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Abstract: Phthalic selenoanhydride (R-Se) solved in physiological buffer releases various reactive
selenium species including H2Se. It is a potential compound for Se supplementation which exerts
several biological effects, but its effect on the cardiovascular system is still unknown. Therefore,
herein we aimed to study how R-Se affects rat hemodynamic parameters and vasoactive proper-
ties in isolated arteries. The right jugular vein of anesthetized Wistar male rats was cannulated
for IV administration of R-Se. The arterial pulse waveform (APW) was detected by cannulation
of the left carotid artery, enabling the evaluation of 35 parameters. R-Se (1–2 µmol kg−1), but not
phthalic anhydride or phthalic thioanhydride, transiently modulated most of the APW parame-
ters including a decrease in systolic and diastolic blood pressure, heart rate, dP/dtmax relative
level, or anacrotic/dicrotic notches, whereas systolic area, dP/dtmin delay, dP/dtd delay, anacrotic
notch relative level or its delay increased. R-Se (~10–100 µmol L−1) significantly decreased the
tension of precontracted mesenteric, femoral, and renal arteries, whereas it showed a moderate
vasorelaxation effect on thoracic aorta isolated from normotensive Wistar rats. The results imply
that R-Se acts on vascular smooth muscle cells, which might underlie the effects of R-Se on the rat
hemodynamic parameters.

Keywords: phthalic selenoanhydride; hemodynamic parameters; vasorelaxation; rats

1. Introduction

Selenium (Se) plays a significant role in the regulation of human health. As an es-
sential trace element, the levels of Se in the organism are dependent on the diet [1,2]. For
instance, when there is a lack of Se in the diet, selenocompounds are mostly used as food
supplements [3–9]. Both selenocompounds and the Se atom present in the form of seleno-
cysteine at the active sites of selenoproteins participate in physiological processes and have
a protective role towards several diseases, including cancer, diabetes, neurodegenerative
and cardiovascular disorders, inflammation, or infections [2–18]. However, chronic over-
consumption of Se may lead to intoxication with compromised functions of the kidney,
immune, and reproductive system as well as to the development of cancer, cardiovascular,
and liver diseases [2,19].
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Therefore, new Se-compounds are studied as suitable Se-donors to have direct ben-
eficial effects on diseases [18,20–22]. In this context, data previously reported by the
group showed that phthalic selenoanhydride (R-Se, Scheme 1), the Se isostere of phthalic
anhydride (R-O), has a noteworthy chemopreventive, cytostatic, cytotoxic, free radical scav-
enging, apoptotic, antiviral, antimicrobial, antibiofilm, and multidrug-resistance (MDR)
reversing activity compared with the poor or null activity of its sulfur (phthalic thioan-
hydride, R-S) and oxygen isosteres (phthalic anhydride, R-O). R-Se has been recently
suggested to be a potential candidate for a safe anticancer drug [23]. These facts point to
the relevance of the Se atom of R-Se to the biological activities observed [24–29].
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enhancement of GPx activity [30,33–35]. Alternatively, high Se concentrations, among 
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with systolic BP and pulse pressure and with cardiovascular mortality in hypertensive 
patients, suggesting that sufficient Se levels may contribute to BP control and 
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might be associated with hypertension diseases [30,31,36,39–41]. 

An increased artery tension, which decreases blood flow, is the basis of many 
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found to enhance acetylcholine-induced relaxation of isolated rat aortic rings, but a direct 
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model, intraperitoneal sodium selenite morphometrically prevents the development of 
peripheral vasospasms [46]. Concentration of serum Se was reported to be positively 
associated with arterial stiffness and BP in humans [47].  

