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Abstract: In the present study, new fluorophores based on disubstituted benzanthrone derivatives
were designed starting from 9-nitro-3-bromobenzanthrone with nucleophilic substitution of the
bromine atom with some secondary cyclic amines. It has been found that this reaction is positively
affected by the presence of a nitro group in comparison with 3-bromobenzanthrone. The new
compounds exhibit intense absorption and pronounced luminescent properties in various organic
solvents. In this regard, their photophysical properties were evaluated with an experimental study of
the solvatochromic behavior of the obtained compounds in various solvents. It has recently been
found that the addition of an electron-withdrawing nitro group to the benzanthrone core increases its
first- and second-order hyperpolarizability. Such dyes can be used in the fabrication of optical limiter
devices. Therefore, the developed fluorescent molecules have a potential prospect for extensive
application in optoelectronics.

Keywords: benzanthrone; heterocycle; substituted amines; nitro derivative; fluorescence; solvatochromism;
crystal structure

1. Introduction

Fluorescence is known as a phenomenon where a substance absorbs light and promptly
emits it at a longer wavelength—the process taking place within nanoseconds. The emit-
ted light has a lower energy compared to the absorbed light, which results in a spectral
shift towards longer wavelengths [1]. There are several characteristics that make an or-
ganic compound a good fluorophore. Such a compound should have a high absorption
coefficient—the more efficiently the molecule can be excited, the brighter the emitted fluo-
rescence [2]. A Stokes shift, the difference between the excitation and emission wavelengths,
should be large enough to minimize reabsorption and maximize sensitivity [3]. An efficient
fluorophore should also have a high quantum yield, indicating that most of the absorbed
energy is converted into emitted light rather than the absorbed energy being transformed
into other competing non-radiative processes and should be photostable so that it will not
degrade or lose its fluorescent properties over time or with repeated exposure to light [4,5].

In the anthrone family of fluorescent dyes, a four-cyclic condensed aromatic ketone,
benzanthrone, has been confirmed to display the excellent above-mentioned characteristics,
which prompts the synthesis of new derivatives and their study [6,7]. Previously, benzan-
throne compounds have found utilization as fluorescent bioimaging probes, which can
aid in the visualization of parasitic trematodes and nematodes [8–10], as well as in the
identification of callus embryos of different plant species through the use of confocal laser
scanning microscopy imaging [11]. Moreover, these substances can be selectively deployed
to identify amyloid fibrils [12,13]. Benzanthrone derivatives also have the potential to
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be utilized in liquid crystal displays [14,15], polymeric materials [16,17] and as probes
to determine the pH levels and presence of cations in solutions [18–20]. These multiple
benefits of these compounds have shown them to be a potential tool for various industries
and research fields.

Previous studies have shown a significant effect of the substituent in the third position
of the aromatic system on the photophysical properties of benzanthrone dyes [21–23].
This is explained by the ability of benzanthrone compounds to form a state based on the
intramolecular charge transfer (ICT) between the electron-donating substituent and the
electron-withdrawing carbonyl moiety, which leads to a significant charge redistribution
upon excitation and, as a consequence, to pronounced fluorosolvatochromism.

The influence of such electron-donating groups as amino, amidino, alkoxy and other
groups is described in the literature, showing the highest ICT character of the first transition
for derivatives with the strongest donor group [22].

Over the last few decades, 3-aminobenzanthrone derivatives (including alkylamines
and imines [6,15,24], amides [25–27], amidines [28] and aminophosphonates [29]) have be-
come the subject of significant attention. Among these many derivatives, substituted 3-
piperazinyl derivatives of benzanthrone [30,31], as well as 3-(4-(diphenylamino)phenyl)ben
zanthrone and perylenediimide–benzanthrone dyads, were recently found to exhibit nonlinear
optical (NLO) properties [32,33], which propels their design and use not only for imaging and
sensing but also for applications in laser technology and optical communications.

In the latest research, it has been found that the introduction of a nitro group at position
9 of the benzanthrone core increases the efficiency of the charge transfer, which results in
a stronger NLO response [33]. Thus, considering all of the information mentioned above,
we have chosen to share our knowledge on previously unreported nitrated benzanthrone
derivatives. In this paper, we detail the synthesis of these newly obtained compounds and
provide a comprehensive comparison of their photophysical properties.

