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Abstract: DNA carries the genetic information required for the synthesis of RNA and proteins and
plays an important role in many processes of biological development. Understanding the three-
dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological
functions and guiding the development of novel materials. In this review, we discuss the recent
advancements in computer methods for studying DNA 3D structures. This includes molecular
dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various
coarse-grained models used for DNA structure prediction or folding, along with fragment assembly
methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and
disadvantages of these methods and highlight their differences.

Keywords: DNA 3D structures; computational modeling; molecular dynamics simulations;
coarse-grained models; structure fragment assembly

1. Introduction

Since the genetic information encoded by DNA forms the basis of life [1,2], the explo-
ration of its structure and stability is a thriving field. For instance, the number of known
functional DNA structures in the Protein Data Bank (PDB) continues to increase each
year (see Figure 1a). In terms of stability, most DNA exhibits a right-handed double helix
structure (B-form, see Figure 1b). This structure follows the Watson–Crick–Franklin law of
A-T and G-C base-pairing, serving as a carrier for storing and transmitting genetic infor-
mation in living organisms [3]. However, recent research has indicated that roughly 13%
of human genes can adopt non-right-handed double helix structures (non-B-form) [4–10],
such as hairpins [4], Z-DNA [5], triplexes [7], G-quadruplexes [8–10], and i-motifs [4,5]
(see Figure 1c–f). These structures have been observed to play significant roles in various
cellular processes, including gene expression regulation and cancer development [4–6].
For example, DNA triplexes are generally involved in mutagenesis, genetic instability,
and DNA repair or recombination, and mutations in helicases that act on G-quadruplex
structures could lead to DNA damage or replication errors [7–9]. In addition, DNA nanos-
tructures and devices (e.g., interlocks, walkers, tweezers, motors, shuttles, logic circuits,
and origami) have immense potential for applications in various fields such as biosensing,
food safety, and cancer therapy [11–13].

The function of DNA often depends on its 3D structure [3,4,7–9]. For example, the
dynamically interchangeable G-quadruplex structures in HIV-1 can be stabilized by ligand
binding, resulting in decreased viral production [14]. Therefore, understanding the 3D
structures and properties of DNA (e.g., dynamics, thermodynamics, and mechanics) is use-
ful in understanding its biological functions and designing DNA nanomaterials [2–6,14].
However, the flexibility and polymorphism of DNA present challenges for current ex-
perimental techniques, such as cryo-electron microscopy, X-ray crystallography, NMR
spectroscopy, and other single-molecule techniques (e.g., light/magnetic tweezers and
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atomic force microscopy) [15–18]. These experimental methods face difficulties in eluci-
dating the underlying aspects of DNA folding, hybridization, and stability. Since these
methods are often time-consuming and costly, the number of known DNA structures in the
database is still very limited (see Figure 1a).
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2022). 

The field of computer simulation is advancing quickly, providing more precise in-
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approaches [19–22]. Molecular dynamics (MD) simulations, for instance, can generally 
reproduce the behavior of molecules in a computer, providing detailed structural and 
dynamical insights that enhancing our comprehension of relevant experimental data. In 
recent years, MD simulations using classical force fields such as AMBER [23,24] and 
CHARMM [25] have provided highly detailed and flexible descriptions of DNA dynam-
ics, including structural transformations, stability of non-canonical conformations, salt 
ion cohesion effects, twist-stretch coupling of stress, flexibility under methylation modi-
fications, and interactions with other macromolecules. It is always fascinating to obtain 
microscopic insights into DNA dynamics through MD simulations. However, the innu-
merable degrees of freedom, interconnected in complex ways, can make it practically 
impossible to detect DNA dynamics on biologically relevant time scales and length scales 
using currently available computer hardware [26]. 

In contrast to all-atom models, continuous DNA models such as the worm-like chain 
(WLC) model effectively describe the mechanical behavior of double-stranded DNA 
(dsDNA) on larger length scales. This model considers the double helix as an elastic rod 
with torsional and bending stiffness (i.e., the predefined angle between neighbor beads 
and persistence length of the chain) [27–29]. Similarly, the nearest neighbor model can 
predict the secondary structure and melting profiles (such as free energy and melting 
temperature) of single-stranded DNA (ssDNA) and dsDNA. This model assumes that the 
free energy of DNA is the sum of the free energy of each base stack, which has been de-

Figure 1. (a) DNA-only structures released in Protein Data Bank (PDB) (http://www.rcsb.org/, accessed
on 1 October 2022) per year. Bars: total number of entries available. Line: number of structures released
annually. (b–f) Three-dimensional (left) and secondary (right) structures for (b) B-form dsDNA and
typical non-B form DNAs: (c) DNA hairpin; (d) triplex; (e) G-quadruplex; (f) i-motif. The 3D structures
are shown with PyMol (http://www.pymol.org, accessed on 1 October 2022).

The field of computer simulation is advancing quickly, providing more precise in-
sights into essential aspects of DNA biophysics compared to traditional experimental
approaches [19–22]. Molecular dynamics (MD) simulations, for instance, can generally
reproduce the behavior of molecules in a computer, providing detailed structural and
dynamical insights that enhancing our comprehension of relevant experimental data. In
recent years, MD simulations using classical force fields such as AMBER [23,24] and
CHARMM [25] have provided highly detailed and flexible descriptions of DNA dynamics,
including structural transformations, stability of non-canonical conformations, salt ion co-
hesion effects, twist-stretch coupling of stress, flexibility under methylation modifications,
and interactions with other macromolecules. It is always fascinating to obtain microscopic
insights into DNA dynamics through MD simulations. However, the innumerable de-
grees of freedom, interconnected in complex ways, can make it practically impossible to
detect DNA dynamics on biologically relevant time scales and length scales using currently
available computer hardware [26].

