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Abstract: Ribonucleic acid (RNA) molecules play vital roles in numerous important biological
functions such as catalysis and gene regulation. The functions of RNAs are strongly coupled to
their structures or proper structure changes, and RNA structure prediction has been paid much
attention in the last two decades. Some computational models have been developed to predict RNA
three-dimensional (3D) structures in silico, and these models are generally composed of predicting
RNA 3D structure ensemble, evaluating near-native RNAs from the structure ensemble, and refining
the identified RNAs. In this review, we will make a comprehensive overview of the recent advances
in RNA 3D structure modeling, including structure ensemble prediction, evaluation, and refinement.
Finally, we will emphasize some insights and perspectives in modeling RNA 3D structures.

Keywords: RNA 3D structure; ensemble prediction; structure evaluation; structure refinement

1. Introduction

RNAs are a kind of fundamental biological macromolecule, in addition to proteins
and DNAs. Numerous studies have demonstrated that RNA has many essential biological
functions, such as regulating gene expressions [1], protein biosynthesis regulations [2],
and catalytic biological reactions [3]. Furthermore, the multi-functional nature of RNAs
significantly contributes to the design of related nanoscale biomedical and technological
applications [4]. Generally, RNAs need to fold into their specific 3D structures to perform
their specific functions [5–7]. For instance, ribozymes can only catalyze reaction functions
when they fold into their native 3D structures [6], while riboswitches regulate gene ex-
pressions through dynamic changes in the 3D structures upon metabolite binding [5,7].
Therefore, the comprehensive knowledge of RNA 3D structures is of great significance for
understanding and utilizing RNA biological functions.

Until now, experimental methods such as X-ray crystallography, nuclear magnetic
resonance spectroscopy, and cryo-electron microscopy have been predominantly used to
derive RNA 3D structures [8]. However, these methods are generally time-consuming and
laborious, especially for RNAs with long sequences or complex structures [9]. Thus, the
RNA 3D structures deposited in Protein Data Bank (PDB) [8] are still very limited relative to
the vast number of RNA sequences stored in the central RNA [10] and the large number of
3D structures of proteins [8–11]. For example, there are only 1732 isolated RNA structures
in the PDB database, while there are 34 million RNA sequences in the RNA central and
188,726 3D structures of proteins in the PDB database (until 23 May 2023). Hence, it is
essentially necessary to develop computational models for modeling RNA 3D structures at
a high resolution.

In recent decades, various computational models have been developed to predict
RNA 3D structures [11–15], and the models are generally composed of three procedures:
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predicting 3D structure ensembles, identifying near-native structures that are close to the ex-
perimentally determined native structures through a reliable scoring function/statistical po-
tential, and refining identified near-native structures [11,15]. Here, we will go through them.

First, a computational model generates an ensemble of RNA 3D structure candidates
based on input information, such as RNA sequences solely or RNA sequences and sec-
ondary structures for some models [15]. For improving the prediction accuracy, some mod-
els can also involve additional constraint information, such as experimental information
and the distance between specific atom pairs. Through physics-based force field and confor-
mation sampling, or knowledge-based fragment assembly, or deep-learning-based informa-
tion, a computational model can generate a structure candidate ensemble with near-native
structures. Moreover, generally, these prediction models can generate a structure ensemble
for different types of RNA structures based on sequence information or secondary structure
information, such as hairpins, hairpins/duplexes with bulges/internal loops, pseudo-
knots, kissing complexes, and multi-way junctions. However, it is still difficult for existing
models to predict the 3D structures of RNA G-quadruplexes from their sequences [11,15],
while some models can be used to study RNA G-quadruplexes [16], i.e., HiRE-RNA can
almost stabilize the native 3D structure of an RNA G-quadruplexes for 3 µs and a convo-
lutional neural network-based model can identify potential RNA G-quadruplexes from
transcriptomics data [17,18]. Moreover, some computational models display a competitive
performance in RNA-Puzzles [19–23] and CASP-RNA [24]. Here, RNA-Puzzles is a CASP-
like competition for RNA 3D structure prediction [19–23], and CASP-RNA is a prediction
competition for RNA 3D structures newly present in CASP15 [24]. Depending on the meth-
ods for generating the 3D structure ensemble, the existing computational models can be
roughly divided into physics-based [25–43], knowledge-based fragment assembly [44–56],
and deep-learning-based ones [57–60]; see Figure 1.
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Figure 1. The general workflow for modeling RNA 3D structures: structure generation, structure
evaluation, and structure refinement. There are three types of predictive models for RNA 3D
structures, namely physics-based, knowledge-based, and deep-learning-based models.

Second, a structure evaluation is required to identify the top near-native structures
from the precedingly predicted 3D structure candidate ensemble [61,62], and a high-quality
scoring function/energy function for structure evaluation should be able to identify the
candidate structures closest to the native ones in the predicted ensemble [61,62]. For a
blind prediction of an RNA 3D structure, a reliable scoring function/statistical potential



Molecules 2023, 28, 5532 3 of 25

is definitely required as the native structure of the target RNA is not available. These
scoring functions/energy functions are generally developed based on the native structures
in the PDB database, which would contain the major structure features of the native
structures and would provide a reliable structure evaluation to identify the top structures
in the predicted structure ensemble, even if the native structures are not available, and
the existing scoring functions/energy functions for RNA 3D structure evaluation typically
include physics-based energy functions [26], knowledge-based statistical potentials [63–69],
deep-learning-based scoring functions [70,71], and clustering-involved algorithms [36,37].

Finally, structure refinement may need to be performed for the identified top struc-
tures so as to obtain high-quality RNA 3D structures as the structures may contain some
unreasonable defects, such as unnatural bonds and serious conflicts between atoms [72–74].
In addition to modifying the local defects in RNA structures, a good refinement approach
can also improve the global 3D RNA structures [73,75], making the structures to be overall
closer to their native ones.

In this review, we provide a comprehensive overview of the recent advances in mod-
eling RNA 3D structures, including structure ensemble prediction, structure evaluation,
and structure refinement. The main text is organized as follows. First, we give a de-
tailed overview of the existing RNA 3D structure prediction models, including physics-
based, knowledge-based, and deep-learning-based models. Second, we describe the recent
progress in RNA 3D structure evaluation. Third, we introduce recently developed methods
for RNA 3D structure refinement. Finally, we discuss the challenges in modeling RNA 3D
structures and offer some insights in modeling RNA 3D structures.

2. RNA 3D Structure Prediction Models
2.1. Physics-Based Models

The physics-based models are based on the fundamental physics principle that the
native structures are those states with the lowest energies for RNAs [15]. In principle,
all-atom molecular dynamics simulations such as Amber [76–78] and Charmm [79,80] can
be used to predict RNA 3D structures, while due to the huge computation from the all-atom
representation of RNAs, solvents, and ions, such all-atom-based simulation methods are
only limited to very small RNAs with very simple topological structures such as duplex and
hairpin [81]. To reduce the atom-representation-concerned complexity, some physics-based
coarse-grained (CG) models with varying CG levels have been developed to predict RNA
3D structures in a reasonable time [25–42]. The typical CG representations are illustrated in
Figure 2, and the existing physics-based CG models are summarized in Table 1, as well as
the corresponding references and the available websites [25–42]. Generally, a physics-based
CG model guides RNA structure folding through a specific force field (energy function) and
a conformation sampling algorithm such as Monte Carlo (MC) [82] or molecular dynamics
(MD) sampling [83,84]. A CG force field in these models is generally composed of bonded
and non-bonded energy terms [30–35].

E = Ebond + Eangle + Edihedral angle + Eexclusion volume + Ebase paring + Ebase stacking, (1)

where the bonded energy term includes bond length, bond angle, and dihedral/torsion
angle energies, and the non-bonded energy term usually includes exclusion volume, base
pairing, and base stacking energies. In the following, we mainly introduce physics-based
predictive models with different CG representations for RNA 3D structures rather than the
all-atom molecular dynamic simulations.
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Table 1. The existing physics-based CG models for RNA 3D structure prediction.