2. Results and Discussion
2.1. Synthesis

The first representative of benzanthrone derivatives with a nitro group and a substi-
tuted amino group (morpholine residue) was previously synthesized and showed interest-
ing optical properties [34]. Therefore, we continued the study of such substances using a
similar synthesis technique to obtain them. The target compounds were synthesized with
the reaction of the nucleophilic aromatic substitution of aryl bromide with an addition–
elimination mechanism in the previously obtained 3–bromo-9-nitrobenzanthrone (1) by
heating with an appropriate heterocyclic secondary amine in 1-methyl-2-pyrrolidone as
a solvent (see Scheme 1). The starting nitro derivative 1 was obtained with nitration of
3-bromobenzanthrone according to the procedure described in [35].
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In contrast to the analogous nucleophilic substitution reaction in 3-bromobenzanthrone,
the bromine atom in nitro derivative 1 is replaced faster and at a lower temperature. This is
obviously due to the strong electron-withdrawing effect of the nitro group, as a result of
which the electron density at the third carbon atom is significantly reduced and the attack
of the nucleophile is facilitated. Therefore, the yields of target products 2–5 are higher than
those of similar derivatives that do not contain a nitro group. The obtained substances are
deeply colored dark red solids and have an intense luminescence in solutions.

2.2. NMR Spectra Analysis

Structures of the obtained compounds were confirmed with 1H and APT NMR spectra
(see Figures S1–S10); chemical shifts for tertiary carbon atoms and attached hydrogens
were assigned on the basis of COSY and HSQC spectra (see Figures S11–S24, Table 1).

Table 1. 1H and 13C chemical shifts for compounds 2–6 in CDCl3.

δ, ppm

2 3 4 5 6
1H 13C 1H 13C 1H 13C 1H 13C 1H 13C

C-8 9.19, d 123.72 9.21, d 124.07 9.14, d 123.77 9.13, d 123.76 8.67, d 127.97
C-4 8.55, d 131.65 8.65, d 133.24 8.51, dd 131.88 8.48, d 132.21 8.46, d 131.26
C-6 8.75, d 130.86 8.78, d 130.99 8.72, dd 130.81 8.70, d 130.74 8.38, d 129.76

C-10 8.39, d 126.82 8.33, dd 126.42 8.34, dd 126.80 8.31, dd 126.68 7.58, ddd 133.16
C-1 8.38, d 127.46 8.26, d 128.92 8.31, d 127.56 8.27, d 127.70 8.21, d 125.14

C-11 8.30, d 123.94 8.20, d 123.11 8.23, d 123.89 8.20, d 123.76 8.12, d 122.53
C-5 7.76, dd 126.29 7.63, dd 123.72 7.73, dd 126.10 7.71, dd 125.85 7.65, dd 125.49
C-2 7.21, d 115.10 6.83, d 108.86 7.18, d 115.10 7.12, d 114.82 7.06, d 114.88
C-7 182.17 – 182.26 182.30 184.15
C-9 7.38, ddd 127.16

It was of interest to compare the chemical shifts of protons and carbon atoms in
monosubstituted amino derivatives and nitrated amines in order to evaluate the effect of
the nitro group on the NMR spectra of the substances under study.

For comparison, a pair of derivatives with a piperidine residue containing a nitro
group (5) and a previously synthesized non-nitrated derivative (6) were analyzed. In
the example of benzanthrone derivative 5, as indicated by 1H and COSY NMR spectra,
signals of H-C(1) and H-C(2) appear as doublets at 8.27 and 7.12 ppm, respectively, with a
coupling constant of 8 Hz. H-C(4) (doublet at 8.48 ppm) and H-C(6) (doublet at 8.70 ppm)
are not chemically equal, and while the signal of H-C(5) in the 1H NMR spectrum shows
up as an apparent triplet, it is in fact a masked doublet of doublets with similar splitting;
COSY NMR spectra confirms coupling of both H-C(4) and H-C(6) with H-C(5). Deshielded
H-C(8), situated next to both the carbonyl group and nitro group, appears as a doublet
downfield at 9.13 ppm. It is observed that there is coupling of H-C(8) with H-C(10), which
is attested with the COSY NMR spectrum and equal J values of 2.5 Hz. H-C(10) is also split
by neighboring H-C(11) (doublet at 8.20 ppm), which makes H-C(10) appear as a doublet
of doublets. The same patterns are applicable to the rest of the synthesized derivatives 2–4.