In contrast to all-atom models, continuous DNA models such as the worm-like chain
(WLC) model effectively describe the mechanical behavior of double-stranded DNA (ds-
DNA) on larger length scales. This model considers the double helix as an elastic rod with
torsional and bending stiffness (i.e., the predefined angle between neighbor beads and
persistence length of the chain) [27–29]. Similarly, the nearest neighbor model can predict
the secondary structure and melting profiles (such as free energy and melting temperature)
of single-stranded DNA (ssDNA) and dsDNA. This model assumes that the free energy of
DNA is the sum of the free energy of each base stack, which has been determined through
thermodynamic experiments [30,31]. However, these basic models are unable to provide
insights into the three-dimensional (3D) structures of DNA.

http://www.rcsb.org/
http://www.pymol.org
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Meanwhile, coarse-grained (CG) models, which combine highly correlated atoms
in the DNA nucleotide into a few interacting sites, can play a crucial role in describing
complex biological macromolecular systems (e.g., DNA–protein complexes and DNA
nanostructures) at larger length/time scales [32,33]. Compared to all-atom models with
large numbers of particles, CG models have a small number of degrees of freedom due to
the reduced resolution. CG models are generally effective in studying DNA 3D structures,
dynamics, flexibility, and interactions with other biological macromolecules (such as RNA
and protein) [34–36]. However, all-atom MD simulations for DNA generally require known
3D structures as input. Although many models have been developed for RNA 3D structure
prediction [37–40], there are few methods that can be directly used to predict DNA 3D
structures, especially from the sequence. Recently, Xiao et al. provided a fragment assembly
method (3dDNA) to automatically predict 3D structures for small DNAs (<100 nt) with
very high precision [41–44]. Since the method depends on limited templates and known
secondary structures of the DNA, more DNA 3D structure prediction models, especially ab
initio ones, are still needed.

In this work, we provide a comprehensive review of computer modeling techniques
used for studying DNA 3D structures. Our goal is to provide an in-depth understanding of
the current state-of-the-art research, as well as to discuss the challenges and future develop-
ments in the field of DNA 3D structure modeling. First, we reviewed the powerful and
versatile all-atom MD simulations, including progress and limitations in capturing DNA
dynamics, flexibility, and ionic interactions. Then, we highlighted representative DNA CG
models that exhibit excellent performance in DNA folding or simulations for large DNAs
beyond the capabilities of all-atom MD simulations. Finally, since MD simulations and
several CG models generally require known 3D structures, we provided a brief overview
of current structure assembly methods that can construct 3D structures of DNA from their
sequences or secondary structures.

2. Molecular Dynamics Simulations for DNAs

MD simulations of DNA systems are typically performed by calculating the force
on each atom as a function of their positions using all-atomic force fields (such as AM-
BER, CHARMM, GROMOS, and OPLS) (Figure 2a). These force fields are parameterized
using experiments or quantum chemistry calculations of small systems [23–25,45–47].
CHARMM36 [25] and AMBER ff99bsc1 [47], which have been validated and improved
through multiple revisions, are commonly used for DNA simulations. Although these force
fields have limitations, such as AMBER potentially overestimating base stacking effects
and CHARMM weakening base pairing [48,49], they have been successfully employed
to simulate DNA systems, providing atomistic resolution and establishing quantitative
relationships between structure and conformational energy [50,51].

2.1. Structural Dynamics

MD simulations have been effective in accurately probing the atomic motions and
structural dynamics of DNAs [52–59], enabling us to understand the DNA functions.
To address the question of how long an MD simulation of a B-DNA helix needs to
be to sample the dominant structural and dynamical features, Galindo-Murillo et al.
presented an extensive analysis using multiple µs-length MD simulations of a dsDNA
(d(GCACGAACGAACGAACGC)) with Amber 14 and a ff99SB parmbsc0 or CHARMM
C36 force field on multiple computer architectures (including Anton, CPU, and GPU). The
results showed that despite the underlying differences in hardware, the simulations per-
formed on different architectures exhibited minimal structural variation with respect to one
another. These MD simulations, including the longest one at ~44 µs, also suggested that the
structure and dynamics of the DNA helix, excluding the terminal base pairs, reach near-full
convergence on the ~1–5 µs timescale. This indicates that the current force field is reason-
ably robust. However, the convergence of the terminal base pair opening events occurs on
time scales significantly longer than 10 µs and cannot be fully captured through ensem-
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bles of shorter and independent MD simulations [60,61]. In a separate study, Yang et al.
performed umbrella MD simulations of A-T sequence-rich B-DNA using the Amber force
field and reproduced the experimental conformational transition path from Watson–Crick
to Hoogsteen base pairs observed in NMR relaxation dispersion spectroscopy [62]. This
indicates that MD simulations have the power to describe large-scale structural dynamics
at short timescales using an advanced-sampling approach [63].
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structures are shown with PyMol (http://www.pymol.org).

In addition, MD simulations can also provide detailed insight into DNA structure dynam-
ics. For example, Chakraborty et al. employed the AMBER12 package and Joung/Cheatham
ion parameters to explore the transition between B- and Z-dsDNAs. Their study found that
the free energy landscape exhibits two distinct funnels, leading to the B-DNA and Z-DNA
conformations. This suggests that the reversal of chirality is caused by the stretched DNA
structure or mutual competition at the B–Z junction [64].

