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Abstract: The most prominent and highly visible advantage attributed to supercapacitors of any
type and application, beyond their most notable feature of high current capability, is their high
stability in terms of lifetime, number of possible charge/discharge cycles or other stability-related
properties. Unfortunately, actual devices show more or less pronounced deterioration of performance
parameters during time and use. Causes for this in the material and component levels, as well as
on the device level, have only been addressed and discussed infrequently in published reports. The
present review attempts a complete coverage on these levels; it adds in modelling approaches and
provides suggestions for slowing down ag(e)ing and degradation.

Keywords: supercapacitor; ultracapacitor; electrochemical capacitor; electrochemical double layer
capacitor; aging; ageing; degradation; pseudocapacitive

1. Introduction

Among the various properties and parameters describing the performance of a super-
capacitor, the stored energy, the power (current) possibly delivered and received and the
internal resistance ESR (electrical series resistance) are most relevant for the use and the
proper operation of such a device. In device-related terms, the capacitance and the ESR
are commonly considered when evaluating a device. Although there does not appear to
be a standard, it seems that a capacitance loss of 20% compared with the initial value and
an increase of the ESR by 100% are the failure criteria that describe a device as worn out.
The statement in [1] suggesting that the 80% criterion was set in the IEC 62391-1 standard
attributed to [2] is misleading; the authors in the latter communication refer to this standard
only because it describes the procedure of measuring the capacitance without proving any
further criterion. Despite the claims praising the exceptional stability, i.e., constancy of
said parameters, they tend to change over time and use, i.e., calendar ageing in terms of
time passed and cyclic ageing in terms of run charge/discharge cycles can be noticed [3].
Both forms of ageing (the concept of spelling aging, also found in the literature, is not used
in the following text) can be studied with different methods, but results may be different
according to the various forms and different parameters used.

Presumably the most popular approach is running galvanostatic charge/discharge
cycles (GCD) within a defined electrode potential window for an electrode (an electrode
material) or a cell voltage window for a complete device. Comparison of the recovered
charge (or, less frequently, energy, as discussed below in more detail) or the capacitance
calculated from the recorded data for the first and the last cycle yields a percentage change,
in most cases reported as capacity (the term capacitance is used as a synonym in many
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reports) retention. In earlier publications, this was termed degradation, with degradation
reported in percentages appearing somewhat awkward. The term degradation is currently
applied to material and device changes resulting in poorer performance. Recently, the
effects of various factors on the degradation (not ageing) of supercapacitors have been
analysed in a report that is somewhat difficult to understand [4]. At least for electrochemical
double-layer capacitors (EDLC), ageing under cycling conditions was found to be faster
than plain calendar ageing under similar conditions regarding applied voltage [5].

The same basic information on ageing can be obtained for both electrodes and devices
from cyclic voltammograms. The inherent problems of this methodology have been pre-
viously discussed [6]. The obtained results can be considered as cyclic aging. Different
from this, as already discussed elsewhere [3], calendar ageing can be examined simply by
running GCDs or CVs with greater or lesser time intervals in between. Any degradation
occurring in a material or in a device resulting in lowered performance, i.e., lower capacity,
will be attributed to calendar aging. Once again, experimental conditions, particularly the
state of charge and the environmental and device temperature, must be reported. In case
the device is not just left at open cell voltage but kept connected to a monitoring circuit
at a fixed voltage, the experiment can be classified as a “voltage hold” [7,8] or floating [9]
test. According to research reports, signs of ageing may appear sooner in “voltage hold”
tests than in cycling tests; for examples, see [7,8]. The “voltage hold” tests were deemed to
be more demanding, i.e., performance losses were found earlier than with cycling proce-
dures when exactly the same upper cell voltage limits were maintained in both approaches.
The fact that in cycling tests the cells, particularly the positive electrodes, are exposed
to voltage/potentials where accelerated degradation proceeds for shorter times than in
the “voltage hold” experiments was proposed as an explanation. The current (in GCD)
and the scan rate (in CV) applied in cycling tests escape this methodological comparison;
the current applied during the few cycles between “voltage hold” periods hardly helps.
While applying high cell voltages in “voltage hold” tests hardly poses an experimental
challenge, high currents or scan rates applied in particular to devices with practically
relevant capacities may overextend the practical capabilities of the employed instrumen-
tation. In a re-examination of testing procedures for EDLC devices, the “voltage hold”
test was proposed as a means to shorten evaluation times [10]. Carbon corrosion of the
positive electrode, resulting in smaller surface area and higher oxygen content of the carbon
electrode material, were observed. At the negative electrode, increases of surface area and
pore volume were found. As a general conclusion, caution during comparison of ageing
studies with different methods was recommended. In a slightly different approach, test
conditions closely resembling practical use (defined after an extensive review of practical
uses of EDLC supercapacitors) were applied [11]. The results were basically in agreement
with the conclusions based on the above discussion of elevated temperatures significantly
accelerating capacitance loss; the temperature effect was slightly more pronounced on
the growth of the ESR. It must always be kept in mind that the actual temperature in a
device depends on the environmental temperature, but can be significantly higher inside
the device because of Joule heating inside caused by flowing current.

Electrochemical impedance measurements have been proposed as a further tool to
monitor device degradation, i.e., ageing [12]. Degradation effects were reported in terms
of changing impedance parameters. The claimed clear correlation of such changes with
specific degradation phenomena is hard or impossible to find in the report. Application
of the Mott–Schottky model has been recommended for selecting electrode potentials
where impedance measurements should be made [13]. Calendar and cyclic ageing have
been compared based on impedance measurements [14]. Based on the obtained results, it
could be confirmed that both types of test affect supercapacitor performance differently.
Impedance models (actually equivalent circuits) for EDLC-type supercapacitors have been
critically compared, and a multi-pore model was recommended [15]. Using a simple
Randles circuit [16], impedance measurement data from an EDLC device were fitted [17].
Unfortunately, no option to verify the quality of the fits was provided in the report; the
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list of fitted parameters does not even show units. A further approach to evaluating
impedance data based on evolutionary programming has been applied for studies of
degradation processes in EDLC supercapacitors [18]. Changes of microstructure and
formation of deposits were noticed, with the ion transport inside the porous material being
the process most negatively affected. Even early failure detection should be possible with
this approach. In another study of activated carbon (AC) for EDLC application, structural
changes negatively affected ion transport, particularly together with decreasing electronic
conductivity and an electrochemically active surface were observed as the main causes of
performance degradation [19]. Measurements of electric flicker noise have been indicated
as a possible method of detecting changes in interfacial behaviour in supercapacitor cells,
supplementing capacitance and ESR data [20]. Dilatometric measurements may help to
gather information about volume changes of materials and components in devices [21]. A
cell for the thermal analysis of supercapacitors has been described [22].

For comparison of data from different sources, further experimental conditions down
to electrode thickness must be carefully taken into account; for a discussion, see [23], and
in a more general context [24].