We have previously shown that selenite in the presence of H2S, was able to modify 
the tension of the precontracted aortic rings isolated from normotensive rats [48]. 
Therefore, we have assumed that the direct interaction of Se or Se-compounds with the 
cardiovascular regulatory system should not be underestimated. The proposed 
mechanism suggested to explain the activity of R-Se is the release from R-Se, which 
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In addition, Se has a marked influence on the cardiovascular system, as, for example,
urinary Se concentration is negatively associated with systolic and diastolic blood pressure
(BP), implying that Se exerts a protective action against an increased BP [30]. This fact
also points out that Se deficiency might be a risk factor for high BP development [31]. The
activation of the antioxidant enzyme glutathione peroxidase (GPx) using Se as a cofactor
may partly account for the observed negative association between Se concentration and
BP [32]. ROS-related processes such as lipid peroxidation, atherosclerotic plaque formation,
and platelet aggregation can be reduced by an enhancement of GPx activity [30,33–35].
Alternatively, high Se concentrations, among older adults, may be significantly associated
with cardiometabolic risk factors [36–38]. Recent data have confirmed that serum Se
concentrations have a U-shaped relationship with systolic BP and pulse pressure and with
cardiovascular mortality in hypertensive patients, suggesting that sufficient Se levels may
contribute to BP control and hypertension prevention. Meanwhile, too low or too high a
concentration of serum Se might be associated with hypertension diseases [30,31,36,39–41].

An increased artery tension, which decreases blood flow, is the basis of many diseases
and death [42–44]. Therefore, compounds that reduce arterial tension are interesting for
experimental studies to find novel derivatives with a potential application in medical
practice. Reported data suggest that Se affects arterial functions; however, its effects are
not fully documented. As a source of Se, sodium selenite supplementation was found to
enhance acetylcholine-induced relaxation of isolated rat aortic rings, but a direct application
of selenite on the rings had no effect [45]. In the rat femoral artery vasospasm model,
intraperitoneal sodium selenite morphometrically prevents the development of peripheral
vasospasms [46]. Concentration of serum Se was reported to be positively associated with
arterial stiffness and BP in humans [47].

We have previously shown that selenite in the presence of H2S, was able to modify the
tension of the precontracted aortic rings isolated from normotensive rats [48]. Therefore,
we have assumed that the direct interaction of Se or Se-compounds with the cardiovascular
regulatory system should not be underestimated. The proposed mechanism suggested to
explain the activity of R-Se is the release from R-Se, which would act as a prodrug [24,26].
In our previous study, a complex pattern of various reactive Se species, including H2Se,
was observed after the fragmentation of R-Se in a 50% methanol/H2O solution [29]. We
hypothesized that R-Se could directly influence BP and tensions of isolated arteries.

The vasoactive effect of novel pharmacological agents is of great interest, especially
regarding arterial contribution to vascular resistance and the pressure control, which
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mainly include small blood vessels mesenteric, femoral, and renal arteries, with diam-
eters between 200 and 500 µm [49,50]. The main bioactive molecule revealing signifi-
cant vasorelaxant effect in blood vessels is the nitric oxide (NO) produced by the en-
dothelium. In animal models, where there is an optimal state of health, the role of
NO is intact, and pharmacologically-administered drugs reflects the acute real state of
relaxation-constriction responses.

In the present work, R-Se was used as the donor of reactive Se species including
H2Se to study their direct effect on the cardiovascular system. The effect of intravenous
(IV) bolus administration of R-Se on rat hemodynamic parameters and tension of isolated
rat mesenteric, femoral, and renal arteries was studied. Additionally, we bring new re-
sults elucidating the impact of novel R-Se on the endothelial and/or vascular smooth
muscle cells.