2.2. Structural Flexibility

In recent years, MD simulations have been widely used to study the flexibility of
DNAs, as DNA structural flexibility is closely associated with many biological processes
involving the storage or encoding of genetic information [65,66]. Although many results
from single-molecule experiments can be well-described by the commonly accepted WLC
models [27–29], atomistic MD simulations are extensively used to obtain microscopic
descriptions of DNA flexibility, such as the width and depth of the major/minor grooves
and the distances/twist angles between neighbor base pairs [67–69]. For example, to
explain the experimental results that short DNAs consisting of tens of base pairs (bps) may
have seemingly higher flexibility than those of kilobase pairs, Wu et al. performed MD
simulations for short dsDNAs with a finite-length of 5–50 bps using the Amber parmbsc0
force field. Their microscopic analyses (the calculation of stretching and bending at the
base-pair level) revealed that the apparent high flexibility of short dsDNAs arises from

http://www.pymol.org
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significantly strong bending and stretching flexibilities at each helix end, consisting of
∼6 bps [70]. In addition to the length-dependent flexibility of DNA, Marin-Gonzalez
et al. performed over 1µs-long constant-force MD simulations of 18 bp-long dsDNAs
(CGCG(NN)5CGCG, with NN as the AA, AC, AG, AT, CG, and GG). They found that the
DNA crookedness (a sequence-dependent deformation of DNA that consists of periodic
bends in the chain of base pair centers) and its associated flexibility can regulate DNA
mechanical properties at short length scales. This unveiled a one-to-one relation between
DNA structure and dynamics [71]. To understand the distinct differences in the flexibility of
dsRNA and dsDNA helices, Liebl et al. performed unrestrained/restrained MD simulations
for a 16 bp dsDNA or dsRNA using the AMBER12 package with the parmbsc0 force field.
Their detailed analysis of helical deformations, coupled with twist, indicated that the
interplay of helical rise, base pair inclination, and displacement from the helix axis during
twist changes is responsible for the different twist–stretch correlations [72]. Coincidentally,
Marin-Gonzalez et al. investigated the difference between dsDNA and dsRNA (16 bp) using
microsecond-long MD simulations under constant stretching forces within the range of
1–20 pN. They showed that the opposite twist–stretch coupling of both molecules is due to
the markedly different evolution of inter-strand distance with the stretching force, which is
directly correlated with the slide base-pair parameter and sugar pucker angle [73]. Recently,
Bao et al. also conducted extensive MD simulations for larger dsDNA and dsRNA (40 bp)
without applying stretch force, using the AMBER ff99bsc0 force field. Their work provides
a more quantitative understanding of the relative flexibility of dsRNA and dsDNA in terms
of both stretching and twist–stretch coupling. They noted that the striking difference in
twist–stretch coupling between dsRNA and dsDNA is attributed to the apparently stronger
base-pair inclination in dsRNA compared to dsDNA (Figure 2b) [74].

In addition, MD simulations can be used to reproduce the effect of base modifications or
base-pair mutations on DNA flexibility [75,76]. For example, Aksimentiev et al. combined MD
simulations (using the NAMD program with a CHARMM36 force field) with a single-molecule
cyclization assay to study how different cytosine modifications influence the physical properties
of dsDNA (70 bp). They elucidated the microscopic mechanisms behind the changes in DNA
flexibility induced by cytosine modifications: these modifications can promote or dampen
structural fluctuations through the competing effects of base polarity and steric hindrance [77].
Given that the appearance of mismatched base pairs (MMs) can result in the development of
inherited genetic diseases, cancer, and aging, Rossetti et al. presented the first comprehensive
study on the structure of MM-containing DNA duplexes (12 MMs, including A·A, A·C, A·G,
C·A, C·C, C·T, G·A, G·G, G·T, T·C, T·G, and T·T, placed in the center of 13 bp duplexes,
e.g., d(CCATACXATACGG)). They employed MD simulations (Gromacs v.4.5.5 program with
parmbsc0 force field) and NMR spectroscopy and found that the presence of mismatches
produced significant local structural alterations due to the flexible MMs (especially in the case
of purine transversions). These alterations could be propagated far from the mismatch site,
influencing the global structures of DNA [78]. On the other hand, Bouchal et al. also employed
MD simulations (Amber 16 package with parmbsc1 force field) to calculate the thermodynamic
stabilities of MMs in similar dsDNAs (e.g., d(GGTTAAXTTAACC) with anti/anti, anti/syn,
and syn/anti MM combinations) as a function of two geometry parameters of the base pair
(opening and shear). However, their detailed analysis showed that there was no clear dissection
between the canonical and mismatched base pairs [79]. This discrepancy suggests that MD
simulations may be less credible in capturing the local sequence effects on DNA flexibility [74]
due to the empirical force field.

2.3. DNA–Ion Interaction

Since DNA is an anionic polyelectrolyte, the solvent environment plays a significant
role in DNA structures [80–84]. Pasi et al. performed microsecond MD simulations for
39 dsDNAs (with a length of 18 bp and different sequences) under physiological salt con-
ditions using the parmbsc0 force field with Dang parameters for the ions. They provided
a comprehensive state-of-the-art perspective on sequence-dependent potassium ion pop-
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ulations. For example, they observed that potassium ions within the grooves are more
likely to accumulate around electronegative base sites rather than the anionic phosphate
groups [85]. Considering the experimental results showing that high-valent cation can
lead to the opposite effect on the elasticities of DNA and RNA duplexes, Fu et al. used
MD simulations for 20 bp dsDNA and dsRNA in trivalent ion solutions (i.e., CoHex3+).
They found that these results were caused by different binding modes of the cations on
dsDNA and dsRNA [86]. More recently, Cruz-Leon et al. also combined high-resolution
MT experiments with MD simulations (parmbsc1 force field on 33 bp dsDNA) to show
that increasing ion concentration leads to a decrease in helical radius and crookedness, an
increase in sugar pucker, and ultimately an increase in a twist. This is due to the increased
screening of electrostatic repulsion between phosphate groups [87].