Further uses of the terms aging, ageing and degradation in reports on supercapacitors
and their components can be observed. With some metal chalcogenides as active masses
during the synthesis of the materials, ageing of the freshly synthesized material may be
a part of the procedure; similar details have been mentioned with other, e.g., template-
based synthetic procedures (see, e.g., [25–31]). This phenomenon is not considered here.
Variations in the cation ratio of layered double hydroxides may also result in changes,
referred to as degradation in [32]. Oxide layers on the surface of transition metal nitrides
and oxynitrides studied as electrode materials show ageing behaviour during extended
exposure to ambient air; this may in turn affect the capacitive performance of the mate-
rial [33]. Thermal processes such as pyrolysis or carbonization are encountered when,
e.g., polymers or biomass are converted into carbon materials. Why such a process is
called degradation in, e.g., [34,35] remains unclear. The term degradation also appears
in a report on chemical analysis during recycling of carbon materials for electrochemical
energy storage and conversion devices [36]. To make matters even more complicated,
unwanted changes in a carbon skeleton obtained initially from coconut shells at too-high
temperatures were also referred to as degradation [37]. This concern also applies to changes
of precursors in other synthetic procedures [38]. During synthetic procedures, templates
may be used (see, e.g., [39–41]). When they are removed later in the synthetic procedure,
this may be termed degradation (of the template). Again, these cases are not included
here. With flexible and bendable electrodes and devices, degradation caused by bending is
possible, e.g., cracks in the active layer or delamination from the current collector. Such
phenomena are generally not addressed with the term ag(e)ing. Because reports on this
type of degradation were part of the literature search output, they are mentioned only
briefly in the following text. In a report on a conjugated supercapacitor, the addition of
TiO2 resulted in “optimized retained energy upon aging” [42,43]. The meaning of aging
could not be resolved; it may refer to the retention of stored energy upon storage of the
device. When electrode degradation as a cause of device (i.e., a battery) ageing results
in diminished capacitance, a current specified with respect to capacitance may actually
grow when the absolute current is kept constant at a decaying capacitance. Thus, actual
rates may grow during ageing experiments. As a correcting measure, current-corrected
strategies have been proposed in battery research [44]. Similar considerations may apply
in supercapacitor research. Whether imperfect electric contact between current collector
and active mass should be referred to as cell degradation appears to be more a question of
correct terminology [45].

Considering these possible pitfalls, a look at the publication history on the subject of
this report is fraught with uncertainties. Figure 1 illustrates, nevertheless, that awareness
of the imperfections of supercapacitors, i.e., an imperfect ageing behaviour over time, has
existed for years already.
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Figure 1. Annual publication numbers of reports with “ageing” or “ageing” or “degradation” and
“supercapacitor” anywhere in the title, keywords or abstract (data from Web of Science®, retrieved on
30 April 2023). Further publications addressing this topic (mentioning the keyword(s)) somewhere
in the text could not be counted; when noticed and considered relevant in the present context, they
were evaluated below. The very few publications on “electrochemical capacitors” or “double layer
capacitors” instead of “supercapacitors” were included; the associated confusion suggests further
systematic use of technical terms. More on this topic can be found in [46,47].

2. Causes and Mechanisms

In this section, chemical, electrochemical and related processes observed with elec-
trodes and electrode materials resulting in poorer performance (in whatever terms) are
presented and discussed. Because they differ significantly for materials employed in EDLCs
and in capacitors employing redox-active materials and their respective electrodes, the text
is organized accordingly.

2.1. Causes and Mechanisms on the Material and Component Level

Materials deterioration (or degradation) can either be studied with the actual materials
of interest themselves or incorporated into an electrode or as part of an actual device. In
the latter, specific interactions with an electrolyte solution will become visible; such studies
are considered below (see Section 2.2.1).

2.1.1. EDLC-Type Materials and Electrodes

Chemically and electrochemically aged carbon, i.e., exposed to acetonitrile-based
electrolyte solutions, without and with electrode potential control at various temperatures,
has been studied [48]. Evidence of both chemical and electrochemical reactions at “non
inert” carbon surfaces (different types of carbon were studied) and the covalent attachment
of most elements found in the electrolyte solution on the carbon surface (more on the
positive electrode), yielding the formation of surface functional groups, was noticed. In
a subsequent study, the authors identified further degradation contributions, including
structural modification of the porous structure, clogging of pore openings and decompo-
sition of cell constituents [49]. Infrared spectroscopy confirmed that performance losses
were mostly due to positive electrode degradation [50]. Electrodes with N-doped graphene
showed performance degradation attributed to surface oxidation as evidenced with X-ray
photoelectron spectroscopy (XPS), causing increased Ohmic resistance [51]. The concluded
inhibition of electron transfer remains unclear; presumably, electron transport (conduction)
in the absence of an electron transfer Faradaic reaction was the intended meaning. The
detrimental effects of surface functional groups have been highlighted based on a detailed
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study [52]. Ageing of an AC derived from carbonized polypyrrole PPy (what is meant by
“activation” of PPy remains unclear) has been studied using a combination of electrode
potential/cell voltage float and the cycling protocol of both single electrodes and complete
cells with an aqueous KNO3 electrolyte solution [53]. Essentially, self-discharge and capaci-
tance retention were studied, but neither degradation nor ageing were actually addressed.
Activated carbon spheres used in the positive and negative electrodes of EDLC devices
showed decreasing mechanical strength with growing current density [54]. Structural
degradation as a further effect was tentatively assumed but not demonstrated. Degrada-
tion of freestanding electrodes prepared from monolithic carbon spherogels results in loss
of the central cavity and sphere degradation of thin-walled samples; therefore, thicker
walls are preferable [55]. The particularly detrimental effect of even small concentrations
of chloride ions on carbon stability has been highlighted [56]. Ageing and degradation
of eight different carbon materials used in the negative electrode of EDLC devices with
electrolyte solutions of propylene carbonate or acetonitrile and Et4NBF4 have been stud-
ied [57]. Different from degradation in the range of higher electrode potentials (i.e., of
positive electrodes), degradation initially happens on the basal plane, not at edge sites.
Degradation of N-doped graphene nanoflakes in contact with an ionic liquid electrolyte
has been attributed to the intercalation of tetramethylammonium ions between graphene
layers resulting in exfoliation [58].

Substitution of fluorine-containing binders by materials from renewable sources is of
growing interest. Unfortunately, stability in terms of capacitance retention for electrodes
prepared with such binders varies widely, with results not yet being practically viable [59].
Collapse (i.e., restacking or agglomeration in more general terms) of graphene- and MXene-
based materials [60] result in capacitance and performance degradation [61,62]; in addition,
oxidation may have a negative effect on performance [63]. A similar effect resulting in
poorer performance is restacking of carbon nanotubes (CNTs) during fabrication, subse-
quently hindering ion movement [64]. This type of degradation does not appear to happen
during the operation time of a device and is not a form of ageing.

In a study limited to electrodes made from multiwalled carbon nanotubes (MWCNTs)
supported on stainless steel, evidence of ageing and degradation similar to that obtained
with other carbon materials in contact with aqueous as well as non-aqueous electrolyte
solution was obtained [65].

Corrosion of stainless steel current collectors in EDLC-type supercapacitors in particu-
lar at the positive electrode has been studied [66], and corrosion protection by a siloxane
coating has been proposed.