2. Results
2.1. R-Se, but Not R-S or R-O Modulates Arterial Pulse Waveform

Parameters of rat arterial pulse waveform (APW-Ps) were evaluated after IV bolus
administration of the tested anhydride-containing compounds R-O, R-S and R-Se. Admin-
istration of R-S or R-O at 1 or 2 µmol kg−1 (n = 5) had negligible effects on all 35 APW-Ps
(Figure 1). However, administration of R-Se (1 or 2 µmol kg−1, n = 2 + 7) transiently
(for approximately 1 min) altered most APW parameters followed by changes very likely
attributable to the body’s response to a decrease in the BP (Figure 1). The details of the time-
dependent changes in APWs (Figure 2 and Figures S2–S9) revealed that changes in some
parameters showed simple transient behavior, for example, systolic or diastolic BP, heart
rate, dP/dtmax, dP/dtd, augmentation index, or anacrotic and dicrotic notches, while other
parameters did not follow changes in the systolic BP, for example, pulse BP, systolic and
diastolic area, or anacrotic and dicrotic notches rel. levels or delays. Qualitative changes
were mostly reproducible, but quantitative data were scattered. Therefore, we summed
together the qualitative increase or decrease in the APW-Ps after R-Se administration of
1 and 2 µmol kg−1 (Table 1). The same qualitative changes were observed in 15 of 35
APW-Ps in all nine rats, including a decrease in the systolic and diastolic BP, heart rate,
dP/dtmax relative level, or anacrotic and dicrotic notches, whereas systolic area, dP/dtmin
delay, dP/dtd delay, anacrotic notch relative level, or delay increased. In eight of nine
rats, the same qualitative changes were observed in four APW-Ps including a decrease in
dP/dtd relative level or an increase in the diastolic area. In seven out of nine rats, the same
qualitative changes were observed in five APW-Ps including an increase in dP/dtd or pulse
BP, and a decrease in dP/dtmax, or anacrotic notch relative delay. In the remaining 11 APW
parameters, qualitative changes were less pronounced and therefore they were difficult to
be distinguished. After R-Se (1 and 2 µmol kg−1) administration, the systolic BP decreased
by 28 ± 14% (n = 9, ±SD).
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anhydride (R-O, green) and its phthalic thioanhydride (R-S, blue) and phthalic selenoanhydride 
(R-Se, black) isosteres. Abbreviations, definitions, and units of measured APWs from arterial pulse 
waveform (APW) are as explained previously [51,52] and briefly in Supplementary Material 
Figure S1. 

Figure 1. Time-dependent changes in 35 rat arterial pulse waveform parameters (APW-Ps) of anaesthetized
rats in control (red) and after intravenous administration of 2 µmol kg−1 phthalic anhydride (R-O,
green) and its phthalic thioanhydride (R-S, blue) and phthalic selenoanhydride (R-Se, black) isosteres.
Abbreviations, definitions, and units of measured APWs from arterial pulse waveform (APW) are as
explained previously [51,52] and briefly in Supplementary Material Figure S1.
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Figure 2. Time-dependent changes of 35 APW-Ps of anaesthetized rats before (red) and after intra-
venous bolus (15 s) administration of 2 µmol kg−1 R-Se (blue). Vertical dash lines indicate the start of
R-Se administration. Abbreviations, definitions, and units of measured APW-Ps from the APW are
explained in [51,52] and briefly in Figure S1.
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Table 1. The sum of changes in 35 arterial pulse waveform parameters (APW-Ps) in nine anaesthetized
rats after intravenous administration of 1 and 2 µmol kg−1 phthalic selenoanhydride (R-Se). Arrow
indicates transient increase or decrease in particular APW-Ps after R-Se administration. The number
indicates how many times the increase or decrease was observed out of nine experiments. Symbol ”~“
indicates a not clearly resolved effect of R-Se. Data were evaluated visually from Figures 2 and S2–S9.

APW-Ps Variation APW-Ps Variation

(a) Systolic blood pressure ↓ = 9 (aa) Systolic blood pressure ↓ = 9

(b) Heart rate ↓ = 9 (bb) Anacrotic notch ↓ = 9

(c) Systolic area ↑ = 9 (cc) Anacrotic notch relative level ↑ = 9

(d) dP/dtmax ↓ = 7 (dd) Anacrotic notch delay ↑ = 9

(e) dP/dtmax relative level ↓ = 9 (ee) Anacrotic notch relative delay ↓ = 7

(f) dP/dtd ↑ = 7 (ff) [Dicrotic notch (DiN) in s] − [Anacrotic notch (AnN) in s] ↑ = 9

(g) dP/dtd relative level ↓ = 8 (gg) [(DiN − AnN) in s]/[dP/dtmin in mmHg µs−1] ~

(h) dP/dtd − dP/dtmax ↑ = 9 (hh) [(DiN − AnN) in s]/[dP/dtmax in mmHg µs−1] ↑ = 8

