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Abstract: Insulin resistance, as a common pathological process of many metabolic diseases, including
diabetes and obesity, has attracted much attention due to its relevant influencing factors. To date,
studies have mainly focused on the shared mechanisms between mitochondrial stress and insulin
resistance, and they are now being pursued as a very attractive therapeutic target due to their
extensive involvement in many human clinical settings. In view of the complex pathogenesis of
diabetes, natural drugs have become new players in diabetes prevention and treatment because of
their wide targets and few side effects. In particular, plant phenolics have received attention because
of their close relationship with oxidative stress. In this review, we briefly review the mechanisms
by which mitochondrial stress leads to insulin resistance. Moreover, we list some cytokines and
genes that have recently been found to play roles in mitochondrial stress and insulin resistance.
Furthermore, we describe several natural drugs that are currently widely used and give a brief
overview of their therapeutic mechanisms. Finally, we suggest possible ideas for future research
related to the unique role that natural drugs play in the treatment of insulin resistance through the
above targets.
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1. Introduction

Diabetes mellitus is associated with metabolic disorders, with 25% of patients pro-
gressing to several microvascular and macrovascular complications, followed by blindness,
renal failure, myocardial infarction, or stroke within 20–40 years [1]. Diabetes mellitus
can also progress to diabetic ketoacidosis in 10% of cases, which is the leading cause of
diabetes mellitus-related death worldwide. As type 2 diabetes (T2DM) is a major burden on
healthcare systems, its mechanism has been widely studied for many years, and the most
important mechanism leading to T2DM has been shown to be insulin resistance [2]. The
term insulin resistance refers to the decreased efficiency of insulin in promoting glucose
uptake and utilization in tissues involved in glucose homeostasis for various reasons, for
which the body compensates by secreting too much insulin to produce hyperinsulinemia
to maintain the stability of blood glucose. Patients with insulin resistance often have other
abnormal states, such as impaired glucose tolerance (IGT) and impaired fasting glucose.
Glucose tolerance depends on the insulin secretion of the pancreas on the one hand and
on the target organ’s sensitivity to insulin, both of which determine whether insulin can
work at the right time. When the body develops impaired glucose tolerance, the risk
of developing diabetes is greatly increased [3]. Some clinical studies have shown that
muscle insulin resistance is more obvious than liver insulin resistance in IGT subjects, and
insulin secretion is significantly impaired during the whole period of diabetes [4]. Decades
of extensive research results and clinical trials have provided a detailed protocol for the
treatment of these diseases, but the specific mechanism remains unclear, greatly limiting
early intervention and the prevention and treatment of complications.
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A growing recognition of the integrality of metabolic physiology has led to research
into the mechanisms and related factors influencing insulin resistance. As early as 1936,
Himsworth clarified the concept of insulin resistance. Initially, it was assumed that reduced
insulin receptor binding was responsible for the typical obesity-related insulin resistance,
but this hypothesis was soon replaced by a model centered on insulin signal transduction
defects. The mechanism of insulin resistance is complex, and its pathological changes
can also lead to a series of diseases. Most of these diseases are caused by a combination
of insulin resistance in skeletal muscle, liver, and fat. Insulin resistance [5] significantly
impairs insulin-induced glycogen synthesis in the liver and glucose uptake in muscle and
fat. In addition, adipose insulin resistance can lead to excessive triglyceride levels in the
liver of patients with non-alcoholic fatty liver disease by promoting the reesterification of
circulating fatty acids.

Various research groups have developed new drugs based on mechanisms that have
been discovered in recent years. For instance, in 2005, Burkey et al. [6] realized that
peptidyl peptidase-IV can improve insulin resistance and help in the treatment of diabetes.
Regarding the crosstalk between insulin-responsive tissues, which is one of the complex
mechanisms associated with insulin resistance in vivo, Klymenko et al. [7] have carried
out relevant expositions and experiments over the years. Traditional thiazolidinediones
(TZDs) or metformin, sodium-dependent glucose transporter 2 (SGLT-2) inhibitors, and
other medications can have undesirable side effects [8–10], while natural drugs have shown
unique advantages due to their wide range of targets, few side effects and mild efficacy.
Many studies have shown that natural drugs such as cassia semen, rhubarb, aloe vera, and
senna can improve insulin resistance [11–13].