Models Refs. CG Beads Sampling a Final
Structures

From
Sequence e Availability

YUP [25,26] 1-bead MC Lowest-energy
structure b No http://rumour.biology.

gatech.edu/YammpWeb/

NAST [27] 1-bead MD
Centroid

structures of
clusters c

No https:
//simtk.org/home/nast

iFoldRNA [28,29] 3-bead DMD
Centroid

structures of
clusters c

Yes https://dokhlab.med.psu.
edu/ifoldrna

CG model with
salt effect [30–35] 3-bead REMC Lowest-energy

structure d Yes No

SimRNA [36,37] 5-bead REMC
Centroid

structures of
clusters c

Yes https://genesilico.pl/
SimRNAweb

IsRNA/IsRNA1 [38,39] 4/5-bead REMD
Centroid

structures of
clusters c

Yes http://rna.physics.missouri.
edu/IsRNA/index.html

IsRNA2 [40] 5-bead REMD
Centroid

structures of
clusters c

Yes http://rna.physics.missouri.
edu/IsRNA/index.html

RNAJP [41] 5-bead MD Lowest-energy
structure b No http://rna.physics.missouri.

edu/RNAJP/index.html

HiRE-RNA [42] 6/7-bead REMD
Centroid

structures of
clusters c

Yes No

Ernwin [43] helix-
centered MCMC Lowest-energy

structure b No http://github.com/
pkerpedjiev/ernwin

a MC, MD, DMD, REMC, REMD, and MCMC represent Monte Carlo, molecular dynamics, discrete molecular
dynamics, replica exchange Monte Carlo, replica exchange molecular dynamics, and Markov chain Monte
Carlo simulation, respectively. b The lowest-energy structures are determined by the energy functions from
the corresponding prediction models. c The centroid structures of clusters are obtained through clustering the
low-energy structures by the energy functions from the corresponding prediction models. d The lowest-energy
structures are determined by a knowledge-based statistical potential of cgRNASP [67]. e Can the model make
predictions solely from sequence?
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2.1.1. One-Bead Nucleotide Model

YUP. In the YUP model, a bead located at the P atom is used to represent a nucleotide.
Through the one-bead energy function and MC sampling algorithm, YUP can be used to
simulate RNA structure folding, and the structure with the lowest energy in the conforma-
tional ensemble is chosen as the predicted final structure [25,26]. Although the model may
require additional experimental information such as a secondary structure to predict RNA
3D structures, YUP has been developed into an adaptive package for the automatic CG
modeling of RNA structures. Furthermore, the model can also predict protein and DNA
structures with additional constraint information. In addition, the YUP model can be found
at http://rumour.biology.gatech.edu/YammpWeb/.

NAST. Similar to YUP [26], NAST is also a one-bead CG model, and a bead located at
the C3′ atom is used to represent a whole nucleotide [27]. The model utilizes RNA-specific
knowledge-based potential energy and MD algorithms to predict the RNA 3D structures,
and the predicted structures can be obtained through the clustering method for 1500 low-
energy conformations. By involving the secondary and tertiary contact information, NAST
can predict the RNA 3D structures. Moreover, NAST predicts the 3D structures of the yeast
phenylalanine tRNA (76 nt) and the P4-P6 domain of the Tetrahymena thermophile group I
intron (158 nt) with ~8 Å and ~16 Å RMSDs from the native structures, respectively [26].
In addition, NAST can combine small-angle X-ray scattering data [85] and experimental
solvent accessibility data as filters to rank the clusters of similar structures. The package of
NAST can be downloaded at https://simtk.org/home/nast.

2.1.2. Three-Bead Nucleotide Model

iFoldRNA/iFoldRNA2. In the iFoldRNA model, three beads are used to represent
each nucleotide: the three beads are located at the mass center of a phosphate group,
at the center of the five-atom ring of a sugar, and at the center of the six-atom ring of
a base [28,29]. Moreover, the bonded terms are composed of bond length, bond angle,
and dihedral angle interactions, and non-bonded terms are composed of base pairing,
base stacking, short-range phosphate–phosphate repulsion, and hydrophobic interactions.
Through the discrete MD algorithm and clustering method for low-energy conformations,
iFoldRNA can predict RNA 3D structures from their sequences. iFoldRNA allows for the
prediction of the structure of short RNAs (<50 nt) within 4 Å RMSD from the corresponding
experimental structures. Additionally, iFoldRNA can predict complex RNAs by involving
experimental information such as base-pairing and hydroxyl-radical probing. iFoldRNA
has been developed into the iFoldRNA2 [29] webserver at http://ifoldrna.dokhlab.org.

A CG model with salt effect. A three-bead CG model with a salt effect has been developed
for predicting RNA 3D structures in the presence of monovalent/divalent ions [30–35]
due to the polyanionic nature of RNAs [86–88]. In contrast, most existing 3D structure
prediction models are generally focused on predicting the 3D structures of RNAs, and the
effects of salt ions and temperature are seldom involved in the models. In the three-bead
CG model with salt effect, the three beads are located at P, C4′, and N9 (N1) atoms of
purine (pyrimidine), respectively. In the energy function of the model, the salt effect is
implicitly involved through a combination of the counterion condensation theory [89] and
the tightly bound ion model [90–92], and the effect of temperature is accounted for through
involving the experimental parameters of base stacks from Turner et al. [93]. Using the MC
simulated annealing or replica-exchange MC (REMC) algorithm [94], the model can predict
3D structures for RNA hairpins, kissing complexes, and minimal H-type pseudoknots
and complex pseudoknots from sequences and the thermal stabilities of the RNAs in
monovalent/divalent ion solutions, including SARS-CoV-2 programming-1 ribosomal
frameshifting element and Zika virus xrRNA [30–35]. The mean RMSD of the predicted
structures is less than 7 Å for RNAs (<~90 nt) [30–35]. In addition, the mean deviations of
the melting temperatures from the experimental data are ~2 ◦C for RNA pseudoknots and
kissing complexes [30–35] over extensive Na+/Mg2+ concentrations. However, the model
still cannot make good predictions for RNAs with multi-way (≥3) junctions. Anyway, this

http://rumour.biology.gatech.edu/YammpWeb/
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http://ifoldrna.dokhlab.org
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model can capture the effects of salt and temperature on predicted RNA 3D structures,
which are seldom captured by other existing RNA 3D prediction models.

2.1.3. Five-Bead Nucleotide Model

SimRNA. In the SimRNA model, the five beads are located at the P atom, C4′ atom
of the sugar, C2 atom, N1 atom, and C4 atoms of pyrimidine (N9 and C6 atoms of
purine) [36,37]. The energy function of SimRNA comprises sequence-independent local-
ranged terms and sequence-dependent long-ranged terms. The local terms consist of bond
length, flat angle, and torsional angle interactions, and the long-ranged terms include
base–base, base–backbone, and backbone–backbone interactions [36]. Using the REMC
algorithm, SimRNA can predict RNA 3D structures solely from sequences in a reasonable
time, and the predicted final structures are obtained by the clustering method for the low-
energy conformations. Additionally, secondary structures or other constraint information
can be added into SimRNA to improve the prediction accuracy and efficiency, especially for
complex RNAs. SimRNA can effectively predict RNA with relatively short RNA sequences
(< ~50 nt). However, for RNAs with longer sequences (>70 nt), the prediction accuracy
of the model can be improved if the secondary structures are provided [36]. SimRNA has
been developed into the versions of software package and webserver, which can be found
at https://genesilico.pl/SimRNAweb.

IsRNA. In the IsRNA1 model, four/five beads are used to represent a nucleotide [38–40].
Specifically, two beads are located at the P atom of the phosphate group and the C4′ atom
of sugar, and three/two beads are positioned at the center of mass of the constituent heavy-
atom groups to represent purine/pyrimidine bases, respectively. The energy functions of
IsRNA1 [39] were derived through an iterative simulated reference state approach [38,39],
and the MD or REMD algorithm was employed to accelerate conformational sampling.
In the model, the predicted final structures are obtained by a clustering method for the
10% conformations with the lowest energy in the candidate ensemble. IsRNA1 can predict
the structures of small RNAs based on their sequences and more complex RNAs based on
their secondary structures. IsRNA1 has been examined against a large-scale benchmark
dataset (containing 40–161 nts) with secondary structure constraints. The dataset includes
44 stem loops, 43 multi-way junctions, and 43 structures of long-range tertiary interactions,
and the mean RMSD of the predicted top-1 structure is less than 10 Å [39]. Moreover,
the model can be used to optimize the structures generated by two fragment assembly
methods [54,55]. Very recently, IsRNA was developed into IsRNA2 to predict 3D structures
for RNAs with noncanonical base pairs [40], and the web server of IsRNA is available at
http://rna.physics.missouri.edu/IsRNA/index.html.