Multiplicity and chemical shifts of the obtained compound 5 can be contrasted with
previously reported non-nitrated compound 6. It is noteworthy to mention that, as vali-
dated with HMBC NMR spectra, while H-C(6) is positioned downfield relative to H-C(4)
for compound 5, the opposite is true for non-nitrated compound 6. Moreover, besides
an additional signal of H-C(9), there is a change in relative position and multiplicity for
H-C(10), both of which are masked doublets of doublets of doublets that appear as triplets
in the 1H NMR spectrum. Obtained results fully correlate with previous NMR studies of
benzanthrone derivatives [36–38].
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2.3. X-ray Crystallographic Study

Synthesized compound 3 crystallizes from dichloromethane in the form of dark red
crystals, the structure of which was determined in this work with an X-ray diffraction
analysis of single crystals (see Figure 1 and Tables S1–S6).
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Figure 1. A fragment of molecular packing of 3 showing N–O···H–C hydrogen bonds.

Obtained compound 5 crystallizes from toluene in the form of red luminescent crystals,
the structure of which was determined with an X-ray diffraction analysis of single crystals
in this research (see Tables S7–S12).

A characteristic feature of the crystal structure of 5 is the fact that there are two inde-
pendent molecules (A and B) in the asymmetric unit (see Figure 2). These molecules are
slightly distinguished by the conformation (the rotation of the piperidine cycles relative to
the benzanthrone systems). The torsion angles of C2–C3–N18–C19 are equal to −16.0(1)
and −20.3(1)◦ for molecules A and B, respectively. In both molecules, the piperidine cycles
are a chair conformation. The nitro groups of these molecules lie almost in the planes of the
benzanthrone systems.
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Molecules are connected to each other through weak intermolecular bifurcated hydrogen
bonds of the CH···O type. Oxygen atom O24(A) forms C1(B)–H1(B)···O24(A) and C11(B)–
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H11(B)···O24(A) hydrogen bonds with lengths of 3.293(2) and 3.314(2) Å (H1(B)···O24(A) = 2.38 Å,
C1(B)–H1(B)···O24(A) = 160◦; H11(B)···O24(A) = 2.41 Å, C11(B)–H11(B)···O24(A) = 159◦). In turn,
O24(B) forms hydrogen bonds C1(A)–H1(A)···O24(B) (with parameters C1(A)···O24(B) = 3.368(2)
Å, H1(A)···O24(B) = 2.47 Å, C1(A)–H1(A)···O24(B) = 157◦) and C11(A)–H11(A)···O24(B)
(C11(A)···O24(B) = 3.242(2) Å, H11(A)···O24(B) = 2.32 Å, C11(A)–H11(A)···O24(B) = 164◦). By
means of these hydrogen bonds, molecular chains (bands) are formed in the crystal structure,
approximately parallel to the crystallographic plane (2 2 1).

In the crystal structure, π–π stacking interactions between benzanthrone systems are
observed. Due to these interactions, the molecular stacks are formed in the crystal lattice.
The rows of these stacks are arranged parallel to the crystallographic direction [1 1 0].
Each stack contains both molecules A and molecules B. Figure 3 shows such a stack. The
shortest intermolecular atom–atomic contacts in the stacks are C9(A)···C8(B) (3.361(2) Å)
and C4(A)···C10(A) (3.431(2) Å).
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2.4. Spectroscopic Properties

The synthesized dyes exhibit pronounced luminescent properties in various organic
solvents. In this regard, the photophysical properties of the obtained derivative were
evaluated, recording the absorption and emission spectra in the seven organic solvents
with a wide range of polarities (see Figures S36–S38).