As early as 2016, Jeong, E. M.’s group [14] demonstrated the beneficial effects of ame-
liorating mitochondrial oxidative stress on insulin resistance and diastolic dysfunction by
treatment with the mitochondria-targeting antioxidant MitoTEMPO. Liver, muscle, and fat
are the three major organs associated with peripheral insulin resistance, among which mus-
cle and fat insulin resistance have been pointed out to be closely related to mitochondrial
dysfunction [15,16]. The liver is the starting point of insulin resistance and plays a central
regulatory role in glucose and lipid metabolism [17]. Moreover, the liver is rich in mito-
chondria, which, as the “energy factory” of cells, are the main site where reactive oxygen
species (ROS) are produced. When ROS are produced faster than they can be removed by
the body [18], mitochondrial stress and energy metabolism disorders follow, and they play
an important role in the early onset of a variety of metabolic diseases [19,20]. This makes it
possible to further explore the specific mechanisms of hepatic insulin resistance.

Overall, in our review, we will introduce the newly discovered cytokines and genes
identified by various research groups that are closely related to mitochondrial stress and
insulin resistance. This review will also provide a unique summary of some natural drugs
for the treatment of insulin resistance-related targets to pave the way for future research
directions (Figure 1).

Natural drugs are an important means of prevention and treatment of insulin resistance-
related diseases such as diabetes. Insulin resistance is closely related to many pathological
processes, such as abnormal insulin signaling pathway conduction, energy metabolism
regulation, and inflammation, and emodin, aloe-emodin, chrysol, and beranin, as the main
active components of many natural drugs, play a role by targeting one or more targets in
the above pathological processes.
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2. Mitochondrial Stress, a Key Inducer of Insulin Resistance

Mitochondria have attracted increasing attention due to their complex functions,
unique genome, and important role in energy metabolism [21]. In the physiological state,
mitochondria regulate cell apoptosis and maintain body homeostasis through their own
replication, translation, fusion and fission, mitophagy, and other important factors [22,23].
Under pathological conditions, mitochondrial dysfunction damages cellular homeostasis
and creates conditions for the occurrence of a variety of diseases [24,25]. The prevailing view
is that mitochondrial defects can be caused by mutations in the mitochondrial genome or by
chronic exposure to proinflammatory cytokines, including type I interferon [26]. Mutations
in the mitochondrial genome often lead to the appearance of defective proteins and mis-
targeted proteins in the mitochondrial proteome, thereby mediating the inactivation or
overactivation of the proteasome. In an abnormal state, the damaged homeostasis of
the body will first seek to correct itself. For example, mitophagy, which develops from
mitochondrial fission, is a way for the body to remove abnormal mitochondria [27]. When
mitochondrial dysfunction exceeds the compensatory limit of the body, mitochondrial
stress follows, which is manifested as a decrease in the mitochondrial inner membrane
electrochemical (IM) potential mainly through the activity of the respiratory chain and the
accumulation of ROS caused by dysfunction of the respiratory chain [28]. Mitochondrial
self-repair and programmed death are not two independent processes. In the study by Wu,
B. et al. [29], it was observed that energy deficiency caused by decreased mitochondrial
ATP synthesis stimulates AMP-activated protein kinase (AMPK), which partially restores
mitochondrial energy metabolism and biogenesis but also induces mitophagy. Overall, the
origin of mitochondrial defects is complex, and if uncorrected, these defects can progress
to the next stage of mitochondrial stress.

As mentioned earlier, the pathological process of insulin resistance in the liver is closely
related to mitochondrial stress. Mitochondrial stress and insulin resistance form a vicious
cycle that jointly promotes the development of the disease. In recent years, people have
gradually turned their attention toward the mechanism of mitochondrial stress, hoping to
treat metabolic diseases with this as a target. In Figure 2, we visualize some of the factors
that play an important role in mitochondrial stress and insulin resistance and point out
some possible bridging factors between the two.
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Figure 2. The relevant factors mentioned in this review that affect mitochondrial stress and insulin
resistance or connect the two. Some pathological factors lead to increased mitochondrial stress
in the body. This process can be induced or aggravated by factors such as cyclophilin D (CypD)
and advanced glycation end products (AGEs), but newly discovered factors such as peroxisome
proliferator-activated receptors (PPARs) and proliferator-activated receptor-γ coactivator-1 (PGC-1)
can improve this pathological process. Among miRNAs, miR-30c can inhibit mitochondrial stress and
insulin resistance by targeting PGC-1, miR-126 can protect the body from the effects of reactive oxygen
species (ROS) imbalance, and miR-155-5p can improve the adaptation of cells to insulin resistance.
Mitochondrial stress leads to an increase in ROS production, which aggravates insulin resistance in
many ways, such as the overexpression of heat shock protein 60 (HSP60). However, mitochondrial
stress does not only cause purely negative effects. Its activation of fibroblast growth factor 21 (FGF21)
can inhibit the progression of insulin resistance to a certain extent, and we hypothesize that its
activation of growth differentiation factor-15 (GDF-15) may do the same. Solid arrows indicate “direct
action” with no other processes in between; The dashed arrow represents “indirect action”, which
means that there are multiple action processes that have been omitted.