RNAJP. Very recently, Li et al. developed a five-bead CG model called RNAJP to
predict RNA 3D structures, especially multi-way junction structures [41]. Specifically, two
CG beads are placed at the P and C4 atoms, representing the phosphate and sugar groups,
and three beads are located at the N1/N9, C2, and C4/C6 atoms for pyrimidine/purine,
respectively. In addition to the conventional bonded and non-bonded energy terms, similar
to other physics-based CG models discussed above, the RNAJP model explicitly considers
the interactions between adjacent helices and between adjacent strands in the junction
structures and the long-ranged interactions between loops. With the use of the toolkit
OpenMM [95], RNAJP can reliably predict RNA 3D structures with secondary structures
as the input, and the top-1 structure predicted by RNAJP is identified through a specific
energy function [41]. Although the model cannot predict RNA 3D structures solely from
sequences, it can predict high-quality RNA 3D structures with given sequences and their
corresponding secondary structures, especially for three- and four-way junctions, and the
predictions of RNAJP can reach a mean RMSD of ~8 Å for the 22 RNA three-way junction
structures (53–160 nts) and 5 RNA four-way junction structures (68–155 nts). However, the
model cannot create reliable predictions for five-way or higher-way junctions due to the
extremely high structural complexity [41]. The source code of the RNAJP model can be
downloaded at http://rna.physics.missouri.edu/RNAJP/index.html.

https://genesilico.pl/SimRNAweb
http://rna.physics.missouri.edu/IsRNA/index.html
http://rna.physics.missouri.edu/RNAJP/index.html
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2.1.4. Six/Seven-Bead Nucleotide Model

HiRE-RNA. The HiRE-RNA model is a high-resolution CG model that uses six to
seven beads to represent a nucleotide [42]. Specifically, five CG beads are assigned to
the phosphate group and sugar rings (namely, P, O5′, C5′, C4′, and C1′ atoms), and
another one/two beads are located at the mass centers of nonhydrogen atoms of the
pyrimidine/purine base. In the force field of HiRE-RNA, harmonic form potentials were
used to describe the bond length and bond angle energies in the bonded terms, while the
torsional angle energy was described with a cosine form potential. Moreover, non-bonded
terms include exclusion volume, electrostatic, base pairing, and base stacking potentials.
Using the REMD algorithm [96] for sampling conformations and the clustering method
for low-energy conformations, HiRE-RNA can predict RNA 3D structures from sequences
and complex RNAs with secondary structure information, and HiRE-RNA has been tested
on 13 RNAs (12–71 nts), and the RMSDs are less than ~8 Å from the corresponding
native structures [42]. Additionally, HiRE-RNA can be used to examine the stability of
RNA hairpins and duplexes, while the energy function of the model may require further
optimization to improve the predictions for the thermodynamic properties of RNAs.

2.1.5. Coarse-Grain Helix-Centered Model

Ernwin. Unlike the above models, Ernwin is a helix-centered CG model, which uses
one line segment and two vectors to represent a helix and considers elements (loops)
linking helices as the degrees of freedom [43]. The energy function of Ernwin comprises
five separate terms: two terms attributed to clash and junction closure, which serve as
constraint energies to exclude impossible structures based on physical forces; the other
three terms accounting for radius of gyration, A-minor energy, and loop–loop interaction
energy serve as non-constraint energies, which are knowledge-based potentials derived
from the known structures in the PDB database [8]. Combining the energy function with
Markov chain Monte Carlo simulation, the Ernwin model can efficiently predict RNA 3D
structures based on their secondary structures, and the structure with the lowest energy in
the conformational ensemble is chosen as the predicted final structure. The package of the
model is freely available at http://github.com/pkerpedjiev/ernwin.

As described above, an important advantage of various physics-based CG models is
that they can predict RNA 3D structures solely from sequences based on different specific
force fields and various MC/REMC or MD/REMD conformation sampling algorithms.
However, even with such CG simplification for nucleotides, to predict the 3D structures of
large RNA at high accuracy solely from sequences remains challenging for a physics-based
CG model. The reliable predictions from the existing physics-based CG models are still
limited to RNAs of medium size (<~90 nt with inputting only sequences or <~150 nt
with inputting secondary structures). Namely, the accuracy of the CG force field and the
conformation sampling algorithm are still required to be refined and developed to improve
the prediction accuracy and efficiency. In addition, due to the polyanionic nature of RNAs,
the structures and stabilities of RNAs are usually sensitive to solution ion conditions,
especially to multivalent ions [90], while the effect of ions such as Mg2+ are rarely involved
in the existing 3D structure prediction models. Although the effects of monovalent/divalent
ions on RNA thermodynamics can be captured by the three interaction sites (TIS) model
developed by Thirumalai et al. [97–99], the TIS model is a Gö-like model and cannot make
predictions for RNA 3D structures from sequences. The CG model with salt effect proposed
by Tan et al. can create reliable predictions for the thermal stabilities of (complex) RNA
pseudoknots in monovalent/divalent ions [33,35], while it is still a challenge for this model
to predict more complex RNA structures (e.g., multi-way junctions). It is necessary to
develop a physics-based CG model to efficiently and reliably predict 3D structures and
stabilities of complex RNA structures in monovalent/divalent ion solutions.

http://github.com/pkerpedjiev/ernwin
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2.2. Knowledge-Based Fragment Assembly Models

As macromolecule 3D structures evolve much slower than their sequences, evolution-
arily related macromolecules typically retain similar 3D structures, despite their differences
at the sequence level [11,15]. Moreover, the number of experimental structures deposited
in the PDB database increases gradually with the development of various experimen-
tal technologies [11]. Therefore, RNA 3D structures can be predicted through so-called
knowledge-based methods [11,15]. The early knowledge-based methods were graphics-
based methods such as MANIP [100] and RNA2D3D [101], which could intuitively and
quickly predict large-scale RNA 3D structures, but required users to have professional
knowledge of a high level. Later, some fully automated fragment-assembly methods were
developed and widely employed for RNA 3D structure predictions [44–56]. Typically,
the fragment assembly models predict RNA 3D structures based on RNA sequences and
secondary structures as inputs. Figure 2 shows the typical schematic diagram for existing
fragment assembly models, which can be roughly classified into two categories based on
the size of the fragments used: small motifs as fragments and medium motifs as fragments.
In the following, we introduce the existing knowledge-based, fully automated fragment
assembly models for RNA 3D structures, which are summarized in Table 2.

Table 2. The existing knowledge-based fragment assembly models for RNA 3D structure prediction.

Models Refs. Fragment Feature Final Structures Availability

FARNA/FARFAR2 [44–46] 3-nucleotide fragments Centroid structures of clusters c https://rosie.rosettacommons.
org/farfar2

MC-Fold/MC-Sym [47] SSE Lowest-energy structures d http://www.major.iric.ca

RNAComposer [48,49] SSE
The representative structure is

assembled from the best
templates

http://rnacomposer.ibch.
poznan.pl

3dRNA [50–53] SSE a Lowest-energy structures e http://biophy.hust.edu.cn/
new/3dRNA

Vfold3D [54] CG SSE b
The representative structure is

assembled from the best
templates

http://rna.physics.missouri.
edu/vfold3D/

VfoldLA [55] SSE a Centroid structures of clusters http://rna.physics.missouri.
edu/vfoldLA/

FebRNA [56] CG SSE b Lowest-energy structure f https://github.com/Tan-
group/FebRNA

The smallest secondary elements (SSE) are defined as base pair, hairpin loop, internal loop, bulge loop, pseudoknot
loop, and junction. a SSEs contain additional base pairs at their ends. b Coarse-grained (CG) SSEs contain base
pairs at their ends. c Centroid structures of clusters are determined through clustering the low-energy structures
by the energy functions from the corresponding prediction models. d The lowest-energy structures are determined
by Amber’99 force field [102]. e The lowest-energy structures are determined through clustering the assembled
structures and ranking the cluster centers using 3dRNAscore [68]. f The lowest-energy structures are determined
by a knowledge-based statistical potential [67].

2.2.1. Small Motifs as Fragments

FARNA/FARFAR/FARFAR2. Das et al. proposed a fragment assembly model named
FARNA/FARFAR for predicting RNA 3D structures based on three-nucleotide frag-
ments [44,45]. FARNA/FARFAR assemble RNA 3D structures guided by the specific
knowledge-based energy function and MC algorithm. As an early RNA 3D structure assem-
bly model, FARNA/FARFAR has a good prediction accuracy for small-size RNAs. Later,
Das et al. proposed FARFAR2 [46], in which four treatments were implemented to improve
the prediction accuracy and efficiency, including (a) an updated fragment library, (b) a frac-
tional filter for the fragment assembly process, (c) a special Monte Carlo movement, and (d)
a new all-atom scoring function. Compared with FARFAR, FARFAR2 recovers near-native
structures more accurately and predicts the 3D structures of adenovirus virus-associated
RNA and five riboswitch complexes with RMSDs of ~3–14 Å [46]. FARFAR2 has been
developed into a user-friendly webserver at https://rosie.rosettacommons.org/farfar2.

https://rosie.rosettacommons.org/farfar2
https://rosie.rosettacommons.org/farfar2
http://www.major.iric.ca
http://rnacomposer.ibch.poznan.pl
http://rnacomposer.ibch.poznan.pl
http://biophy.hust.edu.cn/new/3dRNA
http://biophy.hust.edu.cn/new/3dRNA
http://rna.physics.missouri.edu/vfold3D/
http://rna.physics.missouri.edu/vfold3D/
http://rna.physics.missouri.edu/vfoldLA/
http://rna.physics.missouri.edu/vfoldLA/
https://github.com/Tan-group/FebRNA
https://github.com/Tan-group/FebRNA
https://rosie.rosettacommons.org/farfar2
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2.2.2. Medium Motifs as Fragments

MC-Fold/MC-Sym. Parisien et al. proposed an RNA structure prediction pipeline
consisting of two computational models: MC-Fold and MC-Sym [47]. In the pipeline,
MC-Fold predicts RNA secondary structures, and then MC-Sym assembles an ensemble of
3D structures based on the secondary structures. Different thermodynamic models such
as Mfold [103], MC-Fold can predict secondary structures for RNAs with noncanonical
base pairs with the use of knowledge-based scoring functions based on NCM (nucleotide
cyclic motif) databases. The NCM database contains lone-pair loops up to six nucleotides,
including the flanking lone base pair, and double-stranded NCMs up to eight nucleotides
including both flanking base pairs. MC-Sym performs the fragment insertion simulation
with the 3D NCMs and the Las Vegas algorithm. The MC-Fold/MC-Sym pipeline has been
tested by building 3D structures of precursor microRNA and proposing a new structure of
the human immunodeficiency virus (HIV) cis-1 frameshift segment, and the model has been
tested against 13 different types of RNAs (29–47 nts) with a mean RMSD of ~2 Å [47]. The
web server of the MC-Fold/MC-sym pipeline can be found at http://www.major.iric.ca.