(i) dP/dtd − dP/dtmin ↑ = 9 (ii) [AnN in ms] − [1Max in ms] ↑ = 7

(j) Diastolic blood pressure ↓ = 9 (jj) Augmentation index relative ~

(k) Pulse BP ↑ = 7 (kk) Dicrotic notch ↓ = 9

(l) Diastolic area ↑ = 8 (ll) Dicrotic notch relative level ~

(m) dP/dtmin ↓ = 6 (mm) Dicrotic notch delay ↑ = 9

(n) dP/dtmin relative level ~ (nn) Dicrotic notch relative delay ~

(o) dP/dtmin delay ↑ = 9 (oo) [DiN in mmHg] − [AnN in mmHg] ↓ = 7

(p) dP/dtd delay ↑ = 9 (pp) [(DiN − AnN) in mmHg]/[dP/dtmin in mmHg ms−1] ↑ = 6

(q) dP/dtd − dP/dtmax ~ (qq) [(DiN − AnN) in mmHg]/[dP/dtmax in mmHg ms−1] ↓ = 6

(r) dP/dtd − dP/dtmin ~ (rr) [AnN in mmHg] − [1Max in mmHg] ↑ = 8

2.2. R-Se Decreased Tension of Isolated Mesenteric, Femoral and Renal Arteries

To know which part of arterial tree contributed to the observed BP decrease, the effects
exerted by R-Se on isolated mesenteric, femoral, and renal arteries, as well as on the thoracic
aorta were studied. Noradrenaline (NA, 10 µmol L−1) increased tension of the mesenteric
artery and cumulative concentration of acetylcholine (1 nmol L−1–10 µmol L−1) decrease
it, confirming the proper function of a contraction-relaxation mechanism (Figure S10). NA
was used to increase tension again and subsequent application of R-Se (6.25; 12.5; 25; and
100 µmol L−1) relaxed mesenteric artery. After washing out of R-Se, NA was applied
again to induce contraction (Figure S10). R-Se relaxed mesenteric artery in concentration
dependent manner (Figure 3A) and its effects prevailed after washed out of R-Se, so the
next contraction was significantly lower (Figure S11). The addition of DMSO alone did not
relax the artery (Figure 3A). Similar results were obtained when studying the effect of R-Se
on the femoral (Figure 3B) and renal arteries (Figure 3C). In these cases, first the tension of
arteries was induced by serotonin (1 µmol L−1). Then, a control cumulative concentration
of acetylcholine relaxed them, before inducing the arterial tension by serotonin again. The
subsequent application of R-Se (12.5–100 µmol L−1) relaxed the arteries. R-Se significantly
relaxed all arteries ≥14 min after application. Effect of R-Se on femoral artery was less
pronounced than that on mesenteric and renal arteries (Figure 3D). The overall effect
of R-Se (25 µmol L−1) on the relaxation of arteries (measured in the 10.5th minute post
administration of R-Se) was highly significant (p = 0.0019, one-way analysis of variance,
Figure 3D).
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subsequent application of 25 or 50 µmol L−1 of R-Se had no vasoactive effect on the 
precontracted thoracic aorta. When higher concentrations were tested (100–300 µmol L−1), 
they triggered a mild vasorelaxation (11–38%) (Figure 4). DMSO ≤ 0.6% v/v had no effects 
on the aorta tonus. 

Figure 3. Effect of R-Se on the vascular reactivity of the mesenteric artery ((A) A. mesenterica),
femoral artery ((B) A. femoralis), and renal artery ((C) A. renalis). The vasoactive effects of R-Se on the
A. mesenterica (A) were pre-contracted with NA (10 µmol L−1), A. femoralis (B) and A. renalis (C)
with Ser (1 µmol L−1). The relaxing effect of R-Se was observed for 14−15 min. Comparison of
the relaxation effect of R-Se (25 µmol L−1) on mesenteric (Mes.), femoral (Fem.) and renal (Ren.)
artery measured at 10.5th min (D). * p < 0.05 vs. DMSO (one-way analysis of variance followed by
Tukey-Kramer test for multiple comparisons).

2.3. R-Se Had a Minor Effect on the Tension of the Isolated Thoracic Aorta

NA (0.1 and 1 µmol L−1) increased the tension of the isolated thoracic aorta. A
subsequent application of 25 or 50 µmol L−1 of R-Se had no vasoactive effect on the pre-
contracted thoracic aorta. When higher concentrations were tested (100–300 µmol L−1),
they triggered a mild vasorelaxation (11–38%) (Figure 4). DMSO ≤ 0.6% v/v had no
effects on the aorta tonus.
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L−1 R-Se (pink). The middle (for colors) and right arrows (for blacks) indicate R-Se application.