Furthermore, MD can provide an atomistic understanding of how DNA–ion inter-
actions vary with different metal ions (Figure 2b,c). For example, Long et al. performed
MD simulations to sample the structures of a 23 bp DNA duplex in various ion solutions
(such as Mg2+, Ca2+, Sr2+, or Ba2+). They demonstrated that these ions exhibit a preference
for binding to the phosphate backbone rather than the major groove [88]. To investigate
the competitive binding of divalent and monovalent ions to dsDNA, Xi et al. performed
all-atom MD simulations for a 24 bp dsDNA in mixed Mg2+/Na+ solutions using the
Amber parmbsc0 force field with Joung/Cheatham ion model for Na+/Cl− and the Aqvist
ion model for Mg2+. Their comprehensive analysis suggested that the global binding of
Mg2+ over Na+ to nucleic acids is primarily dependent on the surface charge density and
Mg2+/Na+ concentrations [89].

2.4. Limitations

In the last 40 years, MD simulations have made significant progress in providing
atomistic insights into DNA structures, including dynamics, flexibility, and ion binding.
Although recent efforts combining experiments and simulations show promise for im-
proving the accuracy of nucleic acid force fields, MD simulations are not always effective,
particularly for ssDNAs [90,91]. Recently, we performed MD simulations for unstructured
ssDNA (with a random sequence: 5′-CTGCCACGCCATGCCTGTGACGA-3′ at 1 M [Na+])
and tried to extract the bonded parameters from the equilibrium conformations. However,
we found that the distributions of several angles in MD conformations deviated from
those observed in PDB structures. For example, the P-C4′-P angle showed a deviation
of ~11◦ from its optimal value, as shown in Figure 2d. In addition, the ion parameters,
which are optimized based on a set of experimental solution properties such as solvation-
free energies, radial distribution functions, water exchange rates, and activity coefficient
derivatives, could be limited in their transferability to quantitatively describe biomolecular
systems [92,93]. Thus, further investigations of diverse DNA structures (e.g., ssDNA, pseu-
doknots, G-quadruplexes, i-motifs, and DNA complexes) in ion solutions are needed to
further assess the quality of these force fields [90,91,94,95].

Furthermore, MD simulations in equilibrium are not always adequate to sufficiently
explore the structural space needed for accurate property estimation [96,97]. In MD simula-
tions, the initial conformation is usually established based on an experimentally known
structure. If the molecule acquires another stable conformation that is separated by a
high free energy barrier, the system’s acquisition of this alternative conformation within a
realistic computational cost becomes challenging due to the barrier [91]. Finally, sampling
remains an issue in some nucleic acid simulations, thus requiring the extension of simula-
tion time scales and exploration of efficient enhanced sampling methods (e.g., temperature
replica exchange, Hamiltonian and multi-dimensional replica exchange, metadynamics,
and umbrella sampling). These efforts are important for future advancements [98–100].

3. Coarse-Grained (CG) Modeling for DNAs

Due to the computational limitations of MD simulations, CG models are often utilized
to study DNA structure folding, such as hybridization and melting. These models reduce
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the complexity of atomistic simulation systems by averaging nonessential degrees of free-
dom [32,33]. There are currently two primary approaches to CG DNA modeling: top-down,
which involves parameter fitting to experimental data, and bottom-up, which involves ana-
lyzing parameters from all-atom MD simulations or quantum chemistry calculations [34].
Based on their design purpose and capability, existing DNA CG models fall into three main
categories: 3D structure dynamics, properties/folding, and prediction [32–34] (see Table 1).

3.1. CG Models for DNA Structure Dynamics

Since MD simulations are limited by computational cost at different length scales and
time scales (typically ranging from nanoseconds to milliseconds), CG MD simulations can
be a suitable for accelerating the study of large DNA structures.

For this purpose, Marrink et al. proposed an explicit solvent-based DNA CG model
that is compatible with the Martini force fields, suited for MD simulations of biomolecular
systems [101–103]. In the Martini DNA model, each nucleotide is mapped to six or seven
CG beads, with one bead for the phosphate group, two for the sugar ring, and three (four)
for the pyrimidines (purines) (see Figure 3g). Similar to the Martini protein force field [101],
the model incorporates conventional bonded (bond length, angle, and dihedral angle) and
nonbonded interactions (Lennard–Jones potential and Coulombic energy) for DNA. In
addition, a new interaction was added to model directional hydrogen bonds in DNA. The
force field was parameterized by combining top-down information from experiments with
bottom-up information derived from reference all-atom MD simulations. For the bonded
parameters, all-atom and CG MD simulations were performed on 10 ssDNAs with different
sequences, respectively, and the parameters were adjusted to match the conformations
available in the Martini force field to the conformational space of the reference all-atom
model as closely as possible. The nonbonded parameters were derived from partitioning
the nucleobases between polar and nonpolar solvents, as well as the base–base potential of
mean force calculations. The model was validated by reproducing the radius of gyration
of ssDNA, as well as the double helical structures and persistence length of dsDNA, as
observed in atomistic simulations under high ion concentrations. It is important to note
that, for dsDNA, an elastic network (which involved predefining the pairing bases and
adding interactions between them) was used in the Martini model to preserve the secondary
structure. Although the Martini DNA model cannot be used to study DNA hybridization,
melting, and hairpin formation due to its inability to model directional hydrogen bonds, its
speed and compatibility pave the way for large-scale modeling of complex biomolecular
systems involving DNA, such as DNA–protein interactions [102].
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Figure 3. Representations of several DNA CG models. (a) oxDNA: two beads [104–107]. (b) NARES-2P:
the united sugar bases (B’s) and the united phosphate groups (P’s) serve as interaction sites [108,109].
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(c) 3SPN: three beads [110–113]. (d) BioModi: three beads [114]. (e) TIS-DNA: three beads [115].
(f) MADna: three beads [116]. (g) MARTINI-DNA: six/seven beads [102]. (h) UNRES-like DNA:
six/seven/eight beads [117]. (i) HiRE-DNA: six/seven beads [118]. All 3D structures (ball-stick: CG;
cartoon: all-atom) are shown with PyMol (http://www.pymol.org).