RNAComposer. Popenda et al. developed a fast and fully automated fragment assem-
bly model named RNAComposer for predicting RNA 3D structures based on secondary
structures [48,49]. The model employs smallest secondary elements (SSE) as blocks, which
helps the model to achieve RNA 3D structure prediction at a relatively high accuracy. The
predicted top-1 structure in RNAComposer is assembled from the best fragments, which are
evaluated based on four criteria: secondary structure topology, sequence similarity, source
structure resolution, and energy based on the Charmm force field. RNAComposer was
examined for 40 different types of RNAs (31–161 nts), which include hairpins without/with
internal loops, pseudoknots, and multi-way junctions; the mean RMSD of the top-1 struc-
ture is ~5 Å [48]. RNAComposer has been developed into a user-friendly webserver version
at http://rnacomposer.ibch.poznan.pl.

3dRNA. Similar to RNAComposer [48], 3dRNA also employs SSEs as building blocks
to predict RNA 3D structures [50–53], while in 3dRNA, the 3D structures of the SSEs
extracted from the experimental structures contain one more base pair at their 5′-end for
more accurate superposition between different fragments in the global structure assembly.
Notably, the assembled 3D structures can be further optimized by a specific CG energy
function with the information from direct coupling analysis [75]. In 3dRNA, the final
predicted structure can be identified by the clustering algorithm for the assembled struc-
tures and a specific scoring function named 3dRNAscore [68] to rank the candidates in the
different clusters. 3dRNA exhibits relatively high prediction accuracy for different types of
RNA structures, particularly pseudoknots and large RNAs with tertiary contacts. 3dRNA
has been tested against extensive RNAs including five very large RNAs (500–3000 nts),
and it is encouraging that the predicted structures of four of the five large RNAs have
good performance with RMSDs within 15 Å [52]. In addition, 3dRNA can predict the 3D
structures of circular RNAs [53]. 3dRNA has been developed into a friendly webserver
version at http://biophy.hust.edu.cn/new/3dRNA.

Vfold3D/VfoldLA. Cao et al. proposed two different fragment assembly models, namely
Vfold3D [54] and VfoldLA [55]. With a given secondary structure, Vfold3D automati-
cally assembles RNA 3D structures with the 3D fragments from the PDB database based
on resolved secondary motifs such as hairpin loops and multi-way junction loops [54].
However, Vfold3D is limited by the small number of known RNA structures, especially
for the templates of multi-way junctions. Xu et al. developed a new model of VfoldLA
with template search and the assembly algorithm to build RNA 3D structures [55], where
templates with single-stranded loops/junctions are searched for instead of whole motifs,
and a whole multi-junction loop can be assembled based on single-stranded loops in the
absence of such a whole multi-junction loop [55]. Furthermore, a hybrid method has been
proposed that combines Vfold3D and VfoldLA to predict the RNA 3D structures [104]. The
hybrid method is focused on the definition of motifs and loops, the processing of template-
free motifs, and the 3D structure assembly based on motifs and loops templates [104].

http://www.major.iric.ca
http://rnacomposer.ibch.poznan.pl
http://biophy.hust.edu.cn/new/3dRNA
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Moreover, the Vfold-pipeline was developed by integrating Vfold2D (secondary struc-
ture prediction model), Vfold3D, and VfoldLA [105].The pipeline has been examined on
92 RNAs, including hairpin/internal loops, 3-, 4-, and 5-way junctions, and pseudoknots,
and the mean RMSDs of the predicted structure are ~6 Å, ~10 Å, ~7 Å, ~15 Å, and ~16 Å,
respectively [106]. Vfold3D/VfoldLA are available for users on their webservers, and the
Vfold-pipeline can be found at http://rna.physics.missouri.edu/vfoldPipeline/index.html.

FebRNA. Very recently, Zhou et al. proposed a fragment-ensemble-based model named
FebRNA for building RNA 3D structures with secondary structures as the input [56]. This
model selects almost all of the templates according to the types of secondary motifs and
the lengths, regardless of the sequences and transfers the all-atom fragments into CG ones
according to the CG model with salt effect [35], resulting in a global CG 3D candidate
ensemble with a vast number of assembled structures (up to ~25,000). This naturally
increases the likelihood of including the structures very close to the native structures [56].
Moreover, when building the global structures, FebRNA prefers loop templates with more
end base pairs, which helps to better describe the orientation of the stems and improves
the accuracy of the final structures. The predicted structures are identified using a specific
scoring function from an efficient CG scoring function of cgRNASP [67]. Afterwards, the
identified top CG structures are rebuilt into all-atom structures. It has been demonstrated
that FebRNA can reliably and efficiently predict the 3D structures of different types of
RNAs, including 14 RNA hairpins (17–31 nts), 8 pseudoknots (28–127 nts), 25 multi-
way junctions (54–393 nts), and 16 RNA-Puzzles (37–189 nts), and the mean RMSD of
the predicted top-1 structures is ~6 Å [56]. The package of FebRNA can be available at
https://github.com/Tan-group/FebRNA.

As described above, the knowledge-based fragment assembly model can efficiently
predict RNA 3D structures with a relatively high accuracy. However, the performance of the
models is strongly dependent on the quality and completeness of the template library and
the performance for the structure evaluation method, in addition to secondary structures,
which are required as the input. Although the number of RNA 3D structures deposited in
the PDB database is continuously increasing, it may still be very difficult to find suitable
templates for some special target RNAs, especially for multi-way junction templates, which
are generally very crucial for building global RNA structures.

2.3. The Deep-Learning-Based Approaches

The advent of artificial intelligence has significantly advanced science and technology
worldwide in recent years. A typical example is AlphaFold2, a deep-learning-based method
for accurate protein 3D structure prediction [107–109]. However, it is essential to note
that accurate prediction of macromolecule 3D structures generally requires extensive
experimental structure data [107]. Based on the successful experience of deep learning in
protein 3D structure prediction, some deep-learning-based methods have been developed to
predict RNA 3D structures, although the available RNA 3D structures in the PDB database
are rather limited compared with proteins [8]. In the following, we will introduce four
deep-learning-based approaches for RNA 3D structure prediction developed very recently,
which have been summarized in Table 3.

RhoFold. Shen et al. proposed an end-to-end deep-learning-based de novo RNA 3D
structure prediction approach named RhoFold, which consists of three modules: structure
feature extraction, structure prediction, and structure refinement [57]. The feature extraction
module combines infernal and rMSA protocol to extract the MSA and pairwise residue
features [57]. The structure prediction module, which is the core of RhoFold, predicts
the rotation and translation matrices of the main frames based on the sequence and pair
presentation from the feature extraction module. Finally, the structure refinement module
modifies possible remaining structural conflicts, and the predicted structure is further
relaxed through a constraint energy minimization algorithm. The prediction performance
of RhoFold has been demonstrated by a test against the non-redundant RNA-Puzzle test
dataset, and the average RMSD is less than 4 Å [57]. Additionally, RhoFold can also achieve

http://rna.physics.missouri.edu/vfoldPipeline/index.html
https://github.com/Tan-group/FebRNA
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promising predictions for the 3D structure of RNA complexes. RhoFold is available at
https://github.com/RFOLD/RhoFold.

Table 3. The existing deep-learning-based approaches for RNA 3D structure prediction.