3. Discussion

According to the lines of evidence presented in previous works, R-Se has the capacity
to release different reactive Se species (RSeS). Among them, the release of hydrogen selenide
(H2Se) can be highlighted, as this RSeS is able to interact with specific cellular compounds
and proteins, having different ex vivo or in vivo effects [24–28,53]. According to our
knowledge, this is the first study of the direct effect of an intravenously-administrated
Se-compound that is capable of releasing reactive Se species (RSeS), including H2Se, on
APW-Ps in an animal model. Due to rats under deep anaesthesia used in our study, some
control APW-Ps as systolic BP or heart rate were lower than in unanaesthetized rats [54,55].
The qualitative effects of R-Se on APW-Ps were mostly reproducible, but the quantitative
data were scattered (Figures 1 and 2). It might be assumed that this could be caused by
different rat anaesthetic conditions and/or unequal concentrations of the products formed
due to slightly different times between the dilution of R-Se from DMSO solution with saline
and its administration. Time-dependent changes of UV-Vis spectra of Na2Se in phosphate
buffer were observed indicating a reaction of Na2Se with the components of the buffer [29].

Qualitative effects of R-Se on APW-Ps were reproducible and they were probably
directly related to the Se atom, as no relevant effects were displayed by its sulfur (ph-
thalic thioanhydride, R-S), or oxygen (phthalic anhydride, R-O) isosteres (Figure 1). Tran-
sient effects of R-Se are similar to those found for H2S-donor Na2S, and NO-donor S-
nitrosoglutathione [52,56]. It is assumed that the transient effect of R-Se could be a conse-
quence of the instability in the blood of the active product(s) released from R-Se and/or
their effective elimination by the kidney. These possibilities are supported by ex vivo
experiments, in which non-transient relaxation effects of R-Se on isolated arteries were
found (Figure 3). Some of the time-dependent biphasic changes in APW-Ps (e.g., increase
in systolic BP, Figure 1a) after the transient effect of R-Se are not yet understood; however,
they could be associated with a sympathetic reflex response reported for well-known
vasoactive substances such as endothelin, urotensin, and apelin [57–59]. Qualitative sim-
ilar transient biphasic changes in systolic BP were observed after IV administration of
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H2S-donor Na2S [56]. Similar effects, but much less pronounced, were observed after the
administration of sodium selenite (Na2SO3) [48]. Under the same experimental condi-
tions, the capacity of R-Se (1 and 2 µmol kg−1) to decrease the systolic BP (by 28 ± 14%,
means ± SD) was significantly higher than that reported for sodium selenite at a higher
micromolar concentration (5 µmol kg−1): only a 1.3% BP systolic decrease was determined
for the inorganic salt [48].

It was hypothesized that it might be possible to characterize the cardiovascular system
status in diverse pathophysiological conditions along with the effects of pharmacological
drugs through the analysis of the detailed shape of APW [60–68]. Thirty-five APW-Ps
were defined to look for patterns of changes in APW under different cardiovascular condi-
tions [51,52]. R-Se influenced most of the 35 APW-Ps. However, we cannot know with the
available data whether the observed changes in these parameters, indicative of cardiovas-
cular effects, can be attributed to the Se, to the R-Se compound, or to the reactive Se species
that could be released from R-Se.

We focused on experimental methods ex vivo on the conduit aorta and small vessels,
to know to what extent they participated in the observed decrease in BP after R-Se adminis-
tration. The results indicate that all used vascular segments relaxed in presence of R-Se in
the concentration-dependent manner. The most sensitive vascular segments among the
ones used were the small resistant mesenteric arteries. Since the mesenteric arteries are part
of the splanchnic circulation, which receives about a quarter of the total cardiac output [69],
marked vasodilation in these arteries (even at low R-Se concentrations of 6.25 µmol L−1)
could correlate with a decrease in systemic BP. Consistent with the resistance of mesenteric
artery vasodilation, our data demonstrate that acute R-Se treatment indeed lowers systemic
BP. When the vascular type changes from small resistant to large conduit, the strength of the
relaxation effect of R-Se decreases. After R-Se application, the subsequent precontraction of
the vascular segment was partially or significantly inhibited (Figures S10 and S11), and it
may indicate prolonged interaction with constriction/relaxation pathways.

Based on previously reported scientific works, it was assumed that the vasoprotective
effects of various Se-donors were a consequence of their potential participation in the
reduction of the production of superoxide radicals and an in the increase in NO basal
levels [70,71]. The treatment with H2Se enables a potential reversion of the H2O2-induced
oxidative stress through the regulation of the glutathione peroxidase (GPx1) and thiore-
doxin reductase (TrxR2) selenoproteins. The pretreatment with H2Se provides a protective
effect against H2O2-induced oxidative stress, cell death, and cardiac hypertrophy [72].