Recently, another sequence-dependent CG model (MADna) was proposed by Assenza
and Pérez for simulating dsDNA [116]. In the MADna model, each nucleotide is represented
by three effective particles located at the geometric centers of the phosphate group, sugar,
and base (see Figure 3f). In the model, the sequence-dependent bonded interactions
including bond, angle, and dihedral potentials are used to connect beads within the same
strand as well as to provide inter-strand links (e.g., between beads in preassigned pairing
nucleotides). These interactions are tuned to reproduce the results of atomistic simulations
of dsDNAs with various sequences. In addition, the model includes an excluded-volume
interaction implemented through the repulsive component of a Lennard–Jones interaction,
and the salt-induced electrostatic was modeled via a Debye–Hückel (DH) interaction
(between P beads with a charge of −0.6). By combining with LAMMPS, the MADna can
capture the sequence-dependence of conformational and elastic properties of dsDNA,
including main helix parameters, groove geometry, the diameter of the double helix, and
spontaneous curvature quantified by bending metrics, with an accuracy comparable to
atomistic simulations. Furthermore, the model can reproduce structural elastic features
observed in experiments, such as the stretching and torsion moduli, negative twist–stretch
coupling, twist–bend coupling, persistence length, and helical pitch. However, due to
the double-stranded structure imposed by the bonded interactions in MADna, it cannot
account for breaking events such as the formation of kinks or local melting.

Table 1. Existing DNA structure modeling models/methods.

Models Representation Type a Application b Available c

Hall et al. [119] 1 bead Gō-like Duplex/Triplex Tm /
Aksimentiev

et al. [77] 2 beads ab initio Rg, Lp, force-extension /

oxDNA [104–107] 2 beads Gō-like Tm, Lp, force-extension, hybridization, dynamics,
DNA–ion interaction, and nanotechnology

https://oxdna.org (accessed
on 1 October 2022)

NARES-2P [108,109] 2 beads ab initio 3D structure prediction, Tm, dynamics /
Mittal et al. [120] 2 beads Gō-like Tm, Particle interactions /

MaDNA [116] 3 beads MD dsDNA structure/elastic properties, Lp

https://github.com/
saassenza/MADna (accessed

on 1 October 2022)

3SPN [110–113] 3 beads Gō-like
Tm, Lp, structure properties, dynamics,
hybridization, DNA–ion interaction,

nanotechnology

https:
//github.com/depablogroup
(accessed on 1 October 2022)

TIS [115] 3 beads Gō-like Rg, Lp, Tm, force extension, /
Plotkin et al. [121] 3 beads ab initio Lp, DNA twist, and stacking /

Shi et al. [122] 3 beads ab initio 3D structure prediction, salt effect, Tm, Lp

https://github.com/RNA-
folding-lab/DNAfold

(accessed on 1 October 2022)

BioModi [114] 3 beads Gō-like Hybridization and self-assembly kinetics,
salt-dependent Lp

/

Dorfman et al. [123–125] 3 beads ab initio Tm, dynamics, structure properties, triplex
forming /

Nordenskiöld
et al. [126] 5 beads MD dsDNA Lp, LT /

SIRAH [127] 6 beads MD dsDNA Tm, transitions, and dynamics /
“sugar” CG [128] 6 beads MD dsDNA transitions, DNA–ion interaction /

MARTINI [102] 6/7 beads MD Rg, Lp, 3D structure, DNA–ion interaction,
DNA–protein complexes

http://cgmartini.nl/ (accessed
on 1 October 2022)

HiRe-DNA [118] 6/7 beads ab initio dsDNA 3D structure, Tm /

UNRES like-DNA [117] 6/7/8 beads ab initio dsDNA 3D structure, structure properties, and
hybridization /

http://www.pymol.org
https://oxdna.org
https://github.com/saassenza/MADna
https://github.com/saassenza/MADna
https://github.com/depablogroup
https://github.com/depablogroup
https://github.com/RNA-folding-lab/DNAfold
https://github.com/RNA-folding-lab/DNAfold
http://cgmartini.nl/
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Table 1. Cont.

Models Representation Type a Application b Available c

3dDNA [44] all-atom structure
assembly

3D structure prediction for DNAs with single,
double, and multi-chains

http://biophy.hust.edu.cn/
new/3dRNA (accessed on 1

October 2022)

Saiz et al. [129] all-atom structure
assembly ssDNA 3D structure prediction /

Rahim et al. [130] all-atom structure
assembly ssDNA 3D structure prediction /

a ab initio: modeling DNA structure from sequence only; Gō-like: predefined secondary structure or base-pairing
network is needed; MD: 3D structure is needed; structure assembly: constructing DNA 3D structures based on
the secondary structure. b indicates what the models can be used for. Tm: melting temperature; Rg: radius of
gyration; Lp: persistence length; LT: torsion persistence length. c indicates the open source code or web server of
each model/method, and ‘/’ indicates that the model is unavailable.

3.2. CG Models for DNA Structure Folding

Since the above CG models developed for MD simulations require known DNA 3D
structures as input, it is difficult to use them to study DNA folding processes such as
hybridization, melting, and hairpin formation.