Approaches Refs. Neural Network Learning Information Final Structures Availability

RhoFold [57] Sequence representations and interactions
between different nucleotides

Lowest-energy
structure

https://github.com/RFOLD/
RhoFold

DeepFoldRNA [58] Structural information from evolutionary
profiles

Lowest-energy
structure

https://zhanggroup.org/
DeepFoldRNA

trRosettaRNA [59] MSA and secondary structure
representations

Lowest-energy
structure

https://yanglab.nankai.edu.cn/
trRosettaRNA/

epRNA [60] RNA sequences Centroid structures of
clusters

https://bitbucket.org/dokhlab/
eprna-euclidean-

parametrization-of-rna/src/
master/

DeepFoldRNA. DeepFoldRNA is a fully automated end-to-end deep-learning-based
method for RNA 3D structure prediction, composed of two consecutive modules: a con-
straint generation module and a structure construction module [58]. In the constraint
generation module, multiple sequence alignments (MSAs) of RNAs are collected by it-
eratively searching multiple nucleic acid sequence databases using rMSA [110]. After-
wards, a self-attention neural network is utilized to predict pairwise distances and inter-
residue/backbone torsion angles, and the predicted geometric constraints are transformed
into composite potentials using the negative logarithmic likelihood of loading probability
prediction in the structure construction module. Through the limited-memory Broyden–
Letcher–Goldfarb–Shanno (L-BFGS) minimization algorithm, DeepFoldRNA achieves the
end-to-end prediction for RNA 3D structures [58]. DeepFoldRNA was tested against two
independent benchmark datasets from Rfam families (105 RNAs) [111] and RNA-Puzzle
experiments (17 RNAs), where DeepFoldRNA predicts the structures with a mean RMSD
of ~3 Å [58]. DeepFoldRNA is available at https://zhanggroup.org/DeepFoldRNA.

trRosettaRNA. Feng et al. proposed trRosettaRNA [59], a deep-learning-based de novo
approach for RNA 3D structure prediction through the transformer network. trRosettaRNA
follows a two-step procedure of trRosetta [112,113]: the first step is to predict 1D and
2D geometric shapes with a transformer network [59], and the geometrics include 1D
orientations and 2D contacts, distances, and orientations. The second step is to generate 3D
structures through energy minimization. The prediction performance of trRosettaRNA was
demonstrated on two independent datasets from RNA-Puzzle datasets (30 RNAs) and Rfam
families (101 RNAs), and the mean RMSDs of the predicted structures by trRosettaRNA
are ~6 Å and <~4 Å, respectively [59]. Notably, trRosettaRNA performs similarly to
DeepFoldRNA [58] in the all-atom RMSD, but predicts more realistic side-chain atoms.
trRosettaRNA is available at https://yanglab.nankai.edu.cn/trRosettaRNA/.

epRNA. Sha et al. developed a neural network Euclidean parametrization-based
method (epRNA) to predict RNA 3D structures solely from sequences, using the state-of-the-
art neural network architecture and symmetries [60]. epRNA utilizes the parameterization
of Euclidean distance matrices [114] to enable the neural network to directly output the
distances between all of the residues. Subsequently, the structure predicted by the neural
network is converted into an all-atom structure using DMD with constraints [28,115]. It is
noted that epRNA achieves high accuracy predictions on the 3D structures of RNAs of up
to 100 nucleotides in length. epRNA is available at https://bitbucket.org/dokhlab/eprna-
euclidean-parametrization-of-rna/src/master/.

The above deep-learning-based methods can achieve high-quality and efficient predic-
tion for RNA 3D structures, as tested against the available structure datasets. However, the
reliability and performance of a deep-learning-based method strongly relies on the number
and the structure spectrum of known RNAs, and due to the limited RNA 3D structures

https://github.com/RFOLD/RhoFold
https://github.com/RFOLD/RhoFold
https://github.com/RFOLD/RhoFold
https://zhanggroup.org/DeepFoldRNA
https://zhanggroup.org/DeepFoldRNA
https://yanglab.nankai.edu.cn/trRosettaRNA/
https://yanglab.nankai.edu.cn/trRosettaRNA/
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
https://zhanggroup.org/DeepFoldRNA
https://yanglab.nankai.edu.cn/trRosettaRNA/
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
https://bitbucket.org/dokhlab/eprna-euclidean-parametrization-of-rna/src/master/
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in the PDB database, it would be a great challenge for a deep-learning-based method to
make blind predictions for the target RNAs, whose structures do not reside in the known
structure spectrum. Nevertheless, these deep-learning models provide an alternative way
for modeling RNA 3D structures, in addition to the physics-based methods and traditional
knowledge-based models.

3. RNA 3D Structure Evaluation

Generally, a predictive model for RNA 3D structures would generate a candidate
ensemble with more than one candidate for a target RNA, and consequently, a high-quality
3D structure evaluation is critical for an RNA 3D structure prediction model [61,62]. Some
evaluation methods have been involved in the existing RNA 3D structure prediction mod-
els, such as selecting the cluster centers as the representative structures using the clustering
algorithm, or directly evaluating the structures by the energies obtained from a statistical
potential/scoring function/force field, or combining the clustering algorithm and energy
functions/force fields to select the representative near-native structures [26,35,36,41]. How-
ever, an efficient scoring function with a high performance is still lacking and consequently
is definitely required for RNA 3D structure evaluation. In the last two decades, several
statistical potentials/scoring functions have been proposed for RNA 3D structure evalu-
ation, owing to the prior progress made for proteins [61,62], which can be classified into
knowledge-based scoring functions/statistical potentials [63–69] and deep-learning-based
scoring functions [70,71], and are summarized in Table 4.

Table 4. The existing scoring functions/statistical potentials for RNA 3D structure evaluation.

Knowledge-Based Scoring Functions

Scoring Functions Refs. Reference States Geometrical
Parameters Atom Types Availability

RASP-ALL [63] Averaging [116] Distance between
atom pairs 23 http://melolab.org/

webrasp/home.php
All-atom KB

potential [64] Quasi-chemical
approximation [117]

Distance between
atom pairs 85 No

DFIRE-RNA [65] Finite-ideal-gas [118] Distance between
atom pairs 85 https://github.com/

tcgriffith/dfire_rna

rsRNASP [66] Averaging [116] +
Random-walk-chain [119]

Distance between
atom pairs 85 https://github.com/Tan-

group/rsRNASP

cgRNASP [67] Averaging [116] +
Finite-ideal-gas [118]

Distance between
atom pairs 12 https://github.com/Tan-

group/cgRNASP

3dRNAscore [68] Averaging [116]

Distance between
atom pairs and

torsional angles of
backbone

85
http://biophy.hust.edu.

cn/new/resources/
3dRNAscore

RAMP [69] Multinomial reference
distribution

Atomic quadruplet
interaction 4 No

Deep-Learning-Based Scoring Functions

Scoring Functions Refs. Reference States Geometrical
Parameters Atom Types Availability

RNA3DCNN [70] Free

Free, and the 3D
grid representation
of RNA structure

as the input

85 https://github.com/
lijunRNA/RNA3DCNN

ARES [71] Free

Free and the 3D
coordinates and

chemical element
type of each atom

as the input.

85 http://drorlab.stanford.
edu/ares.html

http://melolab.org/webrasp/home.php
http://melolab.org/webrasp/home.php
https://github.com/tcgriffith/dfire_rna
https://github.com/tcgriffith/dfire_rna
https://github.com/Tan-group/rsRNASP
https://github.com/Tan-group/rsRNASP
https://github.com/Tan-group/cgRNASP
https://github.com/Tan-group/cgRNASP
http://biophy.hust.edu.cn/new/resources/3dRNAscore
http://biophy.hust.edu.cn/new/resources/3dRNAscore
http://biophy.hust.edu.cn/new/resources/3dRNAscore
https://github.com/lijunRNA/RNA3DCNN
https://github.com/lijunRNA/RNA3DCNN
http://drorlab.stanford.edu/ares.html
http://drorlab.stanford.edu/ares.html
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3.1. Knowledge-Based Scoring Functions/Statistical Potentials

In principle, any kind of geometrical parameters, such as distances or angles between
atoms/atom groups, which can be utilized to distinguish a native conformation from a
decoy one can be adopted to derive a statistical potential/scoring function [61,120]. Ac-
cording to Boltzmann’s law, a general expression of a statistical potential/scoring function
can be obtained as a function of the geometrical parameter s [116]:

∆E(s) = −kBT ln

[
Pobs(s)
Pref(s)

]
, (2)

where kB and T are the Boltzmann constant and the temperature in Kelvin, respectively.
Pobs(s) and Pref(s) are the probability of the geometrical parameter s in the native and
reference states, respectively. As shown in Equation (2), the reference state and the geomet-
rical parameter s, which may involve two or more atoms, are crucial for building statistical
potentials, and the core difference between various statistical potentials is attributed to the
choice of them.

The native state is the non-redundant native structure ensemble, while an ideal ref-
erence state is a conformation ensemble composed of a non-redundant and complete
spectrum of conformations in phase space and without interactions between atoms [120].
Nevertheless, an ideal reference state could not be obtained. Thus, several simulated
reference states have been proposed by various approximations, including averaging [121],
quasi-chemical approximation [117], atom-shuffled [122], finite-ideal-gas [118], spherical-
non-interacting [123], and random-walk-chain [119] reference states. Moreover, geometrical
parameters can be the inter-atom contact, inter-atom distance, inter-atom angle, inter-block
orientation, and so on [61].