2.1. Major Factors Leading to Mitochondrial Stress

Many research groups worldwide have discussed the mechanisms involved in mi-
tochondrial stress. ROS, the mediators of mitochondrial stress, have long been thought
to play an important role in neurodegenerative diseases and cardiovascular diseases. As
early as 1994, Paolisso et al. [30] uncovered a relationship between mitochondrial stress and
metabolic diseases by measuring O2 levels in the bodies of non-insulin-dependent diabetic
patients. Over the next two decades, various research teams have proposed several related
factors that affect mitochondrial stress. Among them, the most representative and most
likely therapeutic targets include PPARs, CypD, and AGEs, which we will discuss in the
following sections.
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PPARs, activated receptor ligands of the nuclear hormone receptor family that are
classified into three subtypes and have been found to control many intracellular metabolic
processes, are ligand-inducible nuclear receptors. PPAR-β/δ inhibits mitochondrial stress
and reduces ROS production on the one hand and reduces inflammation and insulin resis-
tance induced by interleukin-6 on the other hand, thereby delaying the disease progression
of obesity, T2DM, NASH, and other diseases [31,32]. In 2015, Lee et al. [33] noted that
PPAR-β/δ of the PPAR family has remarkable effects on improving hepatic insulin sensi-
tivity and reducing insulin resistance and blood sugar levels. Knockout or low expression
of PPAR-γ significantly reduced macrophage activation, putting mice at increased risk of
obesity and insulin resistance. In summary, PPARs play a role in fatty acid decomposition,
cholesterol transport, and energy metabolism, suggesting that PPARs can be an important
treatment option for some diseases.

Some studies have mentioned that the key molecule CypD plays an important role in
regulating mitochondrial stress. The mitochondrial permeability transition pore (MPTP)
is a nonselective channel in the mitochondrial intima. Under physiological conditions,
periodic opening and closing are essential for maintaining cell homeostasis [34]. However,
an abnormal increase in or modification (acetylation) of the protein expression of the key
mitochondrial stress protein CypD leads to excessive irreversible opening of the MPTP [35],
causing mitochondrial swelling and dysfunction of the mitochondrial respiratory chain
(impaired activity of mitochondrial complex enzymes I–V) and leading to mitochondrial
stress and energy metabolism disorders. In 2019, Castillo et al. [36] showed that after CypD
caused MPTP opening, the presence of nonesterified fatty acids led to proton leakage from
the islets. Changes in CypD expression or acetylation are considered key factors in the
regulation of mitochondrial stress; protein acetylation modification, as one of the important
aspects of epigenetics, has been a hot research topic in recent years. Recently, we found that
in an insulin resistance mouse model induced by a high-fat diet, the luciferase activity and
protein expression of CypD in the liver were increased compared with those in the control
group [18]. Moreover, CypD gene knockout reduced liver mitochondrial stress, thereby
alleviating insulin resistance.

Two molecules that affect mitochondrial stress have thus far been described. Therefore,
let us look at the compounds involved. AGEs are stable covalent compounds generated
by the spontaneous reaction of macromolecular substances such as proteins, lipids, or
nucleic acids with glucose or other reduced monosaccharides without the involvement
of enzymes. Numerous research teams have found that AGEs accelerate aging in the
human body; that is, they are closely linked to the development of numerous chronic
degenerative diseases [37]. The AGE-RAGE axis activates NADPH oxidases, which are
the major endogenous sources of ROS, thus aggravating the occurrence of mitochondrial
stress [37]. The above process mainly occurs through the mitochondrial respiratory chain
and occasionally occurs through stress-related signaling pathways, such as Jun N-terminal
kinase and p38. NF-κB activated by AGEs also increases the expression of certain cytokines,
such as those that promote inflammation, and the increase in inflammation in the body
leads to the exacerbation of disease [17]. AGEs have long been used as biomarkers or
predictors of diabetes complications; however, in 2020, Shen et al. [38] showed that the
promotion of ROS by AGEs implies that AGEs have a role in the treatment of diabetes,
NASH, and other diseases.