Generally, the Gō-type model is very effective in studying the folding of macro-
molecules (protein, RNA, and DNA) [104–107,110–113,115,131–135]. It achieves this by
only considering the interactions that occur at the given native contact sites. The oxDNA is
one outstanding representative of this model, which can capture the structural, thermody-
namic, and mechanical properties of DNA [104–107]. In this model, DNA is represented as
a string of rigid nucleotides with interaction sites for backbone, stacking, and hydrogen
bonding interactions (see Figure 3a). The pairwise potential comprises eight interactions
(see Table 2), including connectivity between neighboring backbones, the favorable stacking
interactions between adjacent bases, coaxial stacking, and electrostatic repulsive interac-
tions. The model was parameterized using a heuristic top-down approach, which involved
reproducing well-known properties of DNA (such as the helical structure of dsDNA) and
experimental results (such as melting temperatures of ds/ssDNAs). Combined with the
virtual moving Monte Carlo algorithm or LAMMPS simulation software, this model has
provided key insights into many different processes relevant to DNA nanotechnology and
biophysics. It has also provided direct agreement with experimentally measured proper-
ties across a range of systems, including duplex hybridization, hairpin formation, DNA
overstretching, thermodynamics, and structural properties of ss/dsDNAs.

Table 2. Usual potentials explicitly used in typical DNA CG models a.

Model
Potential Ub Ua Ud Uexc Ubp Ubs Ucs Uel Upp Ups Upb Uss Usb Ubb

oxDNA
√ √ √ √ √ √ √

3SPN
√ √ √ √ √ √ √ √

TIS
√ √ √ √ √ √

Plotkin et al.
√ √ √ √ √ √ √ √

UNRES-like
DNA

√ √ √ √ √ √ √ √ √

HiRE-DNA
√ √ √ √ √

NARES-2P
√ √ √ √

Shi et al.
√ √ √ √ √ √ √ √

a indicates the main potentials used in typical DNA CG models, and
√

indicates that the potential is explicitly
included in the model. Ub, Ua, and Ud are potentials of bond length, angle, and dihedral for neighbor CG beads,
respectively. Uexc: excluded volume interaction; Ubp: base pairing or hydrogen bonding interactions; Ubs: base
stacking interactions; Ucs: coaxial stacking interactions; Uel : electrostatic repulsive interactions; Upp, Ups, and Upb
are interactions between phosphate and-phosphate/sugar/base; Uss and Usb are interactions between sugar and
sugar/base, respectively; and Ubb: base–base interactions.

http://biophy.hust.edu.cn/new/3dRNA
http://biophy.hust.edu.cn/new/3dRNA
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The 3SPN model is another three-site per nucleotide model, with one site each for
the phosphate, sugar, and base, thereby rendering the investigation of DNA up to a few
microns in length computationally tractable [110–113] (see Figure 3c). In 3SPN, the potential
energy of a DNA system comprises seven distinct contributions (Table 2), including typical
bonded potentials (intramolecular bonds, bond angles, and dihedral angles) and pair-
wise nonbonded interactions (e.g., intra-strand base stacking, inter-strand cross-stacking,
base pairing, excluded volume contributions, and electrostatic potential). The model is
parametrized using thermal denaturation experimental data at a fixed salt concentration.
Through replica exchange MD simulations, the 3SPN has been found to effectively repro-
duce many sequence/salt-dependent structural and mechanical properties of ds/ssDNAs,
such as local flexibilities, minor groove width profiles, persistence lengths, melting temper-
atures, and hybridization rate.

Similar to 3SPN, a new three-interaction site model (TIS) has also been developed to
provide a robust description of the sequence-dependent mechanical and thermodynamic
properties of ss/ds DNAs [115]. The TIS model includes sequence-dependent stacking,
hydrogen bonding, and electrostatic interactions, as well as bond-stretching and bond
angle potentials (Table 2). The force constants for the stretching and bending potentials
were guided by a Boltzmann inversion procedure using a large representative set of DNA
PDB structures, and the parameters in the stacking interactions were calculated using a
learning procedure, ensuring faithful reproduction of experimentally measured melting
temperatures (i.e., a top-down approach). The model can accurately predict the salt-
dependent persistence lengths of ss/dsDNA and melting temperatures of DNA hairpins,
which represent a significant improvement over most of the current CG models.

3.3. Ab Initio CG Models

The CG models introduced in the previous section typically utilize a Gō-type potential,
which imposes penalties on deviations from a reference structure, to constrain the range
of conformations explored by a CG model of DNA. However, this approach also has the
potential to restrict the ability of the model to accurately predict structures based solely on
sequence information.

In contrast to the Gō-like models mentioned above, Plotkin et al. introduced an
alternative CG model for DNA [121] that does not use any structure-based potential. In
this model, phosphate and sugar groups are represented by one CG spherical residue each,
while bases are represented by rigid-body ellipsoids to model their stereochemistry. The
total potential includes eight purely physicochemical interactions (Table 2). In addition to
the usual local bonded interactions, the model includes electrostatic repulsion interaction
between phosphates, van der Walls interactions between any two beads, and base–base
hydrogen bonding. These effective interactions were parameterized through all-atom
simulations. For example, local potentials along the backbone were obtained from the
statistics on conformations obtained from all-atom simulations, and base–base/backbone
interactions were obtained from the best fit between van der Waals interactions in an
all-atom model and an anisotropic potential between effective ellipsoids. By employing the
LAMMPS package, the model generated stable double-stranded helices with both major
and minor grooves for dsDNA and predicted the persistence lengths for ss/dsDNA that
were comparable to experimental values. Furthermore, the model examined the degree
of stacking and twist as functions of temperature, salt concentration, and sequence for
ss/dsDNA.