In the cardiovascular system, NO is produced primarily in endothelial cells and
subsequently affects smooth muscle cells evoking relaxation. Se supplements were
shown to improve the bioavailability of NO in various models of induced endothelial
dysfunction [45,73]. For this reason, we may assume that exogenous R-Se can positively
influence the function of endothelial cells as described in other works. However, R-Se
compound at higher concentration evoked only mild vasorelaxant effect in thoracic
aorta. Since the relaxation in thoracic aorta is mainly NO-mediated [74], these results
are aligned with the suggestion that R-Se could relax the vessel wall by a mechanism
excluding NO derived from the endothelium. There are other endothelium-derived
relaxing factors (EDRFs), such as prostacyclin or endothelium-derived hyperpolariz-
ing factors (EDHFs), which could participate in the R-Se related relaxation. EDHFs
have been described as one of the principal mediators of endothelium-dependent
vasorelaxation in small resistance arteries in normotensive animals [75]. Endothelium-
independnet mechanizms, such as blockade of Ca2+ channels cannot be excluded [76].
Other additional experiments are needed to figure out which of the listed vasorelaxant
mechanizms are included.

Our findings that R-Se transiently decreased rat systolic and diastolic BP and modu-
lated several other hemodynamic parameters and that it significantly decreased the tension
of the isolated arteries point to the direct effect of R-Se to relax arteries leading to BP reduc-
tion. Cardiovascular diseases, as the leading cause of death worldwide, include disorders
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related to BP and function of the heart or blood vessels [77]. Since an increased tension
of the arteries, which causes a decrease in blood flow, is the basis of many diseases and
death [42–44,77], R-Se potency to relax arteries is interesting for pharmacological studies
potentially leading to application in medical practice.

4. Materials and Methods
4.1. Chemistry

Herein, three chalcogen phthalic anhydrides have been evaluated: the phthalic
selenoanhydride (R-Se), the phthalic thioanhydride (R-S), and the phthalic anhydride
(R-O), whose structure has been shown in the Scheme 1 at the introduction [24]. R-O
was commercially available (Merck, Taufkirchen, Germany), whereas R-Se was obtained
through a synthetic route that enables the synthesis of R-Se from lithium aluminum hy-
dride, selenium phthloyl chloride, and sulfuric acid, as described in prior works [24].
R-S was synthesized following the same route, but using sulfur instead of selenium.
Tiletamine + zolazepam (Zoletil 100) was acquired from Virbac (Carros, France), and
the anaesthetic xylazine was obtained from Merck (Schnelldorf, Germany). All other chem-
icals required for the performance of this study (DMSO, NaCl, KCl, NaHCO3, MgSO4,
KH2PO4, CaCl2, Na2EDTA, glucose) were purchased from Sigma-Aldrich.

4.2. Guide for the Use and Care of Experimental Animals

Adult male normotensive Wistar rats (n = 14; 320 ± 30 g) were obtained from the De-
partment of Toxicology and Laboratory Animal Breeding at Dobra Voda, Slovak Academy
of Sciences, Slovakia. The rats were housed under a 12 h-light–12 h-dark cycle at a constant
humidity and temperature (45–65% and 20–22 ◦C, respectively) with free access to standard
laboratory rat chow and drinking water ad libitum. The veterinary nursing care was pro-
vided by the Central Animal Housing Facility of Pavilion of Medical Sciences (registration
number SK UCH 01017). The procedures counted with the approval of the corresponding
Slovakian committee (the State Veterinary and Food Administration of the Slovak Republic;
C.k. Ro 3123/17-221) taking into account the European Parliament guidelines given at
the 2010/63/EU Directive. The procurement of animals, the husbandry, and the perfor-
mance of the experiments were in accordance with the protocols and guidelines of the
”European Convention for the Protection of Vertebrate Animals used for Experimental and
other Scientific Purposes” (Council of Europe No 123, Strasbourg 1985). All the performed
experiments were carried out according to the guidelines established by the animal welfare
committee of the Biomedical Research Center Slovak Academy of Sciences, and Centre
of Experimental Medicine of the Slovak Academy of Sciences, Bratislava, and conformed
to the principles and regulations as described in the editorial by Grundy [78]. All animal
experiments complied with the ARRIVE guidelines.