In addition to these three factors, other molecules and compounds that cause mito-
chondria to produce too many ROS are being discovered. Cytochrome P450 family 2 subfamily
E member 1 (CYP2E1), located on chromosome 10, is mainly involved in the metabolism of
low-molecular-weight substances. High insulin levels in the body and other pathological
changes, such as steatosis, can promote the body’s ability to increase the production of
ROS [39]. The oxidizing capacity of iron also contributes to the production of ROS [40]. In
addition, some recent studies have shown that the activation of NADPH oxidase 4 (NOX4)
promotes ROS production while prolonging the endoplasmic reticulum stress mediated
by OS, which leads to liver cell apoptosis and accelerates the progression of NASH and
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other diseases [41]. In addition, many experiments have shown that liver-specific PGC-1
deficiency expands the influence of mitochondrial stress and accelerates the development of
NASH in mice, suggesting that PGC-1 inhibits oxidative stress and inflammation, leading
to improvement in disease [42]. In terms of compounds, in 2016, Chakraborti et al. [40]
showed that a diet rich in fructose greatly speeds up the production of ROS.

These factors usually regulate insulin resistance by affecting mitochondrial stress,
but some factors not only mediate or inhibit mitochondrial stress but also aggravate or
improve insulin resistance themselves. For example, many scholars have demonstrated
that microRNAs can reduce insulin resistance either directly [43] or indirectly (by inhibit-
ing mitochondrial stress and so on) [44]. MicroRNAs, or miRNAs for short, are a class
of endogenous small noncoding RNAs with regulatory functions found in eukaryotes.
Several articles have described the mechanisms of these small RNAs in various types of
diabetes and other metabolic diseases [45,46]. miR-155-5p protects beta cells from insulin
resistance by promoting insulin secretion by the body’s beta cells in the presence of glu-
cose [47]. Moreover, miR-126 and miR-30c are two important benign factors in patients with
diabetic cardiomyopathy. The former indirectly activates sirtuin-1 (SIRT1) and superoxide
dismutase (SOD) to induce resistance to oxidative stress, while the latter targets PGC-1,
not only inducing PPAR-α but also playing a positive role in key mitochondrial regulation.
Together, the two can reduce excessive ROS and myocardial lipid accumulation in patients
with diabetic cardiomyopathy, thereby preventing pathological processes such as cardiac
insufficiency [48]. miRNAs have been applied in various fields because of their newly dis-
covered wide use. At present, most in vitro experiments on reducing the effects of insulin
resistance and treating diabetes with miRNAs have been successful, but the therapeutic
effects of miRNAs in vivo remain to be further studied.

2.2. How Does Mitochondrial Stress Affect Insulin Resistance?

Based on some clinical studies, a variety of drugs have also been observed to act
by targeting mitochondrial dysfunction. Empagliflozin (EMPA) [49] and pyridostigmine
(PYR) [50] have good preventive effects on diabetic heart damage because they can regulate
the shape and function of mitochondrial cristae, thereby improving mitochondrial function
in heart tissue, and can regulate mitochondrial fusion and fission. Wang, X. et al. [51]
observed that zinc finger, BED-type containing 6 (ZBED6) may target the abnormal accu-
mulation of mitochondrial ROS, thereby improving insulin resistance in the body. The
therapeutic effects of some natural medicines on diabetes are also dependent on the regu-
lation of mitochondrial function, including astaxanthin (AX) treatment, which stimulates
mitochondrial biogenesis by activating the AMPK pathway in skeletal muscle and signifi-
cantly improves insulin resistance [52]. Many studies have confirmed that the relationship
between glucose tolerance, insulin resistance, and mitochondrial dysfunction may not
be direct. Factors that play a role in this process would be effective targets for drugs to
prevent and treat diseases related to insulin resistance, which is why investigating how
mitochondrial stress leads to insulin resistance has been the focus of many research groups.