After deriving a statistical potential, the total energy ∆E(S, C) for a conformation C of
a given sequence S can be given by the following [116]:

∆E(S, C) = ∑ ∆E(s), (3)

where the summation is overall applicable items for the geometrical parameter s with the
additive assumption for the statistical potential [116].

3.1.1. Two-Body Distance-Dependent Statistical Potentials

RASP. Based on the averaging reference state [121], in which the distribution of
different atom pair types is approximately represented by the distribution averaged over
all of the atom pair types in native structures, RASP was derived by Capriotti et al. at both
CG and all-atom (23 clustered atom types) levels, and the distance between atom pairs
was considered as the geometrical parameter [63]. Capriotti et al. showed that RASP had
a better performance than NAST [27], which is a nucleotide-level CG statistical potential
composed of bond, angle, dihedral, and non-bond terms. The package of RASP can be
found at http://melolab.org/webrasp/home.php.

KB potential. Based on the quasi-chemical approximation reference state in which
the number of certain atom−pair types should be proportional to the molar fraction of
the corresponding ones from the native structures [117], Bernauer et al. proposed the
distance-dependent statistical potentials of the KB potential at both CG and all-atom
levels [64]. As a result of adopting Dirichlet process mixture models, the KB potentials are
fully differentiable, which makes them applicable for molecular dynamics simulations [64].

DFIRE-RNA. Zhang et al. proposed an all-atom (85 atom types) distance-dependent
statistical potential of DFIRE-RNA based on the finite-ideal-gas reference state [65], in which
the pair distribution function in ideal gas is used to simulate the atomic pair distribution of
RNAs in the reference state [65,118]. In DFIRE-RNA, a dimension parameter α is involved,
which can help to better match the spatial scale of physical models to that of a realistic
RNA or protein system [62,118]. For the RNA-Puzzles dataset, DFIRE-RNA was shown

http://melolab.org/webrasp/home.php
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to have a consistently better performance than 3dRNAscore, RASP, and Rosetta energy
function, which was combined through a series of knowledge-based and classical physics
energy terms [45,63,65]. In addition, the package of DFIRE-RNA can be downloaded at
https://github.com/tcgriffith/dfire_rna.

rsRNASP. Tan et al. recently developed an all-atom (85 atom types) distance-dependent
statistical potential of rsRNASP by distinguishing local-ranged and non-local-ranged in-
teractions at the residue separation level [66]. The averaging [121] and random-walk-
chain [119] reference states were applied for extracting local-ranged and non-local-ranged
potentials, respectively. For two test datasets from various structure prediction models,
including the RNA-Puzzles dataset, rsRNASP showed an overall superior performance
over the existing traditional statistical potentials (RASP, 3dRNAscore, and DFIRE-RNA)
and deep-learning-based scoring functions (RNA3DCNN and ARES), which will be in-
troduced below [66]. The package of rsRNASP is available at: https://github.com/Tan-
group/rsRNASP.

cgRNASP. For high efficiency and direct applicability to CG-based RNA 3D structure
prediction models, a series of residue-separation-based CG statistical potentials at different
CG levels were recently proposed by Tan et al., and three-bead cgRNASP (12 CG atom types)
is regarded as being representative [67]. Compared with the all-atom rsRNASP, the local-
ranged interaction in cgRNASP was involved more subtly and completely through explicitly
adding the interactions between the nearest neighbor residues and between the next-nearest
ones [67]. Compared with rsRNASP, cgRNASP can have a similarly good or slightly better
performance for extensive test datasets, while cgRNASP is strikingly more efficient than all-
atom potentials such as rsRNASP, 3dRNAscore, and DFIRE-RNA. cgRNASP can be directly
applicable to some existing CG-based RNA 3D structure prediction models [67]. The
package of cgRNASP can be downloaded at https://github.com/Tan-group/cgRNASP.

3.1.2. Two-Body Distance-Dependent and Angle-Dependent Statistical Potentials

3dRNAscore. Different from the above-described distance-dependent potentials such
as RASP and KB potential, 3dRNAscore is composed of the distance- and torsion angle-
dependent potentials based on the averaging reference state [68]. In 3dRNAscore, 85 atom
types and 7 torsion angle types were involved [68], and a weight factor was optimized by
the decoys of four typical RNAs generated by 3dRNA to balance the contributions of the
two kinds of energy terms [68]. The involvement of the dihedral-dependent potential in
3dRNAscore has been shown to improve the evaluation performance [68]. 3dRNAscore
has been embedded in 3dRNA, and the standalone package of 3dRNAscore can be found
at http://biophy.hust.edu.cn/new/resources/3dRNAscore.

3.1.3. Four-Body Contact Statistical Potential

RAMP. For capturing higher-order interactions beyond two-body potentials, Masso
developed a four-body contact potential of RAMP, which is the first multi-body statistical
potential for RNA 3D structure evaluation [69]. In RAMP, atomic four-body nearest-
neighbors were divided by the Delaunary tessellation [124] for an RNA 3D structure, and
each RNA was represented by four atom types of C, N, O, and P [69]. Thus, 35 distinct
quadruplet types can be produced by the four-letter atomic alphabet. However, overall,
RAMP has a worse performance than RASP-ALL when identifying native structures [69],
which might be attributed to the fact that RAMP is a coarse-grained-level contact potential
with only four clustered atom types, while RASP-ALL is a distance-dependent potential
with 23 clustered atom types [61].

The further development of knowledge-based scoring functions/statistical potentials
would benefit from the continuously increasing experimental structures deposited in
the PDB database, which are currently inadequate. Moreover, the reference state and
the geometrical parameter are crucial for building a knowledge-based scoring function.
Thus, expanding the native structure database, modeling more realistic reference states for

https://github.com/tcgriffith/dfire_rna
https://github.com/Tan-group/rsRNASP
https://github.com/Tan-group/rsRNASP
https://github.com/Tan-group/cgRNASP
http://biophy.hust.edu.cn/new/resources/3dRNAscore
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RNAs, and exploring unique RNA structure features as geometrical parameters could help
improve the performance of a statistical potential/scoring function.

3.2. Deep-Learning-Based Scoring Functions

Beyond the above-described traditional statistical potentials/scoring functions, deep-
learning techniques have recently been employed to develop scoring functions for RNA 3D
structure evaluation. Generally, to develop a deep-learning-based scoring function does not
require an artificial definition for RNA structure-related features or an explicit involvement
of the reference state [70,71].

RNA3DCNN. Li et al. employed 3D convolutional neural network (3DCNN) to develop
two 3DCNN-based scoring functions, named RNA3DCNN_MD and RNA3DCNN_MDMC,
for assessing near-native RNA decoys and RNA decoys with large structure fluctuation,
respectively [70]. 3DCNNs can directly use a 3D grid representation of RNA structures
as the input without extracting RNA structure-related features manually, and the train-
ing sets of RNA3DCNN were generated by MD simulations and MC structure predic-
tion for 414 RNAs [70]. RNA3DCNN_MD was trained by the first decoy set, while
RNA3DCNN_MDMC was trained by the two decoy sets together [70]. For decoys with
RMSDs less than 1.0 Å, RNA3DCNN was shown to have a similar or worse performance
compared with the traditional statistical potentials (3dRNAscore, KB, RASP, and Rosetta),
while for the RNA-Puzzles dataset, RNA3DCNN performed obviously better in iden-
tifying the native structures [70]. The package of RNA3DCNN can be downloaded at
https://github.com/lijunRNA/RNA3DCNN.

ARES. Townshend et al. designed a neural network, the Atomic Rotationally Equiv-
ariant Scorer (ARES), to obtain the RMSDs of predicted structures from unknown native
structures [71]. The initial layers of the ARES network with the 3D coordinates and chemi-
cal element type of each atom as the input were designed to recognize structural motifs,
which were learned by training rather than being specified in advance. Furthermore, each
layer of ARES was rotationally and translationally equivariant, which ensures that the cor-
responding transformation of its output could be achieved with the rotation or translation
of its input. Thus, the orientation and position of an identified motif can be passed on to
next layer of the network. Therefore, the initial layers of ARES can gather information
locally, which can help to recognize finer-scale motifs (e.g., base pairs) and further recognize
coarser-scale motifs (e.g., helices), and the remaining layers aggregate information across
all atoms and capture the RNA global property, namely RMSD. Notably, the parameters of
ARES were optimized with the training set, which contains decoy structures for 18 target
RNAs generated by FARFAR2 [46]. ARES shows an excellent performance for evaluating
structures from FARFAR2 [71], while becoming ordinary for the existing test datasets such
as the RNA-Puzzles dataset [66,67]. ARES has been developed into a friendly webserver
version: http://drorlab.stanford.edu/ares.html.