2.1.2. Battery-Type Materials and Electrodes

As discussed elsewhere [67,68], battery-type electrodes are mostly composed of an
active material, a binder and added electronically conducting carbon to make up for the
insufficient conductivity of the active material. As single active materials, metal chalco-
genides of simple- (e.g., MnO2) or complex-composition MeMe1xMe2yOz (e.g., CoFe2O4),
intrinsically conducting polymers (ICPs), and a few further inorganic materials showing
electrochemical redox activity (e.g., transition metal oxynitrides) have been examined.
Both organic and inorganic materials have been reviewed extensively. Because of their
inherent flaws (especially the insufficient electronic conductivity and stability of many
chalcogenides and lack of stability of many ICPs), composites have been prepared and
studied and reviews are available [67]. The causes and mechanisms of material degradation
of single materials and electrodes, as well as of composites and their electrodes, differ sub-
stantially because of the fundamentally different chemistries and properties of the materials.
In the case of MnO2-based electrodes, the dissolution of manganese ions is a frequently
encountered mode of degradation and electrode ageing [69–71]. As pointed out, in addition
to the formation of actually solvated manganese ions, detachment of particles becoming
possibly inactive, redeposition in structurally different forms and further phenomena may
occur. Detachment of active material particles (somewhat misleadingly called delamination
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in [72]) may also occur with composite materials. MnO2 combined with cotton fabric into
a positive electrode showed some particle coarsening during redox cycling [73]. In the
case of MoOx as an active mass, certain redox states of the molybdenum may be prone
to instability; thus, the selection of the suitable operating electrode potential window is
highly important [74]. Volume change during redox cycling has also been identified as the
reason for the electrode degradation of manganese molybdate (MnMoO4·nH2O); using
nanosheets of this material increased stability [75]. An unspecified “phase separation” in
composites of carbonaceous materials has been claimed to be a cause of electrode perfor-
mance degradation [76]. α-Co(OH)2 has been claimed to have a higher storage capability
than β-Co(OH)2 but is converted into the latter phase upon redox cycling, resulting in
capacitance losses [77]. Formation of α-Co(OH)2 via hydrolysis of ZIF-67 results in a sta-
ble version [77]. The ageing of TiO2 nanotubes in aqueous electrolyte solutions has been
studied [78]. The results suggest a small dependency of performance degradation on syn-
thesis procedure. Similar observations regarding the effects of synthesis details have been
reported for a composite of such nanotubes coated with MnO2 [79]. A very specific type of
ageing was encountered with catechol-based polymeric redox materials [80]. A few days
after reparation, a change of colour of the material already indicated an autoxidation of the
catechol groups and subsequent crosslinking associated with a higher redox potential. This
“ageing” increased the operating cell voltage and thus its energy density. Studies of ageing
and degradation of a composite electrode of reduced graphene oxide rGO/Fe3O4 operation
in a sodium sulphite electrolyte solution revealed the formation of FeS, which showed poor
stability during further charge/discharge [81]. Performance degradation of an electrode of
Ni0.34Co0.66Se2 nanorods was attributed to selenium losses [82]. Degradation of vanadium
nitride, suggested as an electrode material for microsupercapacitors, has been attributed to
the formation of oxides on the material surface [83].

The degradation of ICPs, particularly noticeable during electrode potential cycling in,
e.g., CVs, has been observed frequently; for overviews, see, e.g., [84,85]. In-depth studies,
beginning with the more or less pseudocapacitive behaviour of ICP-electrode-specific
degradation processes have been identified. Using Raman spectroscopy, structural changes
of PPy on the molecular level, and “the low mechanical stability of the C=C bonds in PPy”,
were related to the observed capacitance degradation based on observed band shifts [86].
The decreasing intensity of Raman bands attributed to the bipolaronic state of the oxidized
PPy may also indicate a decreasing charge storage capability because of decreasing available
redox-active sites caused by the irreversible transformation associated with molecular chain
deformation. During charge/discharge cycling, changes of PPy in a composite with rGO
were observed with various analytical tools without yielding a coherent conclusion [87].
Electrochemical degradation of a PPy film with p-toluene sulfonic counteranions has been
studied with various methods [88]. The impedance data suggest the growing Ohmic
resistance of the ICP, limiting current flow and thus decreasing effective capacitance;
further experimental evidence, such as growth of a carbonyl peak in infrared spectroscopy,
is mentioned, but is hard to correlate with the somewhat diffuse experimental procedure
with a mix of ex situ storage and in situ electrochemical measurements. A similar conclusion
regarding the growing Ohmic resistance of the ICP has been reported elsewhere [89]. In
a study of PPy nanowires, dissolution of PPy was observed [90]. Morphological changes
of PPy nanotubes evidenced with impedance measurements during galvanostatic cycling
negatively affected capacitance [91]. Mechanical degradation of PPy in a PPy/bacterial
cellulose composite, as evidenced with SEM, was identified as the cause of the noticed
capacitance decrease [92].

The Influence of electropolymerization condition, i.e., pH of the solution, pH-value
and presence/absence of dissolved dioxygen on PPy film stability has been studied [93].
Films grown at lower pH-values and in the absence of dioxygen were more stable according
to the results of electrochemical impedance measurements. It is possible that dioxygen
oxidized the PPy film. Unspecified “degradation” of PPy, evidenced with redox electrode
potential shifts and changing currents in CVs, has been claimed [94]. XPS was employed to
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find the effects of preparation conditions, but apparently not of degradation. Ion trapping
in polymer films as a possible contribution towards degradation has been studied in
detail [95].

The electrochemical capacity fading of a PANI-based supercapacitor electrode was
studied with XPS [96]. Hydrolytic degradation supported by water molecules transported
into the polymer during cycling was concluded from the disappearance of the chlorine
signal initially caused by the chloride counteranions in the ICP and an increase of the
sulphur (from the sulphuric acid electrolyte) and oxygen. This suggests the need for
a closer inspection of the water-transport properties of the studied anions beyond the
properties already examined [97–99]. Based on further evidence from Raman spectroscopy,
the degradation products p-aminophenol, p-benzoquinone and quinone imine created by
breaking bonds between repeat units, and further chemical as well as electrochemical
reactions, were identified [100]. Degradation of PANI performance has been related to
molecular weight decrease, changed state of aggregation and changed morphology [101].
Lower molecular weight is caused by the disintegration of the ICP through bond breaking.
The kinetics of PANI degradation aiming to identify optimum operation parameters have
been reported [102]. Degradation products of PANI in a composite with cobalt–aluminium-
layered double hydroxide were identified as being redox-active, contributing to storage
capacity [103]. The identities of these degradation products were not revealed.

PANI shows two clearly separated redox transitions from the leucoemeraldine to the
emeraldine and from the emeraldine to the pernigraniline state. Although both transitions
are fairly reversible in terms of maintained redox activity, and thus charge storage capa-
bility [84,85], PANI in the pernigraniline state is rather susceptible to degradation by, e.g.,
nucleophilic attack of aqueous electrolyte solution constituents [104–106]. This is even more
pronounced during overoxidation, i.e., even higher electrode potentials [107]. Accordingly,
proper cell voltage control, limiting the positive electrode redox process to the first transi-
tion, will help to avoid degradation and thus electrode and cell ageing [108]. The effects
of defects on the molecular level in PEDOT:PSS and their influence on electrode ageing
have been examined, and a detrimental effect of elevated temperature was noticed [109].
Ageing of a composite material of graphene oxide and PEDOT:PSS formed with glucose as
a green filler by ultraviolet radiation has been studied [110]. The effects of the irradiation
were not revealed.

The degradation of multilayer electrodes composed of different ICPs has been ex-
amined [111]. Multilayers of PEDOT and poly(N-methylpyrrole) (PNMPy) were more
stable than multilayers of just one ICP. The former kept their porosity even after exten-
sive cycling. Favourable interactions not further specified between the ICP layers were
invoked as the reasons for the improvements [112,113]. Layer-by-layer films of poly(o-
methoxyaniline) and poly(3-thiophene acetic acid) have been examined as supercapacitor
electrode material [114]. Films casted only with the formed material showed lower stability
and faster degradation, attributed to counterion ingress/egress (see also [115]). The fre-
quently deplored degradation of PANI was mostly attributed to swelling/shrinking during
cycling [67], as well as to structural degradation on a molecular level [116], which has
also been observed with composites employing this ICP, e.g., in particular at elevated tem-
peratures with PANI/MnFe2O4 [117]. Extra-large capacitance values of PANI/graphene
composites have been attributed to the redox activity of oligoaniline PANI degradation
products [118].