2.2.1. HSP60

Heat shock protein 60 (HSP60) is a chaperone protein that is overexpressed when
mitochondrial stress occurs. This state not only impairs insulin signaling and insulin sensi-
tivity in mouse liver cells but also promotes endoplasmic reticulum stress, which induces
liver adipogenesis and insulin resistance. In 2020, Xiao et al. [53] presented experimental
evidence for this claim. In their experiment, HSP60 knockout inhibited the mammalian
target of rapamycin complex 1—sterol-regulatory-element-binding protein 1 (mTORC1-
SREBP1) signaling and hepatic adipogenesis, suggesting that HSP60 may be involved in
endoplasmic reticulum stress-induced mTORC1-SREBP1 signal transduction related to
adipogenesis and steatosis. Therefore, the researchers concluded that mitochondrial stress
and endoplasmic reticulum stress coregulate the insulin resistance process in the body.
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However, HSP60 acts differently in different parts of the body. On the one hand, as
described previously, miRNAs play an important role in influencing insulin resistance. On
the other hand, a high serum level of HSP60 is often accompanied by the downregulation
of HSP60 in the myocardium, which means that the inhibition of HSP60 in the myocardium
will lead to the intensification of insulin resistance [54]. In 2020, Wen et al. [38] found
that miR-802-5p causes cardiac insulin resistance by reducing HSP60 expression. HSP60 is
also an important therapeutic target for insulin resistance in the heart, as researchers have
recently discovered.

2.2.2. FGF21

Does mitochondrial stress under pathological conditions necessarily result in insulin
resistance? In 2013, Kim argued against this. Autophagy-related 7 (ATG7) is a gene that
is critical for autophagosome activity; in the ATG7 knockout mouse, Kim et al. [55] were
surprised to observe that the mice were not fat but lean and were unaffected by obesity and
insulin resistance induced by a high-fat diet. Inhibition of autophagy leads to mitochon-
drial stress; however, this mitochondrial stress improves insulin resistance. They further
explored the bridging factor between the two. In a series of experiments, they identified a
factor called fibroblast growth factor 21 (FGF21), which once served as a marker for a vari-
ety of mitochondrial diseases caused by mutations in mitochondrial DNA (mtDNA) [56,57].
Researchers have found that inhibiting the expression of mitochondrial oxidative phospho-
rylation genes results in damage to the mitochondrial respiratory chain and a reduction in
ATP, thereby activating the integrated stress response (ISR) and mediating the production
of FGF21 [58,59]. Similar to the HSP60 knockout results, FGF21 also improves hepatic
insulin sensitivity by inhibiting mTORC1. Moreover, FGF21 activation increases fatty acid
oxidation, lipolysis, and the browning of white adipose tissue in mice, which protects mice
from obesity and insulin resistance. The researchers also observed that metformin adminis-
tration increases serum levels of FGF21, suggesting that FGF21 is induced by metformin,
providing indirect evidence of FGF21’s therapeutic value [60].

Currently, FGF21 and its analogs have been used in laboratory animals and human
subjects to significantly improve lipid distribution in the body and to reduce the body
weight of subjects, which is why it has become a promising new drug for the treatment of
obesity, diabetes, and metabolic syndrome. Unfortunately, in addition to the mitochondrial
stress mentioned above, FGF21 can also be induced by a variety of stresses, such as obesity,
exercise or cold exposure, and the PPAR family. The connection between these obvious
nonmitochondrial inducers of FGF21 and mitochondrial stress is still unclear and needs to
be uncovered.

2.2.3. GDF-15

Stress response protein growth differentiation factor-15 (GDF-15) is secreted during
mitochondrial stress or functional damage [61–63], and high levels of GDF-15 are closely
associated with a variety of pathological diseases, including inflammation, cancer, and
various mitochondrial diseases [64], which is why GDF-15 has been extensively explored
as a biomarker of mitochondrial disease and is thought to be closely related to the mi-
tochondrial function of patients [65–67]. The increase in GDF-15 in the body has been
proven to be induced by dysfunction of the mitochondrial respiratory chain rather than
other metabolic dysfunctions [68]. Furthermore, Straub [69] suggested a potential connec-
tion between mitochondrial respiratory dysfunction, the NADH/NAD ratio, impaired
ATP levels, and GDF-15. Steffen, J. et al. [70] showed that knockout of drp leading to ER
stress and mitochondrial abnormalities can activate the AFT4-controlled integrated stress
response (ISR) and increase the hepatic expression of GDF-15, which subsequently aggra-
vates inflammation, fibrosis, and necrosis. This result implies that GDF-15 regulates its
own expression in response to impaired mitochondrial function through the ISR pathway,
just as the ISR pathway also induces GDF-15 hyperexpression during metformin treatment.
Treatment with GDF-15 and metformin induces a process that is also related to multiple
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pathways. Aguilar-Recarte et al. [71] showed that metformin can maintain full AMPK
activation by upregulating GDF-15 to participate in the therapeutic process of this drug.
The study by Zhang, S. Y. [72] also observed that metformin regulates energy homeostasis
through the renal GDF-15-dependent AP axis. In conclusion, the above results indicate that
mitochondrial stress caused by mitochondrial dysfunction induces an increase in GDF-15.
GDF-15 can not only be used as a marker of some metabolic diseases but can also play an
important role in the diagnosis and treatment of diseases such as diabetes mellitus.

