.5.1. Chemical Profile by Nuclear Magnetic Resonance

The chemical profile of the flowers extract was obtained on an 1H 500 MHz NMR
Spectrometer Bruker®, BBFO Plus SmartProbeTM (New York, NY, USA). The extract
was solubilized using deuterated methanol (CD3OD) and transferred to a 5 mm 1H
NMR tube [41]. The spectrum was processed using the software Topspin 4.1.1 (Bruker,
Karlsruhe, Germany).

3.5.2. Identification by High Resolution Mass Spectrometry (HRMS)

The HRMS analysis was performed on an ESI-MicroTOF-Q II hybrid quadrupole
time-of-flight mass spectrometer (Bruker Daltonics®, Fremont, CA, USA). The sample
(1 mg/mL) was diluted in methanol/water (1:1, v/v) with 0.1% formic acid and 3 mM
ammonium formate. The mass spectrometer parameters were as follows: capillary voltage
(−3.5 kV for negative and 4.5 kV for positive ion modes); nebulizer gas (nitrogen, 2.0 bar);
dry gas (nitrogen, 6.0 L/min); and mass range (m/z = 100–800 Da) [26]. The instrument was
calibrated with sodium formate. Data acquisition and processing were performed using
the software Bruker® Compass Data Analysis 4.1.
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3.6. Quantification of Bioactive Compounds by HPLC-DAD

The HPLC analyses were conducted using a Shimadzu Shim-pack octadecyl silane
(ODS) column (ID 5 µm, 250 × 4.6 mm) equipped with a precolumn of the same material;
the oven temperature was maintained at 30 ◦C. The mobile phase was water (A) and
methanol (B); the acidity was obtained using phosphoric acid at pH 3, gradient from
1.0 min in isocratic mode at 10% (B), 10–50% (B) in 13 min, 50–70% (B) in 6 min, 70–100%
(B) in 7 min, followed by elution with 100% methanol for 5 min. The chemical profile and
quantification were obtained on a Shimadzu Prominence LC-20AT (Shimadzu Corporation
Co., Ltd., Kyoto, Japan), equipped with a DGU-20A5 degasser equipped with SPD-M20A
(PDA) detector. The linearity was evaluated by analysis of external standard stock solution
from 0.5 to 0.0156 mg/mL in triplicate. The equation parameters (slope and intercept)
of each standard curve were used to obtain the samples concentrations. The limits of
detection (LOD) and quantitation (LOQ) were calculated from a calibration curve by
dividing the standard deviation of the calibration curve by its slope multiplied by 3.3 and
10.0, respectively [42].

Quantification by Relative Response Factor

Quantitative analysis of flavonol and cinnamic acid derivatives was performed by
establishing response factors from caffeic acid, sinnapic acid, myricetin, and quercetin
standard selected as reference [43]. The response factors (RF) for the flavonol and cinnamic
derivatives were calculated as a ratio of the concentration in relation to the corresponding
area of standard sample [44]. The relative response factors (RRF) were calculated as the
ratio of the RF for each analyte to that of the chosen reference. The quantification of phenolic
derivatives content in the sample was carried out according to the following Equation (2):

Content
(

%,
w
w

)
=

Asamp × RRF× Rf ×Vsamp × 100
Wsamp × 1000

(2)

where Asamp: area due to the phenolic in the sample (mAU·s); RRF: the average relative
response factor of that phenolic derivative to the reference phenolic; Rf: response factor of
the phenolic standard [(µg/mL)/mAU·s]; Vsamp: volume of sample solution (mL); Wsamp:
sample weight (µg).

3.7. Cytotoxicity Evaluation

In order to evaluate the toxicity of extract, the colorimetric assay of MTT (3-(4,5-
dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide) was used to determine the cy-
totoxic concentration that decreases cell viability by 50% (CC50) from cell cultures of
African green monkey kidney epithelial Vero (ATCC® CCL-81™), liver epithelial-like
HEPG2 (ATCC® HB-8065™), human kidney embryo HEK-293 (ATCC® CRL-1573™),
mouse macrophage RAW 264.7 (ATCC® TIB-71™), and rat myoblast L6 (ATCC® CRL-
1458™) [45]. A suspension of each cell type, containing approximately 1 × 104 cells/mL,
was seeded in a 96-well plate (100 µL/well) until reaching 70–80% confluence. After 24 h or
until reaching confluence, the cells were treated with a different serial concentration of the
extract in dilution factor of 10 in incomplete DMEM (Dulbecco’s Modified Eagle’s Medium)
medium, starting with a concentration of 100 µg/mL. The dilutions were incubated for
24 h at 37 ◦C under a 5% CO2 atmosphere. Subsequently, the medium was then removed,
and 100 µL of MTT (0.5 mg/mL) was added, followed by a new incubation period using
the same conditions described above. Then, the MTT medium was removed and replaced
with 100 µL of DMSO (dimethyl sulfoxide) per well to dissolve the formazan crystals. The
plate was then shaken for 20 min, and the reading was performed in a spectrophotometer
at 540 nm.
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3.8. Statistical Analysis

The cytotoxicity results (CC50) were obtained through non-linear regression analysis
of the percentages of inhibition of cell viability related to different concentrations of com-
pounds using the software GraphPad Prism version 6.0 [46]. The CC50 values represented
the average of three independent experiments.

The results of the scavenging of DPPH•/ABTS•+ radicals and total phenolic content
were expressed as mean ± standard deviation and were evaluated using Microsoft Excel®

2016. Statistical significance was determined using ANOVA (one-way) followed by mul-
tiple comparison using the Tukey test (95% confidence level). Values of p ≤ 0.05 were
considered significant.

4. Conclusions

This research contributes scientifically to the chemical knowledge of the edible flowers
of H. acetosella, while also highlighting the value of the selected species. The chemical
composition is similar to other species of this genus. The flower extract is rich in bioactive
compounds, including myricetin, gallic acid, delphinidin 3-O-glucoside, and caffeic acid,
which contribute to its antioxidant properties. The chemical profile reveals the presence of
flavonoid derivatives as well as other compounds, such as organic acids. This study is the
first to report data on the cytotoxic activity of the flowers of this species. The occurrence of
H. acetosella flowers in Brazil allows for their consumption in various food applications. For
this reason, our results encourage further studies to assess the effectiveness and safety of
consuming this species for the benefit of human health.
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