The obtained spectral data are summarized in Tables 2–4 in comparison with the
characteristics of the previously studied unnitrated 3-piperidinobenzanthrone (6) and 3-
pyrrolidinobenzanthrone (7) (see Scheme 2). The photophysical properties of morpholine
derivatives have been analyzed in a recent study [34].

Table 2. Absorption maxima λabs (lgε) of nitrated and non-nitrated amines in various organic solvents.

λabs max, nm (lgε)

Solvent 3 7 2 4 5 6

Benzene 498 (3.94) 525 (4.16) 447 (4.47) 453 (4.26) 460 (4.55) 447 (4.16)
Chloroform 505 (4.01) 541 (4.21) 449 (4.56) 462 (4.26) 474 (4.62) 454 (4.15)

EtOAc 493 (3.92) 527 (4.24) 447 (4.49) 454 (4.15) 459 (4.53) 445 (4.13)
Acetone 512 (4.08) 542 (4.31) 448 (4.60) 462 (4.11) 467 (4.51) 448 (4.12)

EtOH 526 (3.97) 542 (4.21) 449 (4.49) 455 (3.99) 471 (4.50) 457 (4.09)
DMF 519 (4.18) 548 (4.35) 460 (4.54) 467 (4.17) 475 (4.50) 448 (4.11)

DMSO 531 (4.06) 558 (4.31) 466 (4.43) 472 (4.11) 478 (4.49) 463 (4.11)
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Table 3. Emission maxima λem of nitrated and non-nitrated amines in various organic solvents.

λem max, nm

Solvent 3 7 2 4 6 5

Benzene 584 577 570 574 582 578
Chloroform 613 602 592 598 617 606

EtOAc 598 593 592 592 602 598
Acetone 621 632 612 612 628 620

EtOH 661 652 652 645 675 661
DMF 630 645 624 622 635 632

DMSO 641 645 650 634 665 643

Table 4. Stokes shifts (in cm−1) of nitrated and non-nitrated amines in various organic solvents.

(νabs − νem) (cm−1)

Solvent 3 7 2 4 6 5

Benzene 2957 1716 4564 4653 5189 4438
Chloroform 3489 1873 4827 4923 5819 4596

EtOAc 3562 2112 5380 5135 5861 5064
Acetone 3428 2627 5479 5305 6398 5284

EtOH 3882 3113 5981 6474 7067 6103
DMF 3395 2744 6935 5336 6573 5230

DMSO 3231 2417 5713 5413 6561 5368
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Acetone 512 (4.08) 542 (4.31) 448 (4.60) 462 (4.11) 467 (4.51) 448 (4.12) 
EtOH 526 (3.97) 542 (4.21) 449 (4.49) 455 (3.99) 471 (4.50) 457 (4.09) 
DMF 519 (4.18) 548 (4.35) 460 (4.54) 467 (4.17) 475 (4.50) 448 (4.11) 

DMSO 531 (4.06) 558 (4.31) 466 (4.43) 472 (4.11) 478 (4.49) 463 (4.11) 

Table 3. Emission maxima λem of nitrated and non-nitrated amines in various organic solvents. 

Scheme 2. Structure of compounds 6 and 7 with the corresponding substituents R1 and R2.

Amines 4 and 5 absorb light at 450–480 nm, while derivative 3 with a pyrrolidine
fragment has a longer wavelength absorption band at 525–560 nm and also exhibits a larger
bathochromic shift from nonpolar benzene to polar DMSO (33 nm) than derivatives 4 and
5 (18–19 nm). The pyrrolidine derivative 7 obtained earlier [39] exhibits absorption in the
longest wavelength range compared to all other studied compounds, both monosubstituted
and disubstituted. It is known that the main process that determines the photophysical
properties in substituted amino derivatives of benzanthrone is the transfer of electron
density from the amino nitrogen to the benzanthrone ring, the degree of which may also
depend on other substituents [21–23].

Obviously, in the case of compound 7, there is a stronger interaction between the
donor and acceptor groups, which leads to a lower electronic transition energy and an
increase in the charge transfer upon absorption of a light quantum. The addition of an
electronegative nitro group to the molecule of compound 3 leads to competition between
this substituent and the carbonyl group of the molecule and, consequently, to a new electron
density distribution in the ground state. The hypsochromic shift of the absorption band in
derivative 3 and the low sensitivity of the absorption maxima to the polarity of the solvent
indicate a decrease in the ICT character of the electronic transition.