The relationship between GDF-15 and insulin resistance has also been explored by
some research groups. Several studies in recent years have found that GDF-15 can be used
as a therapeutic target for obesity and prediabetic glucose tolerance disorders. Studies
have shown that GDF-15 is associated with obesity and insulin resistance, abnormal blood
glucose levels, and impaired blood glucose homeostasis in the body. In 2017, Chung
et al. [73] used recombinant GDF-15 in ob/ob mice and found that the mice lost weight
and exhibited improved insulin sensitivity. In 2020, Choi [62] found that GDF-15 and
FGF21 secretion was significantly upregulated in adipocyte-specific Crif1 (also known as
Gadd45gip1) knockout mice on a high-fat diet, which was able to inhibit weight gain and
improve glucose tolerance. Recently, the relationship and the specific mechanism between
GDF-15 and insulin resistance have received increasing attention.

GDF-15 shows complex effects in different stages of disease; however, its specific
mechanism in the early onset of metabolic diseases, especially hepatic insulin resistance, is
still unclear. As we mentioned earlier, CypD plays an important role in the regulation of
mitochondrial stress, and there is a large body of evidence to suggest this; at the same time,
our group’s previous study suggested that GDF-15 is downstream of CypD. Therefore,
in this review, we propose a potential mechanism that describes the possible relationship
between CypD and GDF-15. Increased expression or activity of CypD causes mitochondrial
stress and energy metabolism disorders, which may affect insulin resistance by regulating
the stress response protein GDF-15. The specific mechanism remains to be further studied
(Figure 3).
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Figure 3. The current main applications of GDF-15 and its role in mitochondrial stress and insulin
resistance. GDF-15 is an important marker in the diagnosis of many diseases. In addition, it can be
used to treat the abnormal pathological state of mitochondrial stress, which is elevated to varying
degrees in a variety of diseases, and its expression can effectively improve insulin resistance. For
example, by activating ATF4, metformin effectively alleviates insulin resistance by inducing GDF-15.
Notably, CypD may aggravate the progression of diseases related to insulin resistance by inhibiting
the expression of GDF-15.
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3. Complex Mechanisms of Natural Drugs in the Treatment of Diseases Related to
Insulin Resistance

Plant-derived secondary metabolites [74] are organic compounds produced by plants
and are commonly known as a class of natural drugs. Plant-derived secondary metabolites
are more readily available and safer than conventional chemical drugs [74] and have been
shown to have clinically meaningful and mild efficacy in cancer treatment, inflamma-
tion reduction, and diabetes treatment. To date, researchers have identified more than
400,000 secondary metabolites in nature [75], including allicin, quercetin, eugenol, ly-
corine, tea polyphenols, and berberine, and more new plant-derived active compounds
are being discovered. Among them, these active compounds can be widely classified into
terpenoids and their derivatives, alkaloids, steroids, amino acids, polysaccharide antimicro-
bial peptides, lignans, saponins, and new structures [75]. Recently, an increasing number
of research teams have begun to pay attention to the effect of secondary metabolites on
insulin resistance and related mechanisms in the pathogenesis of diabetes.