In composites, slower degradation and consequently slower ageing have been at-
tributed to inhibited dissolution of, e.g., MnO2 when coated with PANI [119]. The inherent
flaw of this ICP, its degradation caused by swelling/shrinking during cycling, is amelio-
rated by keeping the coating of PANI on the MnO2 nanowires very thin. A long-term
stability claim for a composite of PANI and MoSx after 150 cycles (!) appears to be slightly
overoptimistic [120].

Performance losses of metal chalcogenides and of the electrodes incorporating them
can be attributed to various modes of deterioration. Structural changes during cycling, i.e.,
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during changes of the redox states of the metal ions in a chalcogenide and the associated
insert/egress of further cations, can be at least partially irreversible. In the case of hollan-
dite α-MnO2 DFT studies, the insertion of alkali metal cations causing distortions of the
unit cell and changes of the manganese coordination are identified as possible causes of
degradation [121]. Performance loss, and in particular capacitance loss, of Ni(OH)2-based
electrodes appears to be caused by dissolution of the nickel hydroxide, and consequently
measures to inhibit dissolution by, e.g., coating with an ICP may be a remedy [122]. Such
unwelcome structural changes and thus degradation have also been observed with iron
oxides [123].

Negative electrodes based on Li4Ti5O12 suggested for lithium-ion capacitors (LiC)
showed degradation via lithium ion trapping at the octahedral 16c position of the ti-
tanate [124].

2.2. Causes and Mechanisms at the Device Level

The same arguments provided above when describing the reasons behind the orga-
nization of materials will be applied again in the following section at the device level.
Because processes may be considerably affected by the chemical identity of the solvent in
the electrolyte solution, the separate handling of devices with organic (solvent) electrolyte
solutions which is occasionally observed is reflected below by a separate section focusing
primarily on this aspect.

2.2.1. Devices with EDLC-Type Electrodes

Temperature, particularly elevated temperature, and too-high cell voltage have been
identified repeatedly as the main sources or at least major contributors of ageing [125–128].
High-voltage supercapacitors with aqueous electrolyte solutions operating at cell voltages
> 1.23 V may show gas evolution due to carbon electrode decomposition (mostly oxidation
at the positive electrode) and hydrogen evolution at the negative electrode [129]. Using cell
pressure measurements and online electrochemical mass spectrometry, it was confirmed
that oxidation may begin at cell voltages as low as 0.6 V, whereas noticeable hydrogen
evolution via water decomposition starts around 1.6 V. During short-term cycling, some re-
versible gas formation/consumption was observed. During long-term cycling, irreversible
side-reactions begin which are associated with increased cell pressure and performance
deterioration. Based on the reported observations, cycling was found to be more harm-
ful for electrode integrity than keeping a fixed cell voltage; this apparent contradiction
to the opposite conclusions presented above may be related to the fact that in the study
discussed above [7,8], only capacitance retention was monitored, not electrode integrity
or cell pressure. In a similar study with an aqueous Li2SO4 electrolyte solution, similar
observations were made [130]. The positive electrode caused most of the ageing of the
device; it had many more surface-oxygenated functional groups than the negative electrode.
These groups contributed to pore blocking and associated loss of electrochemically active
surface area. With this solution, an upper safe cell voltage of 1.5 V was concluded, signifi-
cantly higher than with KOH or H2SO4. In a similar study with a LiNO3-based aqueous
electrolyte solution, essentially the same results regarding degradation and cell ageing were
obtained [131]. Experimental options of mass spectrometry in similar studies have been
described [132], and a supercapacitor cell for operando GC-MS has been developed [133].
As an alternative, in situ Raman spectroscopy of gas evolving during cell operation has
been applied successfully [134].

Minor differences in ageing, in particular under accelerating conditions between
electrolyte solution using different solvents (e.g., acetonitrile and propylene carbonate),
have been observed [126]. The influence of the carbon material became very obvious in a
comparative study with EDLC devices and an organic solvent-based electrolyte solution
with two different carbons [135]. One carbon showed continuous degradation of both ESR
and capacitance, whereas the other one initially showed only a growth of ESR. The latter
behaviour was explained by invoking the formation of a passivation layer. Unfortunately,
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the characterization of the two carbons did not include an examination of the carbon surface
chemistry; thus, it can only be assumed that such differences may cause the different
ageing behaviour. Structural details may also be relevant; the first carbon had a larger
specific surface area, presumably due to a larger fraction of micropores more susceptible
to clogging as observed with the capacitance decrease. In a subsequent study, again
comparing two electrodes, which, in addition to data in the earlier study were characterized
in terms of different numbers of surface functional groups, further details regarding an
ageing mechanism were proposed [136]. The larger number of surface functional groups
contributed to passivation layer formation. With both carbons, the presence of traces
of water in the cell contributing to the proposed formation of a superacid HF·BF3 as
the first step at the positive electrode was stressed. In a review of analytical techniques
for supercapacitor material characterization, the detrimental effects of surface functional
groups on carbon materials for EDLC devices was stressed [137]. Appropriate methods for
evaluating the efficiency and capacitive behaviour of supercapacitors have been critically
examined; the different types of devices addressed in the title are presumably just different
brands of EDLC devices [138]. References to redox reactions, the addition of KI and di-
hydrogen evolution may indicate that, beyond EDLC devices, systems with Faradaic charge
storage were also included. The need to distinguish between Coulomb and energy efficiency
is stressed, and reporting of the latter is highly recommended. Sensitivity of devices with
aqueous electrolyte solutions to cell voltage applied during cycling was confirmed [139],
but only floating at 1.5 V yielded the highest capacitance; at 1.6 V and even moreso at 1.8 V,
significant degradation was observed.

Capacitance losses during operation are referred to as degradation, particularly in
earlier reports. As a consequence, capacitance losses during operation (or testing) which
can be reversed by keeping the device at zero voltage for some time have been referred to
as reversible degradation [140]. Processes and mechanisms enabling this were not reported;
a possible connection to incomplete discharge was indicated.

A microsupercapacitor with 10.8 V operating voltage has been described [141], and
was constructed as a series connection of nine cells of the EDLC type with graphene
electrodes prepared by laser writing on a polymer film support. After 100,000 cycles, 100%
capacity retention was observed, but reasons for the stability were not provided. In a rare
exception, the strength and ductility of completely reduced GO and the good interfacial
adhesion between it and the also employed MnO2 are suggested [142].

2.2.2. Devices with Battery-Type Electrodes

Supercapacitors with ICPs as active masses can be prepared in various configurations,
as previously discussed in detail [67,68]. Although a symmetrical configuration with,
e.g., PANI both as a positive and negative electrode is hardly preferable, it has been
tested with respect to electrode degradation (and implicitly cell ageing) [143]. Changes
in terms of charge storage capability, Ohmic resistance and charge transfer resistance of
any electrode reaction at the positive electrode were much more pronounced than at the
negative electrode. Consequently, an asymmetric device with PANI as the negative and
AC as the positive electrode were built and successfully tested for good capacity retention
during cycling. Charge trapping in the negative electrode of a symmetric device with p/n-
dopable conducting redox polymers has been found to be the main reason for performance
degradation [144]. Partial recovery of charge trapping by potential cycling was found to
be possible.