4.3. APW Measurement and Data Evaluation

The method used was described in our previous studies [51,52]. To ensure the ef-
fect of anaesthesia lasts for 60 min, rats (n = 9) were anaesthetized with
Zoletil 100 (tiletamine + zolazepam, 80 mg kg−1, IP) and xylazine (5 mg kg−1, IP).
The left common carotid artery (arteria carotis communis) was cannulated to insert the
fiber optic microcatheter pressure transducer FISO LS 2F connected to the FISO Series
signal conditioner embedded in the EVO chassis (Harvard Apparatus, Holliston, MA,
USA) [79]. The recorded analogue APW signal was filtered by a low-pass filter at 1
kHz, digitalized at 10 kHz and stored on a computer. Fresh stock solutions of R-S,
R-O and R-Se (50 mmol L−1) were prepared daily using DMSO as solvent. Just before
the administration, the stock solutions were diluted with 0.9% saline to reach a final
concentration of 1 or 2 µmol kg−1 in the rats. R-S, R-O, or R-Se were administered into
the right jugular vein (500 µL kg−1) over a 15 s period, approximately 30–40 min after
the anaesthetic application. The following time scale was used: After the chirurgical
operation of the rat under anesthesia, we waited 15–20 min for stabilization of BP,
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then bolus of R-Se (or R-S or R-O) was administered, and effect of the compound
was recorded for 10 min. When BP was still stable as in the control, in some cases
for comparison, a second administration of the same or different compounds was
administered, and the effect was recorded for 10 min. For the evaluation of the R-Se
effects, the first administration was taken only. Ten points (a–j) of APW, marked in
Figure S1, were analyzed, from which 35 APW parameters (APW-Ps) were calculated.
Some APW-Ps are commonly used as hemodynamic parameters and others were de-
fined to detect more changes in APW that could be attributed to the influence of a
studied substance. The definition and abbreviation of the 35 APW-P parameters are
described in the supplementary material (Figure S1), and a more detailed descrip-
tion is available in a previous study [51]. For a better visual comparison, plots (a)
and (aa) representing systolic BP in the figures are the same. The plot of the relative
augmentation index (jj) was not able to determine when the highest point at APW
(Figure S1) was “c” and not “f” and was set to zero [51]. The animals were under
anesthesia throughout the duration of the experiment at 37 ◦C and were euthanized
with an overdose of Zoletil/xylazine administered via the jugular vein at the end
of the surgical procedure. Thirty-five APW-Ps were defined to look for patterns of
changes in APW under different cardiovascular conditions [51,52], and some of them
are commonly used as hemodynamic parameters.

4.4. Measurement of the Vasoactive Effect of R-Se
4.4.1. Vascular Tissue Collection

Normotensive Wistar rats (n = 5) were killed by decapitation after a brief anesthetiza-
tion with CO2, and the thoracic aorta (TA), mesenteric, femoral, and renal arteries were
isolated as described in our previous studies [80–82]. Briefly, aortic, mesenteric, femoral,
and renal vascular tissue were carefully cleaned from surrounding connective and adipose
tissue and cut to the required lengths according to the type of device used to measure
vascular reactivity.

4.4.2. Functional Study of Rat-Isolated Mesenteric, Femoral and Renal Arteries

Approximately 1.6 mm cut-off long vascular segments of the small mesenteric (first-
order branches of the inferior mesenteric artery), femoral, and renal arteries were mounted
as ring-shaped preparations in the Mulvany-Halpern style small vessel wire myograph
chamber (Dual Wire Myograph System 410A, DMT A/S, Aarhus, Denmark) to determine
the vascular reactivity at isometric conditions in the modified physiological salt solution
(PSS, in mmol L−1: NaCl 118.99, KCl 4.69, NaHCO3 25, MgSO4 1.17, KH2PO4 1.18, CaCl2
2.5, Na2EDTA 0.03, glucose 5.5, pH 7.4) [83]. After mounting, the arteries were maintained
in oxygenated PSS (a mixture of 95% O2, and 5% CO2 at a stabilized temperature of 37 ◦C).