Many studies have confirmed the good hypoglycemic ability of a variety of plant
derivatives. Moreover, numerous clinical cases have verified the therapeutic effect of
resveratrol on diabetic patients [76]. Fasting blood glucose and serum insulin levels were
significantly reduced during the treatment, and insulin sensitivity and glucose and lipid
metabolism of the body were also restored [77]. Similar to the way that resveratrol exerts its
therapeutic effect, curcumin, as a new drug for obesity and diabetes, can also alleviate the
progression of insulin resistance through AMPK, nuclear factor erythroid 2-related factor
2 (Nrf2) and PPAR-related molecular pathways [78,79], which may involve endoplasmic
reticulum stress and other oxidative stress abnormalities [80]. This process is closely
related to the regulation of the intestinal flora [81]. However, anthocyanins (anthocyanin
3-glucoside) and proanthocyanidins (PCs), which are widely present in black bean seeds,
have been shown in animal experiments to activate AMPK- and glucose transporter type
4 (GLUT4)-related pathways, alleviate hyperglycemia, and restore insulin sensitivity in
mice [82]. In addition to the AMPK-related pathway, targeting other important factors in
the regulation of insulin resistance can achieve similar therapeutic effects. The abnormal
activation of IRS often leads to impairment in the insulin signaling pathway and then
mediates the occurrence of insulin resistance through inflammatory factors such as tumor
necrosis factor (TNF)-α [83]. Carnosic acid and rosmarinic acid can reduce the occurrence of
insulin resistance by regulating the AMPK pathway and IRS activation [84–86]. In addition,
Carica papaya extracts are equally rich in plant polyphenols. It has been confirmed that
they reduce blood glucose and lipid levels, and the mechanism may be related to the
improvement in endothelial NO synthase (eNOS), which is related to the accumulation
of ROS and energy imbalance [87]. In summary, plant polyphenols are beneficial in the
treatment of insulin resistance, and the mechanism is often closely related to abnormal
insulin signaling mediated by oxidative stress.

Anthraquinone natural products, including emodin, aloe-emodin, rhein, chrysophanol,
aurantio-obtusin, and alaternin, are the main active ingredients of many natural drugs.
Existing studies have found that they can alleviate insulin resistance from many aspects,
such as regulating the insulin signaling pathway, regulating energy homeostasis, and im-
proving inflammation. Emodin has been shown to increase the phosphorylation of AMPK
protein and acetyl-CoA carboxylase (ACC) protein in the liver, upregulate the expression of
carnitine palmitoyl transferase 1 (CPT1), and downregulate the expression of SREBP-1c and
fatty acid synthase (FAS), thereby improving energy metabolism disorders, reducing fat
accumulation, and promoting cellular glucose absorption. Emodin can reduce the levels of
fasting blood glucose and fasting insulin in mice and can improve insulin resistance [88,89].
Moreover, emodin can promote M2 polarization of macrophages by increasing triggering
receptor expressed on myeloid cells 2 (TREM2) expression, significantly reduce local and
systemic inflammatory responses in obese mice, inhibit weight gain and lipid accumulation,
and reduce fasting blood glucose and fasting insulin levels [90]. Aloe-emodin has also
been found to be effective in reducing the production of the inflammatory factors TNF-α
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and interleukin (IL)-6 and in suppressing the NF-κB signaling pathway, thereby restoring
insulin signaling, lowering fasting blood glucose, regulating islet β-cell function, and in-
hibiting fat accumulation to reduce obesity and insulin resistance. Aloe-emodin has been
shown to alleviate inflammation [13,91–93]. Rhein can also improve insulin resistance by
reducing adipose tissue inflammation and liver triglyceride accumulation in mice [94]. In
addition, rhein promotes macrophage polarization toward the M2 phenotype [95], which
can reduce inflammation and thus alleviate insulin resistance [96]. Cassia seed, a natural
drug rich in anthraquinone products such as aurantio-obtusin and alaternin, can reduce
the fasting blood glucose and fasting insulin contents in obese mice and restore insulin
sensitivity by increasing skeletal muscle glucose uptake in obese mice [97]. The targets
of aurantio-obtusin are more diverse. On the one hand, it phosphorylates AMPK, an
important pathway for energy homeostasis. On the other hand, the expression of FAS
is inhibited to reduce fat synthesis and thus improve insulin resistance [98]. In addition,
aurantio-obtusin can activate the phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT)
signaling pathway in liver and adipose tissue, reduce fasting blood glucose, and improve
glucose tolerance [99]. Alaternin also plays a role in regulating insulin signaling. Alaternin
regulates downstream signals of insulin and restores insulin signaling by competitive
inhibition of protein tyrosine phosphatase 1B (PTP1B) [100].