2.2.3. Hybrid Devices

LiCs combining a negative lithium intercalation electrode and a positive EDLC elec-
trode have been subjected to post-mortem analysis after accelerated ageing tests at ambient
and strongly elevated temperatures [145]. Pore blocking of the positive AC electrode and
lithium-ion loss of the pre-lithiated negative electrode were found to be the major factors
contributing to device ageing. Detrimental effects of the AC (positive electrode) surface
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functional groups possibly adsorbing lithium ions were indicated as an important subject of
further research. Because of the ageing of LiCs, the effects of cell voltage are different from
those found in EDLC-type devices [146]. The particularly fast ageing at low cell voltages
was considered in an adapted model based on the results of electrochemical impedance
measurements. Calendar ageing of LiCs at elevated temperatures both fully charged and
discharged has been studied using mostly electrochemical impedance measurements [147].
Fully discharged cells suffered huge capacitance loss compared to the charged cells. The
low operating potential of a graphite electrode in an LiC has been claimed to be a cause of
lithium plating on the graphite surface and consequently performance degradation [148].
With granular Li4Ti5O12 as the negative electrode in an LiC, performance degradation
due to gas evolution (H2O and HF) was found to be proportional to applied current den-
sity [149]. Further inspiration may be gained from observing high-power lithium-ion
batteries with a performance claimed to be equivalent to many applications currently
assigned to supercapacitors [150].

2.2.4. Devices with Organic (Solvent) Electrolyte Solutions

Causes of EDLC-type supercapacitors ageing with organic electrolytes (this abridged
but over-simplified description is popular, and is used here for conciseness) and AC
electrodes under voltage floating conditions (2.5 V at 4000 to 7000 h) have been studied pre-
viously [151]. Using several common analytical methods, various decomposition products
were identified. Differences in the amount and identity of positive and negative electrodes
suggested redox reactions between the electrolyte and surface functionalities on the carbon.
In addition, these decomposition products plugged some pores of the carbons, as evidenced
by BET measurements. Diminished accessible surface area and poorly conducting deposits
were invoked as explanations for the increased ESR and decreased capacitance of the stud-
ied devices. Lower concentration of surface functionalities was suggested to be favourable
for slower ageing. Gas pressure increase of cells under accelerated ageing conditions
was compared for cells with acetonitrile-based electrolyte solutions containing different
ammonium tetrafluoroborate salts [152]. Cells containing an electrolyte with an acyclic
cation showed a much larger pressure increase, attributed to weaker solvent–electrolyte
interactions. The influence of different organic solvents on gas pressure evolution has been
examined [153]. With γ-butyrolactone, gas evolution started at 2.5 V cell voltage, whereas
gas evolution was small even at 3.25 V. During and after ageing at elevated temperatures,
gas pressure changes and the elemental composition of electrodes and their changes for
an EDLC device with an electrolyte solution of acetonitrile and triethylmethylammonium
tetrafluoroborate were examined [154]. An additional “precharge at low voltage” resulted
in smaller pressure rise at high voltages, and a large pressure increase was observed at 3 V
cell voltage, well above the rated operating voltage. On the electrode, deposits were found
which explained the increase of ESR and decrease of capacitance.

Ageing and failure modes of EDLC devices under constant load (different from the
well-established meaning of this term in battery testing, where it suggests a constant Ohmic
discharge resistor connected to the battery, the complex current–time–charge–discharge
program applied here is very much different) have been studied [155]. Capacitance, ESR
and leakage current were examined. At elevated temperatures (>70 ◦C) and high cell
voltage, failure of devices caused by internal pressure build-up were observed. Ageing at
elevated voltages (3.3 V) resulted in changes in the recorded impedance data, suggesting
an increase of electrode surface in heterogeneity not observed during ageing at elevated
temperatures. Leakage current decreased during constant voltage test, and therefore cannot
be taken as an indicator of device ageing. Capacitance losses below the commonly accepted
80% value as an end-of-life criterion always occurred earlier than the doubling of the ESR
assumed as the other criterion. EDLC supercapacitors with an acetonitrile-base electrolyte
solution of alkylammonium fluoroborate studied by excessive overcharge released several
decomposition products of all constituents [156]. The formed HF attacked the aluminium
foil used as electrode support. Tests of similar systems under less abusive conditions
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revealed the destruction of the adhesive layer between the current collector and active
material to be a cause of performance degradation and device ageing [157]. In further
accelerated life testing of such devices, the safety and reliability of EDLC devices were
tested, along with excess voltage and elevated temperature conditions [158]. Decomposition
of acetonitrile from the electrolyte solution and destruction of the electrodes caused by the
continuous stress were observed. An attempt to identify indicators of over-voltage and
over-temperature stress has been reported [125]. As fault indicators, the equivalent series
resistance, capacitance and cell voltage relaxation after disconnection from power sources
were identified [125].

Physical damage observed in post-mortem analysis of cells and their components
were more pronounced with voltage-stressed than with temperature-stressed cells. Further
studies of such devices revealed damage to the positive electrode at cell voltages above
3.0 V caused all of the observed performance degradation, and at voltages above 3.5 V the
negative electrode also contributed somewhat [8]. More degradation products were found
on the positive electrode, porosity of the electrodes decreased. The influence of the applied
currents and voltages on the ageing of a commercial supercapacitor (NESSCAP 10 F) with
acetonitrile-based electrolyte solution has been studied [159]. At currents > 4 A over 60,000
cycles, damage to electrodes was noticed. With an excess voltage > 3.2 V, the device was
destroyed. At high voltage, the binder was destroyed and the current collector was covered
with a passivating film, causing increased contact resistance according to post-mortem
analysis of the electrodes. At higher currents, only minor damages of this type were found.
Morphological changes were also more pronounced with higher voltages.

An accelerated ageing test of EDLC devices with an ionic as the electrolyte combining
cycling and “floating at high potential” (obviously “voltage hold”) yielded > 80% capacity
retention after 100 h (!) [160].

The ageing of a supercapacitor with a redox-active component (KI) added to the
electrolyte solutions was examined [161]. GCD had a more degrading effect than voltage
floating tests on carbon structure, but voltage floating tests were more detrimental overall.
In a redox flow capacitor with a membrane separator, membrane fouling, also seen in flow
battery studies [162,163], was identified as the reason for power degradation and device
ageing [164].

Deep eutectic solvents (DES) have been proposed for supercapacitors operating at
elevated temperatures [1]. Because one component (in [1], it was acetamide) may evaporate,
precipitation of the other component (LiNO3) may occur, yielding faster ageing because of
the detrimental effects of solid deposition on porous electrode performance as discussed
above. A DES based on lithium bis(fluorosulfonyl)imide and formamide as the electrolyte
in an EDC-device showed gas evolution at excessive cell voltages, which was in part
electrochemically reversible [165].

To enable lower operating temperatures, EDLC cells with a mixture of water and
methanol as the electrolyte solution solvent have been proposed [166]. The observed ageing
was attributed to oxidation at the positive electrode and corrosion of the stainless steel
current collector. Given the frequently stressed sensitivity of EDLC devices vs. elevated
temperatures, attempts to select cell constituents suitably were reported after identifying
ageing and the reasons for modified device failure at 120 ◦C: fusion of the separator
increasing the ESR, decomposition of the separator and delamination of active masses from
current collectors [167].