Compared to unnitrated amines, compounds 3–5 have more intense absorption. For
the synthesized compounds, the bathochromic shift of luminescence maxima (from ben-
zene to DMSO) is comparable to the bathochromic shift of unnitrated derivatives and is
60–85 nm.
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Nitrated compounds 3 and 5 show a bathochromic shift of absorption maxima by
15–35 nm compared to non-nitrated derivatives 7 and 6, but their emission maxima demon-
strate a hypsochromic shift by 3–14 nm relative to the luminescence spectra of monosubsti-
tuted derivatives. As a result, the Stokes shifts of the spectra of nitro derivatives become
smaller than those of non-nitrated derivatives (see Table 4).

3. Materials and Methods
3.1. Materials and Basic Measurements

All reagents were of an analytical grade (Aldrich Chemical Company, Munich, Ger-
many) and were used as received. The progress of the chemical reactions and the purity
of products were monitored with TLC on silica gel plates (Fluka F60254, 20*10, 0.2 mm,
ready-to-use), using C6H6-CH3CN (3:1) as an eluent, and visualization under UV light.
Column chromatography on silica gel was carried out on Merck Kieselgel (230–240 mesh)
with dichloromethane as an eluent. Melting points were determined on an MP70 Melting
Point System apparatus and were not corrected.

1H-, COSY-, APT-, HMBC- and HSQC-NMR spectra were recorded on a Bruker Avance
500 MHz (Bruker Corporation, Billerica, MA, USA) in CDCl3 at an ambient temperature,
using solvent peaks as the internal reference. Chemical shift (δ) values are reported in
ppm. High-resolution accurate mass measurements were performed employing Orbitrap
Exploris 120 (Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA, USA) operating
at the Full Scan mode at a 120,000 resolution. The IR spectrum was recorded on a Thermo
Scientific Nicolet iS50 Spectrometer (ATR accessory; no. of scans: 64; resolution: 4; data
spacing: 0.482 cm−1).

3.2. Synthesis and Characterization

General Procedure for synthesis of derivatives 2–5:
In a 25 mL round bottom flask, a mixture of 0.3 g (0.8 mmol) of 3-bromo-9-nitrobenzan

throne, 0.5 g of the corresponding heterocycle and 5 mL of 1-methyl-2-pyrrolidone was
heated at 90–100 ◦C for 2–3 h. After cooling, a mixture of 5 mL of ethanol and 10 mL
of water was added; the precipitate was filtered off and dried. The resulting solid was
dissolved in dichloromethane and purified with column chromatography on silica gel
40/100 as an eluent using toluene.