The deep-learning-based scoring functions could have outstanding performance in
some aspects. For example, compared with previous statistical potentials/scoring functions,
RNA3DCNN has an apparently better performance for identifying native/near-native struc-
tures [70], and ARES performs uniquely better for candidate structures from FARFAR2 [71].
Deep-learning-based scoring functions are generally free of artificially defined features and
free of the reference states, which have natural advantages over the traditional statistical
potentials/scoring functions [70,71]. However, the performance of a deep-learning-based
scoring function is severely limited by its training dataset, such as the structure spectrum of
the native structures and that of decoy structures. The incomplete spectrums of the native
structures may lead to an unreliable performance of a scoring function for those structures
not contributing to the native structure spectrum, and the spectrum of decoy structures
may also cause a strong bias for the trained scoring function to the model for generating
the decoy structures.

https://github.com/lijunRNA/RNA3DCNN
http://drorlab.stanford.edu/ares.html
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4. RNA 3D Structure Refinement

As described in Sections 2 and 3, a predictive model for RNA 3D structures gener-
ally generates a structure ensemble through either force-field-guided conformation sam-
pling of chains at different CG levels or structure assembly based on different-sized frag-
ments [11,15]. Thus, a structure prediction model may produce many structure candidates
with apparently abnormal structural domains containing imperfect stereochemistry in-
formation, such as unnatural bond lengths/angles and steric atom conflicts or incorrect
tertiary interactions [72,75]. Afterwards, it is generally necessary to make structure refine-
ment (optimization) for the identified (sampled/assembled) structures through a scoring
function/evaluation algorithm. By combining the sampling algorithm (such as Gradi-
ent Descent, MC) with certain energy functions, the local and global structures of RNAs
can be improved to their near-native states through adjusting the abnormal structure do-
mains. Until now, most existing models for refining RNA 3D structures are physics-based
ones [72–75], which are summarized in Table 5 and will be introduced below.

Table 5. The existing physics-based approaches for RNA 3D structure refinement.

Approaches Refs. Force Field Refinement Characteristics Availability

QRNAS [72] Amber with four
optional energy terms

Reducing clash, enforcing backbone
regularization, explicit hydrogen

bonds, base pair co-planarity.
co-planarity

http://genesilico.pl/
software/stand-alone/qrnas

BRiQ refinement [73]
A fully

knowledge-based
atom-level force filed

Reducing clash, improving base
pairing and backbone structures

https://github.com/Jian-
Zhan/RNA-BRiQ

RNAfitme [74] Charmm force field Reducing clash and smoothing the
structure

http://rnafitme.cs.put.
poznan.pl/

3dRNA optimization [75]
CG force field with

evolutionary restraints
from DCA

Improving global backbone
structure

http://biophy.hust.edu.cn/
new/3dRNA

QRNAS. The model employs a modified version of Amber force field [76,77], in-
corporating four additional energy terms that are not explicitly present in the standard
Amber force field, namely hydrogen bonds, base pair co-planarity, backbone regulariza-
tion, and custom distance constraints [72]. By combining the fastest descent with golden
section search and Polak−Ribiere conjugate gradient algorithm [125], QRNAS can sig-
nificantly improve the local quality of RNA 3D structures while maintaining the global
quality of RNA structures [72]. Additionally, QRNAS can refine not only RNA struc-
tures, but also DNA structures, chimeras, hybrids, and nucleic acids containing modified
residues. QRNAS has been developed into a user-friendly software and is available at
http://genesilico.pl/software/stand-alone/qrnas.

BRiQ refinement. BRiQ is a knowledge-based energy function at an atom level, which
is corrected with quantum mechanics calculations on base−base interactions, and includes
bonded and non-bonded terms [73]. The bonded term includes bond length, bond angle,
torsion angle, and backbone rotameric interactions, and the non-bonded term comprises
base−base, base−oxygen, oxygen−oxygen, and atomic clash interactions [73]. With utiliz-
ing the nucleobase-centric tree (NuTree) algorithm, BRiQ refinement achieves an atom-level
refinement for RNA 3D structures, and the BRiQ refinement improves 81% Rosetta-SWM
structures with RMSD < 2 Å, 100% RNA puzzle structures with RMSD < 4 Å, and 83%
FARFAR2 structures with RMSD < 6 Å [73]. The package of BRiQ refinement is available at
https://github.com/Jian-Zhan/RNA-BRiQ.

RNAfitme. Different from QRNAS [72] and BRiQ refinement [73], the RNAfitme
model [74] refines RNA 3D structures by reconstructing them with fixed main chains and
simulating them guided by the Charmm force field [79,80]. To refine an RNA structure with
RNAfitme, five backbone atoms (O5′, C5′, C4′, C3′, and O3′) or nine backbone and sugar

http://genesilico.pl/software/stand-alone/qrnas
http://genesilico.pl/software/stand-alone/qrnas
https://github.com/Jian-Zhan/RNA-BRiQ
https://github.com/Jian-Zhan/RNA-BRiQ
http://rnafitme.cs.put.poznan.pl/
http://rnafitme.cs.put.poznan.pl/
http://biophy.hust.edu.cn/new/3dRNA
http://biophy.hust.edu.cn/new/3dRNA
http://genesilico.pl/software/stand-alone/qrnas
https://github.com/Jian-Zhan/RNA-BRiQ
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ring atoms (O5′, C5′, C4′, C3′, O3′, O4′, C1′, C2′, and O2′) need to be involved [74]. In the all-
atom reconstruction process, the optimal fragments are selected using an adaptive matching
algorithm, and a final all-atom RNA structure can be generated. Finally, NAMD [126] is
used to relax the structure and reduce the spatial conflicts to improve the geometric shape
of the preliminary RNA structure [74]. Although RNAfitme can hardly improve the global
quality of an RNA structure, it can effectively solve the local spatial conflicts for RNA 3D
structures. The web server of RNAfitme can be found at http://rnafitme.cs.put.poznan.pl/.

3dRNA optimization. Different from the above models [72–74], Wang et al. proposed
a method to optimize the global quality of RNA 3D structures [75]. In this method, each
nucleotide is represented by six CG beads at the atoms of P, C4′, C1′, C2, C4, and C6.
The direct coupled analysis (DCA) [127,128] is used to extract evolutionary constraint
information of RNA through multiple sequence alignments, and these constraints are
complemented to a physics-based CG force field that includes bonded energies (bond
length, bond angle, and dihedral angle) and non-bonded energies (base pairing, base
stacking). Combining with the MC annealing algorithm, the method can be used to
optimize an RNA 3D structure [75]. It is worth noting that the method can improve the
global backbone structures of RNAs, especially for large RNA structures with tertiary
contacts. The method has been embedded in 3dRNA and is available online at http://
biophy.hust.edu.cn/new/3dRNA.

As described above, structure refinement would improve the local or global structures
for RNAs. RNAfitme can reduce spatial conflicts in RNA structures [74], while compared
with RNAfitme, QRNAS can also enforce backbone regularization and improve the base
pair planarity [72]. However, RNAfitme and QRNAS can hardly improve the global
quality of an RNA structure. BRiQ refinement can improve the base pairing structure and
repair the RNA backbone structure, but it cannot make improvements for poor-quality
RNA structures generated by structure prediction models. The 3dRNA optimization
method [75] can significantly improve the backbone structure of large RNAs with tertiary
contacts, while it may be difficult to achieve a high-precision RNA structure for those
structures without tertiary contacts or no available DCA information. Thus, a high-precision
refinement/optimization for RNA structures is still highly required to obtain high-precision
RNA 3D structures.

5. Conclusions and Perspectives

Understanding the 3D structures of RNAs is crucial for unraveling the mysteries of
the RNA world. As introduced above, a great progress has been made in modeling RNA
3D structures, including structure ensemble prediction, structure evaluation, and structure
refinement. However, the existing models for RNA 3D structure prediction are still far
away from ab initio predictions in terms of high accuracy solely from sequences, especially
compared with protein 3D structure prediction. Here, we will discuss the major challenges
and perspectives in modeling RNA 3D structures in different aspects.

5.1. On Physics-Based Structure Modeling

As introduced above, the existing physics-based models can make ab initio predictions
for RNA 3D structures only relying on sequences. However, there are still challenges
remaining for developing a reliable and applicable physics-based model.