2.2.5. Devices with Solid Electrolytes

Given the numerous advantages of solid or at least semi-solid (gelled electrolytes),
further degradation processes inside the ionically conducting phase between the electrodes
may contribute to device aging. In the case of an anionically conducting polymer, a decrease
of ionic conductivity somehow associated with some not yet resolved change in the polymer
was identified as a cause of capacity decrease [168].
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The accelerating effect of elevated temperatures on performance degradation was also
confirmed for a CNT-based all-solid-state supercapacitor [169].

A symmetric device with two PPy electrodes and an ion liquid-based gel polymer elec-
trolyte showed substantial ageing in terms of capacitance loss, attributed to the conceivable
formation of a passivation layer between the electrode and electrolyte [170].

2.2.6. Flexible, Stretchable and Bendable Devices

In addition to supercapacitors employed in electric and electronic circuits of traditional
design and construction, new applications for flexible, wearable and bendable devices
sometimes demonstrate further functions, such as transparency or electrochromism. For
such devices, further causes of performance degradation must be considered.

In a stretchable electrode, the detrimental effects of stress induced by stretching could
be reduced by using a composite of PPy and MnO2 nanosheets as the active material
instead of MnO2 alone [171]. With PPy alone as the active material, stretching-induced
degradation was also low; this was attributed to the various structural advantages of the
polymer. Unfortunately, PPy, as with many other intrinsically conducting polymers, has
other flaws, such as active mass in supercapacitors. For overviews, see [67,68].

Mechanical degradation by bending, folding, flexing or other forms of mechanical
deformation may cause degradation of device performance identified as capacitance loss. In
reports, high stability, i.e., minor degradation of a given material and device are frequently
stated, but the reasons for this are not provided.

3. Modelling

For many users, the reasons for performance losses on the molecular or electrode
level are of minor interest only because the user’s interest is for obvious and quite nat-
ural reasons, focused on device performance and change of this performance (ageing)
during use. For practical reasons, particularly for the prediction of device performance
development during further use, modelling is frequently applied. Although an under-
standing of device operation and behaviour on all levels may be helpful, it might not
be requested from a user interested in predicting future device performance [172]. Thus,
many models, in particular those developed within electric and electronic engineering, are
purely descriptive–empirical. Because they can possibly be implemented into auxiliary
electronics in devices containing a supercapacitor requiring monitoring, such models may
be actually helpful in the safe and successful application of a supercapacitor even without
understanding why the supercapacitor degrades and finally fails. Formulation of predictive
laws may be even more empirical when taking into account experimental observations and
general chemical knowledge, such as those of chemical kinetics or other physical evidence.
An ageing law links ageing kinetics with the growth of an interfacial layer (somewhat
confusingly called solid electrolyte interface (SEI), a term applied so far only in reactive
metal batteries) covering more of the electrode surface with time [173]. Using a broad
array of samples, experimental data could be fitted to predictions of the proposed ageing
law; further development aims to realize the inclusion of temperature and cell voltage. A
further model for the prediction of supercapacitor ageing in vehicular applications has been
reported [174]. Based on electrochemical impedance measurements during accelerated
ageing tests of EDLC supercapacitors, an ageing model has been developed [175,176]. An
improved multipore impedance model has been developed to aid in the interpretation of
floating ageing measurements [177]. An overview of supercapacitor modelling is avail-
able [4], while models with particular relevance to self-discharge have been discussed
elsewhere [178].

As most proposed supercapacitor models are electric models valid only early in
their lifetime, a more complex model taking into account changes during lifetime has
been proposed [11]. Modelling as a support for lifetime behaviour prediction for EDLC
supercapacitors has been reported based on cycling tests under various experimental
conditions [179,180]. Linear capacitance retention trends could be extrapolated linearly
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with temperature as the main factor. A life-cycle prediction model combining extrapolation
and acceleration factors was established. The effects of voltage and temperature on leakage
currents of EDLC devices measured during calendar ageing have been studied and used in
a leakage current model [181]; further considerations of leakage current and self-discharge
have been reviewed elsewhere [178].

Supercapacitor modelling has been reviewed encompassing further engineering as-
pects [182]. State-of-health estimation based on such modelling has been attempted, starting
with the results of degradation/ageing studies taking into account temperature, voltage
and cycling conditions. Given the major influence of temperature and the considerable
impact of current in actual operations, models taking these contributors into account have
received particular interest. Based on a review of microscopic changes attributed to these
driving forces and their influence on macroscopic performance indicators [183], a model
for predicting the state of health, in particular the kept capacitance, was developed and
validated for a time period of 450 h by comparing measured and predicted capacitance
values [184]. Using an electric model and experimental results of calendar ageing studies, a
method for supercapacitor online health diagnosis has been developed [185].

Balancing based on multivariable modelling of multi-cell setups can help mitigate the
accelerated ageing caused by temperature differences between cells [186] (in such arrange-
ments, a 10 ◦C difference can easily be observed between cells without precautions; see
also [176]). A model particularly taking into account the ageing effects of supercapacitor
cycling in vehicular applications and at elevated temperatures has been reported [187].
An algorithm method for predicting the remaining lifetime of supercapacitors has been
developed [188]. In vehicular applications, fuel cells are frequently combined with superca-
pacitors with an energy management strategy that controls the contributions of the various
components [189]. The ageing effects of the components may affect utilization of the hy-
drogen fuel consumption negatively; accordingly, ageing models are incorporated into the
strategy. In addition to combining a supercapacitor with a fuel cell, such combination with
secondary batteries, in particular lithium-ion batteries, may help to improve the overall
performance of the complete system and to slow down ageing [190,191].

Parametric model structures possibly suitable for EDLC diagnosis have been com-
pared [192]. In lithium-ion battery degradation studies, the supervised learning of synthetic
big data has been proposed [193]. This approach may be applicable in supercapacitor ageing
studies as well.

A reduced-order physics-based model has been developed to support systems combin-
ing batteries and EDLC-type supercapacitors [194]. For comparison and further inspiration,
ageing models developed for lithium-ion batteries have been considered [195–199]. De-
scriptions and models of performance and ageing of electrochemical energy storage and
conversion devices, including EDLC supercapacitors based on thermodynamics, have been
developed [200].

An overview on modelling of supercapacitor ageing [201] is available.

4. Countermeasures
4.1. EDLC-Type Supercapacitors

The ageing of supercapacitors is significantly accelerated at elevated temperatures.
Consequently, temperature management with a heat-transfer and -removal (cooling) ca-
pability to address even larger heat evolution in the later stages of the lifetime of a device
has been strongly recommended [11]. The use of phase-change materials as a possible
contribution to heat management has been proposed [202].