UNRES-like DNA is a physics-based middle-resolution CG model [117]. In this model,
the sugar (S) is represented by a neutral bead, the phosphate (P) is represented by a
negatively charged bead, and each base (B) is reduced to a set of rigid bipolar beads (e.g., 4
for T and 5 for A) (see Figure 3h). The total potential energy is a summation of ten interaction
potentials (Table 2). The parameters of bonded interactions were derived to reproduce
the behavior of model systems in the all-atom representation. Nonbonded interactions
were approximated using Lennard–Jones, excluded volume, and electrostatic interactions
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of charges and dipoles. The model was parameterized in a bottom-up fashion with only
small adjustments to obtain the correct balance of key interactions. Using an efficient
R-RATTLE rigid-body integration algorithm, the model successfully folded three short
dsDNAs from separated complementary strands, despite underestimation of persistence
lengths of ss/dsDNA.

HiRE-RNA is another high-resolution CG model designed for both RNA and DNA.
In this model, each nucleotide is represented by six or seven beads: one for the phos-
phate (P), four for the sugar, and one/two for the pyrimidine/purine bases [118,136]
(see Figure 3i). The force field of this model is expressed as a sum of local bonded,
nonbonded, electrostatic, and hydrogen-bond terms (Table 2). Notably, the hydrogen
bond interactions in the model consist of three terms: a two-body interaction (distance
and angle), a three-body term (to avoid multiple hydrogen bonds of just one base),
and a four-body term (representing stacking between two base pairs). The equilibrium
geometrical parameters were initially derived from known structures and subsequently
refined through the analysis of long MD simulations for a 15 nt Poly(A) molecule. By
using replica exchange molecular dynamics (REMD), the model can accurately be used
to predict the correct double helix structure from a completely random configuration
and allows for the study of dissociation curves as well as the sequence effect on the
melting curves of the duplexes.

On the other hand, NARES-2P is a physics-based CG DNA model with only two inter-
action sites: one for phosphate (P) and one for the base (B) (see Figure 3b) [108,109]. Similar
to in UNRES [117], the effective energy function of the NARES-2P model originates from
the PMF of a polynucleotide in water. The energy includes van der Waals or electrostatic
interactions between any two beads, virtual bonded interactions, and sugar–base–rotamer
energy terms (Table 2). Additionally, a restraint energy was also introduced to maintain
selected geometric parameters (e.g., site–site distances) within the desired range. These
potential energy terms were parameterized using Boltzmann inversion and fitting the PMF
calculated by the all-atomic potential energy surface. The NARES-2P model was built into
the UNRES/MD platform, which enables canonical and replica-exchange simulations of nu-
cleic acids to be carried out. Through a global-optimization conformational space annealing
algorithm, the model can not only find the native fold for simple DNA duplexes but also
reproduce the thermodynamics of folding, although the calculated melting temperatures
are generally higher than the experimental values.

Recently, we have also presented a new CG model to fold DNA 3D structures based
only on the sequence. In this model, each nucleotide is simplified to three beads corre-
sponding to the phosphate (with a negative charge), sugar, and base (see Figure 4a). The
total energy of the system is composed of eight potentials, similar to the RNA CG model
previously developed by our team [122,137–141]. The parameters for the bonded potentials,
including bond length, bond angle, and bond dihedral, were derived from the Boltzmann
inversion of the corresponding atomistic distribution functions obtained through statistical
analysis of the experimental structures from the PDB. The excluded volume interaction
between the CG beads is modeled by a purely repulsive Lennard–Jones potential. The
orientation-dependent base-pairing interaction for the possible canonical Watson–Crick
base pairs does not require any predefined structural information (see Figure 4b). The
sequence-dependent base-stacking and coaxial-stacking (see Figure 4b) were parameter-
ized using well-established experimental DNA thermodynamic parameters [30,142], and
a conformational entropy change was included in the Monte Carlo simulation. It is im-
portant to note that the electrostatic interactions between the phosphate beads were also
taken into account using the DH approximation, in combination with the counterion con-
densation theory and tightly-bound ion model [143,144], to predict DNA structures in
monovalent/divalent ion solutions.
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Using the effective Monte Carlo simulated annealing algorithm, the model successfully
folded 20 dsDNAs (≤52 nt) and 20 ssDNAs (≤74 nt) into the corresponding native-like
structures based on their sequences, with an overall mean RMSD of 3.4 Å from the experi-
mental structures (Figure 4c).

Furthermore, the model quantitatively predicted the thermodynamic stability of
27 dsDNAs (including bulge loops and internal loops) and 24 ssDNAs (including a double
hairpin and a pseudoknot), with a mean deviation of predicted melting temperatures from
the corresponding experimental data of only ~2.0 ◦C (Figure 5). For example, the predicted
two transformation temperatures (~48.8 ◦C and ~72.0 ◦C) for a DNA pseudoknot at 0.1 M
[Na+] closely match the experimental data (~52.6 ◦C and ~70.7 ◦C), as shown in Figure 5c.
Furthermore, the model also reproduced the stability of ssDNAs/dsDNAs under extensive
monovalent or mixed monovalent/divalent ion conditions, with the predicted melting
temperatures consistent with the available experiments (Figure 5).
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Despite recent advancements, the present ab initio models have limitations in predict-
ing large DNAs with complex structures, indicating the need for further improvement in
the energy function and sampling methods [145–148].