Among natural drugs, other natural products besides plant polyphenols and an-
thraquinones have shown promising results in the treatment of insulin resistance. Allicin,
an organic sulfur compound extracted from the bulb of Allium garlic, has been shown to
be effective in the treatment of various diseases due to its specific actions, including an-
tibacterial, antioxidative stress, regulation of cardiovascular and cerebrovascular diseases,
reduction in blood lipids, and regulation of diabetes. One study showed that allicin had
a hypoglycemic effect in type 2 diabetes patients and animal models in which it could
activate pancreatic insulin secretion and reduce total cholesterol (TC), triglyceride (TG), and
fasting blood glucose (FBG) levels [101]. Zhai et al. [102] showed that the hypoglycemic
activity of allicin in diabetic rats was similar to that of glibenclamide and insulin. In ad-
dition, similar to the way in which allicin acts, allyl propyl disulfide, cysteine sulfoxide,
and S-allyl cysteine sulfoxide prevent liver-induced insulin activation, increase the insulin
production capacity of islet β-cells, separate insulin from its bound form, and increase the
insulin sensitivity of cells. The subsequent effect is to reduce blood glucose levels [103,104].
Therefore, the use of bioactive compounds derived from natural sources has become a new
direction for the treatment of diabetes due to the moderate and obvious therapeutic effects
of these metabolites, which is very consistent with the idea of treating chronic diseases.

The side effects caused by drugs in the process of disease prevention have always been
the focus of academic attention, which is why early intervention for diabetes is basically
based on exercise for prevention and dietary intervention. Based on the low side effects and
high safety characteristics of natural medicines, we speculate that natural medicines play
a key role in disease prevention and are expected to be used as an adjunct to prevention
methods such as exercise [105,106]. In addition, the treatment of patients with gestational
diabetes mellitus requires that close attention be given to the effects of drugs on the mother
and fetus, as natural drugs may also have unexpected effects. We further hypothesized that
oral natural medicines might improve glucose metabolism through the regulation of the
gut microbiota, and a recent study preliminarily confirmed our hypothesis [107]. We also
found that Leyva-Gomez, G. et al. [108] proposed the use of natural medicine-rich films to
promote wound healing, which may be a new application for the prevention and treatment
of diabetic foot. Although the extraction of some natural products is limited by technology
and cost [109], we believe that natural products will become new stars in various fields.

4. Conclusions and Future Perspectives

In this article, we introduced the mechanisms of mitochondrial stress and insulin
resistance and the high-profile inducing or inhibiting factors, and importantly, we proposed
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that CypD may lead to abnormal mitochondrial stress and affect insulin resistance through
GDF-15, which represents a direction for future research (Table 1).

Table 1. A brief summary of the relevant mechanisms mentioned in the review.

Factor Mechanism

AGEs Promotes mitochondrial stress by activating NADPH

CypD Promotes mitochondrial stress when the MPTP is open and NEFAs are present

PPARs Inhibit mitochondrial stress by inhibiting IL-6

miR-126 Inhibits mitochondrial stress by activating SIRT1 and SOD

miR-30c Inhibits mitochondrial stress by activating PGC-1 and PPAR-α

HSP60
Mitochondrial stress causes overexpression of HSP60; HSP60 promotes
mTORC1-SREBP1 signal transduction and promotes insulin resistance together
with endoplasmic reticulum stress

FGF21
Metformin induces mitochondrial stress through the Perk-eIF2α-ATF4 axis;
mitochondrial stress promotes FGF21 expression by activating the
comprehensive stress response (ISR); FGF21 improves insulin resistance

GDF-15 GDF-15 improves insulin resistance; CYPD may cause insulin resistance by
inhibiting GDF-15

Currently, an increasing number of drugs have been applied to the treatment of dis-
eases related to glucose and lipid metabolism disorders. Throughout years of exploring the
efficacy and safety of various diabetes drugs, natural drugs have shown unique advantages.
We thus put forward a good prospect: In the future, natural drugs will become the new
favored approach in the process of diabetes prevention and treatment due to their high
safety profile and broad action targets. Plant polyphenols, in particular, are closely related
to oxidative stress and alleviate the progression of diabetes caused by insulin resistance
through the regulation of the insulin signaling pathway. We look forward to more research
teams discovering additional natural drugs, and we hope to further explore the specific
mechanisms by which natural drugs work, which represents a research direction with
great potential.
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