EDLC-type supercapacitors are subject to degradation processes even in an only partly
charged state, particularly at the positive electrode. Because surface functionalities (in
particular oxygen-containing ones) on the carbon electrode participate by redox reactions
with the organic electrolyte solution, carbons with small surface concentrations of such
functionalities appear to be advantageous. The loss of redox storage capability because of
the missing redox capabilities of such functions may be acceptable; however, it appears to be
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a rather unreliable and unpredictable contribution. The further detrimental effects of such
surface functional groups, such as lithium ion adsorption, further recommend the careful
control of their presence in carbon materials for supercapacitor electrodes. Careful and
controlled application of nitrogen-containing functional groups has been found to enhance
performance and slow down structural electrode degradation [203]. N-doping of carbon
materials may also improve the stability of such material in an ionic liquid electrolyte
when operated at elevated potential/voltage [204]. In addition to a cautious consideration
of surface chemistry, porous structure and pore size distribution should be considered.
Moderate fractions of micropores and consequently somewhat lower specific surface area
may be beneficial for slower ageing based on observations in a comparative carbon study
discussed above [135]. From the observation that electrode degradation proceeds even at
voltages much smaller than the rated values for a supercapacitor, it has been recommended
to keep devices in a partly charged state or even to discharge (reset) them fully from time
to time. This procedure creates just the opposite effect and cannot be recommended [9].
Coating of the electrode material via atomic layer deposition (ALD) of a thin layer of Al2O3
just a few nanometres thick resulted in protection of the surface functional groups and
slowed down electrolyte solution degradation [205]. Similar effects were achieved with
an alucone coating on LiCoO2 intended for lithium-ion batteries [206]. With NaPF6-based
electrolyte solutions during thermal degradation, PF5 may be formed, which can cause
autocatalytic degradation of the solution [207]. The addition of hexamethylphosphoramide
will bind PF5 and thus slow down degradation.

In cases of aqueous electrolyte solutions, carbon corrosion via carbon oxidation of
the positive electrode in the presence of water may be substantial once the potential of
the positive electrode approaches the potential of water oxidation. Careful cell voltage
limitation by any means, ranging from protection diodes inserted in parallel to the cell
to more complex supervision circuits, will help to avoid unwelcome high cell voltages.
Given the repeatedly stated dominance of positive electrode degradation, suitable mass
balancing may provide an option to extend the useful lifetime of a supercapacitor with
the use of more mass in the positive electrode [50]. This confirms earlier observations and
suggestions [208]; unfortunately, this contribution was later ignored [50]. Later attempts
towards cell optimization using determination of the stable cell voltage window, taking
into consideration appropriate electrode mass balancing, confirmed this concept once
more [209]. Using additives in the electrolyte solution to slow down ageing has been
studied [210], starting with the well-established oxidative attack at the positive carbon
electrode tocopherol (vitamin E) with known anti-oxidative properties. In a floating voltage
test, a significant extension of the useful lifetime of the device was recorded. The addition
of an electrolyte with a redox-active polyfluorinated boron cluster anion [B12F11H]2− acting
as a redox shuttle mitigating solvent degradation during operation under harsh conditions
has been proposed [211] (for similar applications in lithium-ion devices, see also [212,213]).
A graphene-coated aerogel of CNTs provided a highly compressible and stable electrode
material for EDLC devices [214]. The collapse of graphene- and MXene-based electrode
materials can be avoided by ion-induced formation of hydrogels [61]. Another option for
this purpose is the formation of a composite with MWCNTs [62]. Improved stability in
addition to enhanced performance with Mxenes has been achieved with cyclocrosslinking
with polyphosphazene [63].

A supercapacitor with a water-in-salt electrolyte and a coating with a composite of Zn
and Zn4SO4(OH)6·H2O (ATDS) on the negative electrode enabled a potential shift of the
positive carbon cloth electrode into a stable electrode potential range [215].

Performance degradation of devices with water-in-salt electrolytes at low temperatures
due to precipitation of salts can be inhibited by the addition of acetonitrile, which changes
sodium ion solvation [216].

The use of heteropolytungstate acid (H3PW12O40) instead of sulfuric acid as an elec-
trolyte permits the use of stainless steel current collectors instead of more expensive noble
metals while keeping high ionic conductivity and capacitive performance [217].



Molecules 2023, 28, 5028 15 of 28

Delamination of the electrode mass from the current collector has been identified as a
major degradation phenomenon as discussed above. Laser micro-structuring of aluminium
foils has been suggested as an option for improved adherence, better performance and
slower degradation [218].

Heat generation inside a supercapacitor via flowing current may be limited by adding
temperature-responsive polymers to the electrolyte solution [219]. Once a critical tem-
perature given by the actual properties of the electrolyte solution is reached, the actual
capacitance of the device is reduced due to various polymer-related processes, subsequently
limiting current flow and further heat generation. Observing a lower cell voltage limit
has been found to be beneficial to slow down the ageing of screen-printed supercapacitors
with aqueous electrolyte solutions [220]. Various liquid additives to a solvent mixture
of acetonitrile and ethyl acetate have been examined for an extended range of operating
temperature without stability loss [221].

In arrangements of several supercapacitors connected in parallel for higher current
and in series for higher voltage, imbalances between cells may cause excess voltages (i.e.,
overcharge) of cells, resulting in the damages discussed above (Sections 2.2.1 and 2.2.3) at
too-high cell voltages. Electronic balancing circuits are provided and their effects on degra-
dation has been examined [222]. An active balancing circuit for a two-cell arrangement was
found to be beneficial both in terms of better capacity retention and lower ESR increase
than without such a circuit.

Recording parameters such as capacitance and ESR related to state-of-health and
ageing commonly require the shutdown of the device. Options to obtain these parameters
online have been developed [223]. The concept was developed further into an online ob-
server facility [224]. Another option for state-of-health monitoring may be online extraction
of cell ESR values as a method of cell and module diagnosis [225].

4.2. Supercapacitors with Battery-Type Electrodes

Poor rate performance because of low electronic conductivity and material degradation
due to volume changes during redox cycling observed with metal oxides proposed as active
masses could be ameliorated by composition with biomass-derived and thus N,S-doped
AC [226]. More frequently, nanostructuring (nanosheets, nanocones, nanowires, etc., and
their arrays or similar arrangements) has been proposed as a remedy [67]. Reducing the
particle size of active chalcogenides (e.g., manganese-doped α-Ni(OH)2 from micrometres
to nanometres helped to reduce detrimental inhomogeneity across the particles [227]. A
buckled sandwich electrode structure permitted the use of composite material combinations
of CNTs and metal chalcogenides with increased stability due to structural mitigation of
internal stress caused by ion egress/ingress when redox cycling while accelerating ion
transport [228]. Metallic nickel and iron encapsulated in an onion, such as carbon obtained
via pyrolysis of the respective phthalocyanines, were effectively protected against contact
with the electrolyte solution and did not participate in charge storage (!) [229].

Performance deterioration caused by degradation of layered δ-MnO2 during cycling
could be mitigated slightly by doping with Al3+ up to δ-Al0.06MnO2 [230]. The poor
electrode kinetics of MXenes caused by sluggish ion diffusion within the too-narrow
interlayer spaces and subsequent conductivity degradation can be alleviated by using
PPy-coated electrospun polyvinyl alcohol fibres [231]. The beneficial effect of careful
voltage/potential control for slower ageing of MnO2-based electrodes has been addressed
in general terms [232]. When a material is available in several sufficiently redox-active
crystalline types (e.g., NixFe3−xO4), a flexible spinel framework seems to be beneficial for
higher stability [233]. Seamless graphidyne layers on metal oxides have been proposed
as a way of mitigating degrading effects of structural and interfacial instabilities of metal
oxides in electrodes [234].