3-Morpholino-9-nitro-7H-benzo[de]anthracen-7-one (2), Obtained as a red compound in a
58% yield with an m.p. of 229–230 ◦C. Rf = 0.63 (eluent C6H6-CH3CN, v/v 3:1). 1H NMR
(500 MHz, CDCl3) δ 9.19 (d, J = 2.4 Hz, 1H, (8)), 8.75 (d, J = 7.3 Hz, 1H, (6)), 8.55 (d, J = 8.3 Hz,
1H, (4)), 8.39 (d, J = 6.8 Hz, 1H, (10)), 8.38 (d, J = 6.5 Hz, 1H, (1)), 8.30 (d, J = 8.9 Hz, 1H,
(11)), 7.76 (t, J = 7.8 Hz, 1H, (5)), 7.21 (d, J = 8.1 Hz, 1H, (2)), 3.98 (t, J = 4.5 Hz, 4H, (2′, 6′)),
3.21 (t, J = 4.5 Hz, 4H, (3′, 5′)). 13C NMR (126 MHz, CDCl3) δ 182.17 (C=O), 154.28 (C),
146.61 (C), 141.30 (C), 131.65 (CH, (4)), 130.86 (CH, (6)), 130.46 (C), 129.76 (C), 128.57 (C),
127.88 (C), 127.46 (CH, (1)), 126.82 (CH, (10)), 126.29 (CH, (5), 123.94 (CH, (11)), 123.72 (CH,
(8)), 119.77 (C), 115.10 (CH, (2)), 67.08 (CH2, (2′, 6′)), 53.79 (CH2, (3′, 5′)). FTIR (neat): 655,
649, 709, 744, 756, 768, 794, 804, 833, 872, 903, 925, 945, 954, 979, 1024, 1040, 1052, 1067,
1081, 1092, 1126, 1157, 1179, 1212, 1249, 1278, 1303, 1319, 1361, 1385, 1407, 1439, 1460, 1477,
1506, 1569, 1582, 1595, 1646, 2885, 2991, 3054. ESI-FTMS: calculated for [C21H16N2O4 + H+]:
361.1183, found: 361.1181.
9-Nitro-3-(pyrrolidin-1-yl)-7H-benzo[de]anthracen-7-one (3), Obtained as a red compound in
a 63% yield with an m.p. of 257–258 ◦C. Rf = 0.73 (eluent C6H6-CH3CN, v/v 3:1). 1H
NMR (500 MHz, CDCl3) δ 9.21 (d, J = 2.6 Hz, 1H, (8)), 8.78 (d, J = 7.3 Hz, 1H, (6)), 8.65 (d,
J = 8.4 Hz, 1H, (4)), 8.33 (dd, J = 8.9, 2.6 Hz, 1H, (10)), 8.26 (d, J = 8.7 Hz, 1H, (1)), 8.20 (d,
J = 8.9 Hz, 1H, (11)), 7.63 (dd, J = 7.9 Hz, 1H, (5)), 6.83 (d, J = 8.7 Hz, 1H, (2)), 3.76–3.70
(m, 4H, (2′, 5′)), 2.09–2.03 (m, 4H, (3′, 4′)). 13C NMR (126 MHz, CDCl3) δ 133.24 (CH, (4)),
130.99 (CH, (6)), 128.92 (CH, (1)), 126.42 (CH, (10)), 124.07 (CH, (8)), 123.72 (CH, (5)), 123.11
(CH, (11)), 108.86 (CH, (2)), 53.48 (CH2, (2′, 5′)), 26.10 (CH2, (3′, 4′)). FTIR (neat): 661, 675,
696, 743, 761, 768, 796, 818, 841, 861, 875, 890, 921, 966, 1007, 1039, 1072, 1100, 1113, 1146,
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1169, 1213, 1242, 1266, 1290, 1312, 1344, 1405, 1444, 1497, 1524, 1556, 1567, 1582, 1603, 1644,
2847, 2959, 3083. ESI-FTMS: calculated for [C21H16N2O3 + H+]: 345.1234, found: 345.1232.
3-(4-Methylpiperazin-1-yl)-9-nitro-7H-benzo[de]anthracen-7-one (4), Obtained as a red com-
pound in a 59% yield with an m.p. of 271–273 ◦C. Rf = 0.02 (eluent C6H6-CH3CN, v/v 3:1).
1H NMR (500 MHz, CDCl3) δ 9.14 (d, J = 2.5 Hz, 1H, (8)), 8.72 (dd, J = 7.3, 1.4 Hz, 1H, (6)),
8.51 (dd, J = 8.3, 1.4 Hz, 1H, (4)), 8.34 (dd, J = 8.9, 2.6 Hz, 1H, (10)), 8.31 (d, J = 8.2 Hz, 1H,
(1)), 8.23 (d, J = 9.0 Hz, 1H, (11)), 7.73 (dd, J = 8.3, 7.3 Hz, 1H, (5)), 7.18 (d, J = 8.2 Hz, 1H,
(2)), 3.24 (t, J = 4.8 Hz, 4H, CH2), 2.71 (brs, 4H, CH2), 2.40 (s, 3H, CH3). 13C NMR (126 MHz,
CDCl3) δ 182.26 (C=O), 154.66, 146.53, 141.43, 131.88 (CH, (4)), 130.81 (CH, (6)), 130.39,