3.4. Discussion and Comparison of These CG Models

As shown in Table 1 and Figure 3, the reduced degree of freedom is different for
various CG models. For instance, oxDNA uses two beads, TIS uses three beads, and
HiRE uses six or seven beads [104,115,118]. Generally, elaborate models can capture more
detailed interactions, but they may be limited in structure modeling for large DNAs. For
example, although the two, three, and four-body hydrogen bond interactions can be defined
in the HiRE model, it is only applicable in small DNAs (<100 nt) [118]. Conversely, the
oxDNA model can be used to simulate DNA nanostructures (>1000 nt) [107]. Predefined
secondary structure information (i.e., Gō-like) is very important for CG models to simulate
large DNAs [104–107,110–113].

Furthermore, these models were designed for different purposes, as outlined in Table 1.
Some are suitable for CG MD simulations to capture DNA structure dynamics at large
time and length scales (e.g., Martini and MADna) [102,116,126–128]. These models can
reproduce details of DNA structures (e.g., helix parameters and groove geometry) and
structural elastic features (e.g., persistence length and twist–stretch coupling) in most
cases [102,116]. However, they generally require native/near-native 3D structures as inputs.
Some other CG models were developed to simulate DNA folding, such as oxDNA, 3SPN,
and TIS, which can be used to predict the thermodynamic or kinetic properties (such as
melting temperatures or folding rates) of DNA [104,112,115]. In order to ensure that the
DNA can fold into the correct final structure, additional secondary structure constraints
are usually necessary in these models. Moreover, some ab initio CG models (such as HiRE,
NARES-2P, and our model) have also been proposed to simulate 3D structure folding for
DNA based only on its sequence [77,108,117,118,121–123]. Notably, these models can be
used to predict 3D DNA structures, as well as their corresponding thermodynamic stability.
However, they are only applicable to small DNAs (<100 nt).

4. DNA Structure Assembly Method for 3D Structure Construction

Since all-atom MD simulations for DNAs generally require known 3D structures as
input, and DNA nanostructures are generally assembled by simple fragments (e.g., double
helices), it is crucial to quickly build DNA 3D structures from sequences, especially for
large DNAs. In this section, we will review several DNA structure assembly methods based
on DNA secondary structures.

Due to considerable progress in RNA 3D structure prediction [37–40], two indirect
ssDNA 3D structure prediction methods have been proposed with the aid of RNA
models [129,130]. For example, in the pipeline presented by Saiz et al., a secondary
structure was first predicted using Mfold [31] based on the given sequence. Subse-
quently, a corresponding 3D RNA structure was constructed using RNA structure
prediction methods (such as Assemble and RNAComposer). The 3D RNA structure
was then converted into a DNA structure by replacing the nucleotide U with T, and
the resulting 3D structures were refined through energy minimization, as shown in
Figure 6a. Although these methods were only tested on several small ssDNA hairpins
(7–27 nt) and their accuracy was not very high (the RMSDs between predicted and
experimental structures were larger than 4.0 Å), they offered a new framework for
investigating related ssDNA nanotechnology.
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Recently, Xiao et al. proposed a direct template-based method, 3dDNA, which is an
extension of their previous 3dRNA. This method aims to construct DNA 3D structures by
assembling 3D templates of the smallest secondary elements (SSEs) [44], as illustrated in
Figure 6b. First, DNA is decomposed into SSEs based on the given secondary structural
information. Second, the corresponding 3D template for each SSE can be found in the
well-defined DNA fragment library. Subsequently, the selected template of each SSE is
assembled with its parent SSE by superposing them using the Kabsch algorithm, with
reference to the two common base pairs. The resulting assembly models are further refined
by minimizing them using the AMBER force field to repair the chain connectivity of the
assembled structures. To evaluate the performance of 3dDNA, it was was benchmarked
on three test sets with different numbers of chains. The results showed that 3dDNA can
predict DNA 3D structures with a mean RMSD of approximately 2.36 Å for structures with
one or two chains, and fewer than 4 Å for structures with three or more chains. These
results indicate a significant improvement compared to the indirect methods [44,129,130].

Since these fragment assembly methods heavily rely on the known secondary struc-
ture, which can be challenging to determine or predict accurately, especially for large
complex DNAs, achieving accurate predictions of DNA 3D structures still seems to be a
long-term challenge.

5. Discussion

The rapid advancement of MD simulations and DNA modeling has led to extensive
insights into DNA structures at both macroscopic and microscopic scales [32–34,50,51,90].
However, the increasing utilization of DNA-based bioengineering and nanotechnology,
as well as the discovery of non-B DNA structures with unique biological functions, has
further intensified the requirement for DNA modeling. Here, we reviewed the recent
advancements in DNA structure dynamics and folding, including MD simulations, CG
modeling, and fragment assembly. Our purpose was to enhance DNA structure-based
applications and further promote the development of DNA modeling.

In addition to the methods reviewed above, many computational models specially
designed for DNA nanostructure construction or simulation have also been developed (e.g.,
MrDNA, DAEDALUS, and Adenita) [149–151]. Due to space limitations, we cannot delve
into all of them in detail. Furthermore, the field of biology has seen significant advance-
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ments in recent years due to the application of machine learning techniques [152–156]. For
example, 3D structure prediction methods such as AlphaFold2 [157] and RoseTTAFold [158]
have gained popularity due to their ability to accurately predict protein structures. These
deep learning methods could also improve the accuracy of DNA simulations by capturing
more complex interactions between atoms whenever possible. However, since deep learn-
ing models require large datasets for training, the limited number of known DNA structures
challenges the application of these methods in DNA modeling. With the development
of advanced hardware, highly accurate force fields, large amounts of experimental data,
and refined computer modeling techniques, DNA modeling has the potential to not only
explain a large number of experimental results [69,86,87], but also to serve as a guiding
tool for new and exciting discoveries [159,160].
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