A vulcanization treatment of PANI introducing sulphide or disulphide bonds establish-
ing crosslinks to ameliorate the detrimental effects of volume changes during redox cycling
improved stability [235]. At the device level, material architectures taking into account
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the flaws of specific materials may help to avoid the negative effects of these flaws, thus
contributing to increased stability and slower aging. A sponge of CNTs coated first with a
thin layer of PPy, then with PANI, ameliorated the drawbacks of swelling/shrinking of the
ICPs during cycling, as well as the negative effect of insufficient electronic conductivity of
the ICPs [236]. The inverted sequence of ICP coatings provided the highest capacitance
retention. Why the ICPs were called pseudo-polymers remains as mysterious as the claim
of improved cycling stability absent a comparison material. Another option to alleviate
degradation of PANI caused by its brittleness and the negative effects of swelling/shrinking
by depositing PANI on polyurethane nanofibers has been suggested [237]. The stability
of PANI during cycling was improved by adding some AC (0.04 mass fraction) [238]. A
similar observation has been reported earlier without providing compositional details
(fraction of AC) and reasons for the improved stability and performance [239]. The function
of the added carbon has been discussed elsewhere before [67,68]. In a somewhat similar
approach, highly porous carbon obtained from tires as a precursor was used as a scaffold
for PANI formation; the improved stability (as compared to plain PANI) was ascribed to the
confinement of the ICP in the porous carbon structure [240]. Adding sulfonated carbon to
PANI slowed down PANI degradation [241]. Reasons for this have not been provided; it is
possible that the insertion of the sulfonated material is similar to self-doped PANI [242,243]
in terms of reducing the need for counterion ingress/egress with the associated structural
stress. Negative volume change effects and hydrolytic degradation observed with PANI
could be avoided by using crystalline tetraaniline flakes [244]. An unspecified “synergistic
effect between nanofibers (of poly(vinyl alcohol-co-ethylene)) and PANI” enabled improved
stability [245]. With tetraaniline instead of PANI, the higher stability of an electrode with
rGO was achieved, which showed self-healing by reestablishing electronic contacts in the
active mass after volume-change-induced loss of electronic contact [246].

ICPs with slow hydrolytic degradation, such as polyindole and its copolymers, with,
e.g., pyrrole, may be preferable in terms of slower device ageing [247,248]. To avoid
hydrolytic degradation of PANI entirely, the use of nonaqueous electrolyte solutions has
been proposed [101]. The stability of nanowires of PPy with p-toluene sulfonate as the
counter anion could be increased by keeping the initial degree of overoxidation small and by
keeping dissolved dioxygen out of the device [90]. The negative effects of volume change of
an ICP can be avoided completely by using a soluble form of an ICP, e.g., PANI made soluble
by using a superacid counter anion (trifluoromethyl sulfonic acid) [249]. The remarkable
stability in terms of capacitance retention may be reconsidered when measuring the self-
discharge of the device not studied here. Self-discharge of supercapacitors with dissolved
redox systems may cause performance limitations as discussed elsewhere [178]. Organic
(molecular, oligo- and polymeric) materials, as discussed previously for applications in
secondary batteries [250,251] beyond ICPs, may also be of interest for supercapacitors.
Ageing behaviour and degradation processes highly depend on structural details of the
molecules, and methods of slowing degradation down have been discussed in a typical
way in [252], where a decrease of conjugation resulted in improved stability.

In composite materials for flexible/stretchable electrodes, the incorporation of ICPs
appears to be a promising approach to slow down material degradation and in effect device
ageing [253]. Even without this constituent, a highly flexible and bendable electrode made
of carbon cloth decorated with CoS2 showed significant stability, presumably because of
the very good adhesion of the selenide to the carbon fibre surface [254].

The structural degradation of NiCo2S4 claimed to be the cause of performance losses
of this capacitor electrode material could be ameliorated by encapsulating it into ultra-
thin graphene shells [255]. Nanocubes of NiCo2S4 anchored on nitrogen-doped hollow
carbon spheres have been suggested as another option for this chalcogenide [256]. Re-
duced graphene oxide combined with electrochemically prepared Ni(OH)2 helped to sup-
press detrimental microstructural changes during the redox cycling of the electrode [257].
Bio-waste-derived carbon quantum dots composited with nickelpyrophosphate Ni2O2O7
served a similar purpose in improving stability by ameliorating structural stress during
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charge/discharge [258]. A nitrogen-doped carbon on millerite (nickel sulphide) served
a similar purpose, achieving better stability [259]. The hierarchical porous structure of
α-Ni(OH)2 nanosheets was claimed to be a major reason for the remarkable stability of
this material in a supercapacitor electrode [260]. Similar observations are reported for
Co3O4; suitable porosity buffering volume changed during redox cycling, resulting in
slower degradation and ageing [261]. Whether 10% capacitance loss after 250 cycles with an
amorphous Co3O4 prepared with a structure-directing hexametaphosphate calgon suggests
a sufficiently high stability remains questionable [262]. Hollow nanoarchitectures have been
proposed as a versatile option for increasing the stability of chalcogenide electrodes [263].
Metal–organic frameworks (MOFs) as precursors of metal chalcogenide may result in com-
pounds with improved stability [264]. When Fe3O4 is used in an electrode, its degradation
via the formation of FeS (see above) can be inhibited by adding FeMoO4 to the electrolyte
solution [81]. Another option is to coat Fe3O4 with PANI, which improves both stability
and performance [265]. Chemical bonding between PANI and WO3 was claimed to be a
reason for improved stability [266].

Colour changes of electrochromic electrode materials may be used to easily monitor the
state of charge of an electrode and consequently of the device, helping to avoid overcharge
and slow down ageing [267]. The detachment of chalcogenides present in particulate form
in an electrode may be mitigated by coating with an ICP, such as with PPy on particles
of MnO2 [72]. Taking into account tip-charge effects with nanostructured materials, this
appears to be a rational approach for designing MOF-based electrode materials [268].

4.3. Hybrid Supercapacitors and Other Devices

Operating LiCs at excessive voltages may result in premature ageing because of
oxidative decomposition of the electrolyte solution [269]. Using a composite of amorphous
carbon and nanocubes of MnFe2O4 enabled an increase of the cell voltage to 4 V without
sacrificing stability. Degradation of devices by bending or flexing may be reverted by self-
healing processes and materials [270,271]. The addition of compounds to the electrolyte
solution suppressing the effects of elevated temperature and electrode oxidation at high
cell voltages has been proposed in general terms [272]. Co-doping of MnO2 has been found
to improve the performance of this material in a magnesium-ion capacitor by increasing
both the electronic conductivity and stability [273]. The enhanced stability of a LiC built
with graphite recycled from spent LiBs has been attributed to several factors [274].

Chalcogenide electrodes deposited on a flexible polyolefin skeleton were subsequently
ionically connected by a zwitterionic gel polymerized inside the skeleton, showing promis-
ing stability [275].

The addition of nanocarbon material resulted in improved thermal stability and
subsequently slower ageing of a polyacrylamide gel electrolyte [276].

In electrochromic supercapacitor devices, suitable counterelectrode design, and in
particular increased surface area, may result in slower ageing and degradation [277].

5. Conclusions

In contrast to the frequently claimed extraordinary stability of supercapacitors, sug-
gesting the more or less complete absence of ageing and degradation, these devices are
actually subject to significant ageing, occasionally limiting practical applicability. To avoid
or slow down ageing, an understanding of relevant processes at the electrode, device
and even module/pack level will help to counteract these effects and even to avoid them.
The mechanisms of processes depend on the material and the operating charge storage
mechanism, and accordingly ageing may proceed at widely varying rates. Generally, the
operation of devices at excessive voltages and elevated temperatures in practically all cases
accelerated ageing. Countermeasures depend on the same details as the operating mecha-
nisms, and accordingly options to slow down ageing beyond the obvious (low temperature,
moderate and efficiently supervised cell voltage and sufficient balancing in multi-cell packs)
depend on the specific system.
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