The experiment protocol was modified according to [82], briefly (Scheme 2): normal-
ization and stabilization of the vascular segment took place as described previously. After
the stabilization period, vessel segments were contracted with serotonin (Ser, 1 µmol L−1,
femoral, and renal arteries) or NA (10 µmol L−1, mesenteric artery) and relaxed with
acetylcholine (1 nmol L−1−10 µmol L−1). The solution was washed out. After the next
stabilization period, the segments were again pre-contracted with a constrictor substance,
and the effects of R-Se (stock solution, 50 mmol L−1 in DMSO) were studied. Subsequently,
the functionality of the arteries was tested by changes in the pre-contraction of the vascular
segment. Effect of R-Se on segments of arteries was statistically evaluated using analysis
of variance and non-linear regression methods [84]. A p-value < 0.05 was considered
statistically significant. Statistical analyses were performed using GraphPad Prism 9.0
(GraphPad Software Inc., San Diego, CA, USA).
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Scheme 2. After the stabilization period (B) the vascular segments were contracted with
NA (10 µmol L−1, mesenteric artery) or Ser (1 µmol L−1, femoral and renal arteries) and relaxed with
gradual addition of acetylcholine (AC, green line, 1 nmol L−1–10 µmol L−1) to test the contractility
of the segment. The solution was washed out (W). After the next stabilization period, the segments
were again pre-contracted with NA (or Ser) and the effects of R-Se (stock solution, 50 mmol L−1 in
DMSO) were added. R-Se was washed out (W) and NA (or Ser) were applied to contract the vascular
segment again.

4.4.3. Functional Study of the Isolated Thoracic Aorta

Vascular segments of the thoracic aorta (approximately 5 mm long) were vertically
fixed between two stainless wire triangles and placed into a 20 mL organ bath with
Krebs solution (in mmol L−1: 118 NaCL, 5 KCL, 25 NaHCO3, 1.2 MgSO4, 1.2 KH2PO4,
2.5 CaCl2, 11 glucose, 0.032 CaNa2EDTA). The solution was oxygenated with 95% O2 and
5% CO2 and kept at 37 ◦C. The upper triangles were connected to isometric tension sensors
(FSG-01, MDE, Budapest, Hungary), and changes in tension were registered by an AD
converter (MDE, Budapest, Hungary). Changes in isometric tension were registered by
SPEL Advanced Kymograph (MDE, Budapest, Hungary) software. A resting tension of 1 g
was applied to each ring and maintained throughout a 45 to 60-min equilibration period
until stress relaxation no longer occurred. The vasoactive effect of R-Se was tested on aortic
rings pre-contracted by noradrenaline (NA, 0.1 or 1 µmol L−1).

5. Conclusions

In conclusion, we found that the phthalic selenoanhydride (R-Se) transiently decreased
rat systolic and diastolic blood pressure. In addition, this selenocompound modulated
several other hemodynamic parameters and it significantly decreased the tension of the
isolated arteries. Overall, our data point to the direct effect of R-Se to relax arteries leading
to blood pressure reduction. Since cardiovascular diseases are the leading cause of death
worldwide and include disorders related to blood pressure and function of the heart or
blood vessels, these cardiovascular properties of R-Se may be interesting for application
studies potentially leading to future use in medical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124826/s1, Figure S1. The left common carotid
artery pulse waveform (APW) in the anesthetized rat. Control APW with marked ten points a–j.
Figures S2–S9. Time-dependent changes of 35 APW-Ps of anaesthetized rat before and after IV bolus
administration of R-Se. Figure S10. Original recording of the vascular reactivity of the mesenteric
artery and effects of noradrenaline, acetylcholine and R-Se. Figure S11. Effects of noradrenaline,
serotonin and R-Se on tension of the mesenteric, renal and femoral arteries.
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26. Gajdács, M.; Spengler, G.; Sanmartín, C.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenoesters and selenoanhydrides as
novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorg. Med. Chem. Lett. 2017,
27, 797–802. [CrossRef]

27. Domínguez-Álvarez, E.; Gajdács, M.; Spengler, G.; Palop, J.A.; Marć, M.A.; Kieć-Kononowicz, K.; Amaral, L.; Molnár, J.; Jacob, C.;
Handzlik, J.; et al. Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorg.
Med. Chem. Lett. 2016, 26, 2821–2824. [CrossRef]
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