129.75, 128.52, 127.93, 127.56 (CH, (1)), 126.80 (CH, (10)), 126.10 (CH, (5)), 123.89 (CH, (11)),
123.77 (CH, (8)), 119.33, 115.10 (CH, (2)), 77.28, 77.03, 76.77, 55.26, 53.35, 46.19. FTIR (neat):
402, 479, 505, 596, 654, 699, 749, 777, 828, 889, 925, 956, 1010, 1073, 1141, 1169, 1242, 1287,
1328, 1372, 1453, 1503, 1575, 1651, 2692, 2786, 2833, 2939, 3090. ESI-FTMS: calculated for
[C22H19N3O3 + H+]: 374.1499, found: 374.1485.
9-Nitro-3-(piperidin-1-yl)-7H-benzo[de]anthracen-7-one (5), Obtained as a red compound in
a 60% yield with an m.p. of 251–252 ◦C. Rf = 0.92 (eluent C6H6-CH3CN, v/v 3:1). 1H
NMR (500 MHz, CDCl3) δ 9.13 (d, J = 2.5 Hz, 1H, (8)), 8.70 (d, J = 7.3 Hz, 1H, (6)), 8.48
(d, J = 8.3 Hz, 1H, (4)), 8.31 (dd, J = 8.9, 2.6 Hz, 1H, (10)), 8.27 (d, J = 8.2 Hz, 1H, (1)), 8.20
(d, J = 8.9 Hz, 1H, (11)), 7.71 (dd, J = 7.8 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H), 3.16 (s, 4H), 1.84
(p, J = 5.6 Hz, 4H), 1.67 (p, J = 5.8 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 182.30 (C=O),
156.09 (C), 146.32 (C), 141.57 (C), 132.21 (CH, (4)), 130.74 (CH, (6)), 130.23 (C), 129.76 (C),
128.44 (C), 128.05 (C), 127.70 (CH, (1)), 126.68 (CH, (10)), 125.85 (CH, (5)), 123.76 (CH, (11)),
123.76 (CH, (8)), 118.54 (C), 114.82 (CH, (2)), 54.93 (CH2, (2′, 6′)), 26.31 (CH2, (3′, 5′)), 24.39
(CH2, (4′)). FTIR (neat): 406, 452, 478, 530, 586, 619, 666, 697, 743, 774, 824, 888, 921, 952,
989, 1025, 1068, 1128, 1169, 1229, 1273, 1329, 1376, 1440, 1505, 1570, 1645, 2662, 2702, 2738,
2818, 2852, 2919, 3066, 3109, 3997. ESI-FTMS: calculated for [C22H18N2O3 + H+]: 359.1390,
found: 359.1381.
3-(Piperidin-1-yl)-7H-benzo[de]anthracen-7-one (6), Obtained from 3-bromobenzanthrone at
120–130 ◦C for 6–7 h as an orange compound in a 48% yield with an m.p. of 165–166 ◦C.
Rf = 0.94 (eluent C6H6-CH3CN, v/v 3:1). 1H NMR (500 MHz, CDCl3) δ 8.67 (d, J = 7.3 Hz,
1H, (8)), 8.46 (d, J = 8.3 Hz, 1H, (4)), 8.38 (d, J = 7.9 Hz, 1H, (6)), 8.21 (d, J = 8.1 Hz, 1H, (1)),
8.12 (d, J = 8.2 Hz, 1H, (11)), 7.65 (dd, J = 7.8 Hz, 1H, (5)), 7.58 (dd, J = 7.6 Hz, 1H, (10)), 7.38
(dd, J = 7.5 Hz, 1H, (9)), 7.06 (d, J = 8.0 Hz, 1H, (2)), 3.05 (brs, 4H, (2′, 6′)), 1.79 (p, J = 5.6 Hz,
4H, (3′, 5′)), 1.61 (brs, 2H, (4′)). 13C NMR (126 MHz, CDCl3) δ 184.15 (C=O), 153.93 (C),
136.60 (C), 133.16 (CH, (10)), 131.26 (CH, (4)), 130.24 (C), 129.76 (CH, (6)), 129.24 (C), 129.00
(C), 128.35 (C), 127.97 (CH, (8)), 127.16 (CH, (9)), 125.49 (CH, (5)), 125.14 (CH, (1)), 122.53
(CH, (11)), 120.97 (C), 114.88 (CH, (2)), 55.01 (CH2, (2′, 6′)), 26.46 (CH2, (3′, 5′)), 24.48 (CH2,
(4′)). FTIR (neat): 410, 450, 473, 507, 581, 625, 653, 703, 772, 842, 878, 939, 961, 1027, 1060,
1101, 1168, 1206, 1277, 1375, 1463, 1511, 1573, 1643, 2668, 2704, 2737, 2808, 2847, 2930, 3064.
ESI-FTMS: calculated for [C22H19NO + H+]: 314.1539, found: 314.1530.