First, the existing physics-based models are severely limited to the prediction accuracy
and efficiency, and can generally be inapplicable for the ab initio structure predictions
of large RNAs (e.g., >tens of nucleotides) and RNAs with complex topology such as
multi-way junctions. The different-level CG approximations in the physics-based models
would significantly reduce the structure representation complexity to improve simulation
efficiency, while would also losing certain structure accuracy. Thus, achieving both high
prediction accuracy and efficiency in CG representation modeling is an important chal-
lenge for physics-based RNA 3D structure modeling. Second, deriving an accurate force
field/energy function is another critical challenge for a physics-based model to predict

http://rnafitme.cs.put.poznan.pl/
http://biophy.hust.edu.cn/new/3dRNA
http://biophy.hust.edu.cn/new/3dRNA
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complex RNA 3D structures, especially for RNA structures with multi-way junctions and
tertiary contacts. Third, developing an efficient and effective conformation sampling al-
gorithm is important for a model to predict 3D structures of large RNAs as the employed
simulated annealing, REMC, and REMD algorithms generally have huge computations
despite their excellent ability to simulate structure folding on rugged energy landscapes.
Fourth, a physics-based model essentially requires a high-quality rebuilding of all-atom
structures due to the conventional CG simplification.

Therefore, multi-scale modeling may be very applicable for the further development
of physics-based models, where a highly simplified CG-level representation would ensure
the basic global structures and computation efficiency, and a final all-atom representation
with an exact all-atom force field would ensure the predicted structure accuracy. Moreover,
the direct involvement of a fragment assembly treatment after secondary structures fold
may also be helpful for improving prediction efficiency for a physics-based model.

5.2. On Knowledge-Based Fragment-Assembly Structure Modeling

As described above, the fragment-assembly models are generally significantly more
efficient than the physics-based models, while they are also limited to some severe chal-
lenges. First, the prediction accuracy of the existing fragment-assembly models is definitely
limited to the quality of the input secondary structures. Thus, a blind prediction of such
models would certainly require high-performance secondary structure prediction models.
Second, the prediction performance severely depends on the completeness and quality
of different types of RNA fragments, while, due to the limited RNA 3D structures in the
PDB database, establishing a high-quality library of different types of fragments with a
complete spectrum is impossible when only depending on the PDB database. Thus, it
is very important to manually build the structures of core fragments, such as multi-way
junctions and tertiary contacts for a fragment-assembly model. Third, this kind of model
would generally generate structures with severe stereochemistry defects, such as abnormal
backbone bond lengths/angles and severe atom conflicts, which require excellent structure
refinement at the atom level.

Therefore, for this kind of model, (i) a benchmark survey may be first required on
the existing secondary structure prediction methods in order for a blind prediction solely
from sequences through a fragment-assembly model based on a more reliable secondary
structures as an input, and (ii) combination with reliable physics-based models may be
required to generate the 3D structures of core fragments that cannot be obtained through
the RNA structures in the PDB database, and such combination may also help to diminish
the severe stereochemistry defects in assembled 3D structures.

5.3. On Deep-Learning-Based Structure Modeling

It has been shown that the existing deep-learning-based models are rather effective
and efficient at predicting the known RNA 3D structures, while the models also have severe
limitations.

First, the performance of deep-learning-based models is severely limited by the struc-
ture spectrum of the RNA structures in the PDB database. Due to possible “over-fitting”
via the neural network, a deep-learning-based model may make accurate predictions for
the RNA structures within the structure spectrum of training (known) structures, while
it may completely fail to predict those outside of the training structure spectrum [129].
Second, the “black-box” training process makes a deep-learning-based model difficult to
understand. Consequently, it becomes very hard to extend a deep-learning-based model in
methodology rather than only extending training datasets.

Therefore, a combination with physics-based models may be a possible way to reduce
the effect of the ‘over-fitting’ training process and to improve the performance for deep-
learning-based prediction, as a similar combination has shown its performance in RNA
secondary structure modeling [130].
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5.4. On Overall Modeling for RNA 3D Structures

In addition to the above-described specific limitations for different types of RNA
3D structure prediction models, there are still general challenges for modeling RNA 3D
structures.

First, because of the highly polyanionic nature of RNAs, RNA 3D structures are
strongly sensitive to the solution environment, such as ions, ligands, and other small
molecules [131–138], while the existing structure prediction models rarely consider the
effects of solution environments. Due to the critical role of ions in RNA structures and
functions, it is still a challenge to properly involve the effects of ions in a structure prediction
model, especially for the effect of Mg2+ in complex RNA structures [86,87]. Second, most
existing structure prediction models are focused on static RNA 3D structures, while RNA
functions can depend on proper structure changes upon the binding of other ions or
ligands [139–141]. Thus, the knowledge of static 3D structures can sometimes become
inadequate for understanding the functions of some RNAs, and it is still a challenge for a
structure prediction model to predict RNA 3D structure change due to the interactions of
ions/ligands/molecules or due to the change in temperature [15]. Third, non-canonical
base pairs and nucleotide modifications such as m6A methylation and pseudouridylation
are very important for RNA structures and functions [142,143], while it is still a challenge
to predict RNA 3D structures with non-canonical base pairs and modified nucleotides.
Fourth, the existing models essentially make in vitro structure predictions for RNAs, while
cells can contain up to ~40% volume of various macromolecules such as proteins, DNA,
and RNA [133,144,145]. The presence of crowding macromolecules can strongly affect the
structures and stabilities of RNAs [135]. Thus, it is very necessary to make the predictions
for RNA 3D structures in vivo, and it is still a challenge for structure prediction models to
be able to involve the effect of in vivo.

The effects of ions and temperature for complex RNA structures can be possibly
captured in a multi-scale physics-based model with the involvement of applicable polyelec-
trolyte theories and experimental thermodynamic parameters, which has been shown by a
CG physics-based model for predicting the thermal stability and ion effect for RNAs with
simple topology such as hairpins and pseudoknots [33,35]. Moreover, the non-canonical
base pairs and those with nucleotide modifications can be possibly involved in a physics-
based structure prediction model through deriving the bond energy parameters for the
base pairs based on the corresponding structures in the PDB database and using the corre-
sponding Turner nearest-neighbor thermodynamic parameters [93]. Finally, the effect of an
in vivo environment on RNA structures may be modeled based on an effective/efficient
physics-based model by involving the effects of ions and temperature through explicitly
including the crowders and the associated interactions [146].

5.5. On RNA 3D Structure Evaluation

Although important progress has been made in RNA 3D structure evaluation, there
are several apparent limitations to the existing scoring functions. First, the performance
of scoring functions is still apparently lower than satisfactory for realistic datasets such
as the RNA-Puzzles dataset from various structure prediction models. For example, the
Pearson correlation coefficients (PCC) between RMSDs and energies by the existing top
scoring functions (e.g., rsRNASP [66], cgRNASP [67], DFIRE-RNA [65], and ARES [71])
are still less than 0.6 for the RNA-Puzzles dataset, a value far less than the ideal one of
1 [66,67]. Second, a structure prediction model can generate a huge number of structure
candidates for structure evaluation. Thus, it is still a great challenge to develop a high-
performance and efficient scoring function that is applicable to various structure prediction
models. Third, the performance and applicability of a scoring function are also subject to
the limited RNA 3D structures deposited in the PDB database. Thus, it is challenging to
develop a high-performance scoring function based on an RNA structure database with an
incomplete structure spectrum. Fourth, as RNA 3D structures can be strongly dependent on
ion conditions and temperature, it is also necessary to develop a scoring function involving
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the effects of ion conditions and temperature to evaluate RNA structures at varying ion
conditions and temperatures.

The further developments on a universal and efficient scoring function with a high
performance may come from: (i) developing more realistic reference state or circumventing
reference state, (ii) finding more proper geometrical parameters to better capture the
relations between two atoms or among multiple atoms rather than the inter-atom distance,
(iii) involving multi-body interactions beyond two-body potential, (iv) only keeping key
(CG) atoms when developing scoring functions to improve the evaluation efficiency, and
(v) specifically developing an effective and specific scoring function for a specific structure
prediction model based on the training data from the model.

5.6. On RNA 3D Structure Refinement/Optimization

Although the existing structure refinement/optimization models can make the mod-
eled RNA structures closer to their native states, they are also limited to some challenges.
First, the existing models either mainly improve the local structures rather than the global
structures for RNAs, or they improve the global structures rather than local structures for
RNAs, and thus cannot effectively improve both the local and global structures. Second, a
model for improving the both global and local structures at the atom level is computation-
ally challenging [75].

Reliable structure refinement and optimization would significantly benefit structure
prediction models as more near-native structures can be generated through the procedure.
In this sense, a procedure of combining structure optimization with structure refinement
may be applicable to obtain more accurate RNA 3D structures as the preceding one can
generate more near-native global structures and the follow-up one can generate more local
structures accurately. Moreover, a combination of a CG-level structure optimization and an
atom-level refinement would also improve the computation efficiency of the procedure.

In summary, great progress has been made in the recent two decades in modeling RNA
3D structures, while many efforts are still required in order to archive accurate predictions
for RNA 3D structures and to understand the associated RNA functions in vivo. Aided by
the increase in RNA structure data and the advance in physics-based modeling techniques
and computational technology, we anticipate exciting developments in modeling RNA 3D
structures in the near future.
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