3.3. Spectroscopic Measurements

The spectral properties of the investigated compound were measured in benzene
(C6H6), chloroform (CHCl3), ethyl acetate (EtOAc), acetone, ethanol (EtOH), dimethyl
sulfoxide (DMSO) and dimethylformamide (DMF) with concentrations of 10−5 M at an
ambient temperature in 10 mm quartz cuvettes. All solvents were of a p.a. or analytical
grade. The absorption spectra were obtained using the UV-visible spectrophotometer
SPECORD® 80 (Analytik Jena AG, Jena, Germany). The fluorescence emission spectra were
recorded on a FLSP920 (Edinburgh Instruments Ltd., Edinburgh, UK) spectrofluorometer
in the visible range 500–800 nm.

3.4. Single Crystal X-ray Diffraction Analysis

Single crystals of C21H16N2O3 (3) were investigated on a Rigaku, XtaLAB Synergy,
Dualflex, HyPix diffractometer. The crystal was kept at 140.0(1) K during data collection.
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Using Olex2 [40], the structure was solved with the ShelXT [41] structure solution program
using Intrinsic Phasing and refined with the olex2.refine [42] refinement package using
Levenberg–Marquardt minimization. Crystal data for 3 are as follows: orthorhombic, space
group Pbca (no. 61), a = 14.4599(2) Å, b = 7.1736(2) Å, c = 29.6287(6) Å, V = 3073.4(1) Å3,
Z = 8, T = 140.0(1) K, µ(Cu Kα) = 0.822 mm−1, Dcalc = 1.4884 g/cm3, 19,757 measured
reflections (2Θ ≤ 160◦) and 3342 unique (Rint = 0.0356, Rsigma = 0.0343) that were used in
all calculations. The final R1 was 0.0430 (I > 2σ(I)) and wR2 was 0.1216 (all data).

Diffraction data of compound 5 were collected at 150 K on a Rigaku, XtaLAB Synergy,
Dualflex, HyPix diffractometer using CuKα radiation (λ = 1.54184 Å). The crystal structure
was solved with direct methods [43] and refined using Gauss–Newton minimization
with the help of a software package [42]. Crystal data for 5 are as follows: triclinic;
a = 9.0593(1), b = 12.1264(2), c = 15.8953(2) Å, α = 87.867(1), β = 76.570(1), γ = 86.651(1)◦;
V = 1695.05(4) Å3, Z = 4, µ = 0.766 mm−1 and Dcalc = 1.404 g·cm−3; space group is P 1;
R[F2 > 2σ(F2)] = 0.0417. For further details, see crystallographic data for 5 deposited at
the Cambridge Crystallographic Data Centre as the Supplementary Publication Number
CCDC 2,233,481. Copies of the data can be obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK.

4. Conclusions

In the present research, a synthetic method for preparing new disubstituted hetery-
laminobenzanthrones was implemented from 9-nitro-3-bromobenzanthrone. The synthe-
sized derivatives were obtained with 59–63% yields as crystalline deeply colored substances
with an intense luminescence in organic solvents.

The obtained compounds absorb at 450–560 nm with large extinction coefficients and
emit at 570–660 nm. The results obtained indicate that emission of the aimed derivatives is
sensitive to the solvent polarity showing positive fluorosolvatochromism.

Taking into account the fact that the addition of an electron-withdrawing nitro group
to the benzanthrone molecule increases its first- and second-order hyperpolarizability, it
can be assumed that the developed fluorescent compounds have a potential prospect for
application in optoelectronics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28135171/s1, 1H, APT, HMBC, HSQC NMR, FTIR
spectra; FTMS (ESI) and RSA data; UV-Vis absorption and fluorescence spectra.
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