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Abstract: Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting
as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential
encompasses a vast research field in which natural products arise as promising alternatives. In this
scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity,
including anticancer attributes. The present work proposes three heating-independent, reliable,
low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic
(SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and
1H NMR), and optical spectroscopies (UV–Vis, photoluminescence, and FTIR) confirm the obtention
of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity
against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The
samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells
bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated
the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics
(5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower
concentrations. These results establish piperine as a promising molecule for therapy investigations in
aggressive gastric cancer, both in its isolated form or as a bioenhancer.

Keywords: piperine; extraction and purification; green extraction; cytotoxicity; gastric cancer

1. Introduction

Gastric cancer occupies the fifth position among the most common types of cancer
worldwide [1,2]. Generally diagnosed late at advanced stages of the disease, this type
of tumor inherits high heterogeneity, which is a determinant feature for its phenotypic
aggressiveness [3] and high mortality rates. The limitations faced in current therapy are
additional concerns since they can lead to severe side effects and resistance to multiple
drugs, implying high recurrence rates and relative therapeutic failure [4,5]. This set of
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factors reveals that gastric cancer is still a clinically challenging disease, with low effective
treatment options, especially concerning aggressive tumors [6]. Therefore, searching for
more effective treatments based on new molecules is necessary for improving therapy.

Natural products are promising sources of pharmacologically active molecules ca-
pable of interacting with cell membrane receptors, nucleic acids, and other mechanistic
pathways [7–9]. Their potential biological activity has been intensively investigated in
preclinical and clinical studies [10], revealing promising effects related to a wide range
of plant-derived compounds and secondary metabolites such as terpenes, phenolic com-
pounds, and alkaloids [11]. Indeed, natural molecules such as taxol, artemisinin, and
vinblastine [12] are currently employed in a variety of drugs for the clinical treatment of
different diseases, being plant-derived species of particular importance [10].

Among the vast number of natural structures, piperine (Figure 1), a remarkable active
alkaloid generally found in species of the Piper family, such as Piper longum (long pepper)
and Piper nigrum L. (black pepper), and responsible for their pungencies, has been studied
recently [13,14]. The relative simplicity of its obtention makes piperine commercially attrac-
tive. In this regard, controlling physicochemical parameters allows the establishment of
different extraction approaches, such as the soxhlet method, which involves sample heating
and requires a low amount of organic solvents [15], being a relatively inexpensive way for
obtaining piperine. However, compared to other approaches, the soxhlet method demands
a long extraction time [16]. Methods based on external agents such as ultrasound [17],
microwaves [18,19], maceration [20,21], and others [22] are also reported in the literature.
In all cases, piperine isolation relies on a recrystallization step, resulting in yellow-colored
needle-shaped microscopic crystals obtained with good yields and high purity [16,23].
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Figure 1. Chemical Structure of the (2E,4E)-5-(1,3-benzodioxol-5-yl)-1-(piperidin-1-yl) penta-2,4-dien-
1-one molecule (piperine). The molecule is composed of the linking between the amide and aromatic
moieties via an aliphatic chain.

Piperine exhibits several biochemical and pharmaceutical properties, being capable of
interacting with chemically and functionally diverse molecular targets [24], as confirmed
by in vitro and in vivo studies. The attention attributed to the study of this molecule is
mainly due to its biological properties, such as anti-inflammatory [25], antimicrobial [26,27],
antidepressant [28,29], antifungal [30,31], and anticancer properties [32,33]. In addition,
piperine is regarded as a target compound, as it is the principal molecule in black pepper
extract and belongs to the class of alkaloids, which have already proven anticancer activity
through chemical interactions and activation of different pathways in tumor cells [34].
Specifically, regarding the anticancer activity of piperine, recent observations show that
its mechanism of action is multiple and involves the activation of cellular and molecular
signaling pathways, with programmed cell death, decreased migration and invasion,
and reduced cell proliferation [35]. Notably, in addition to acting in isolation, piperine
can increase the bioavailability of other compounds [36,37], favoring its use as a food
supplement [38] and in combination with drugs from different classes (including current
chemotherapy agents) [39,40].

This set of factors places piperine at the heart of the search for new therapeutic
approaches for gastric cancer. In the present work, we obtained piperine via three heating-
independent methods and characterized the samples employing several techniques. More-
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over, the molecule’s in vitro cytotoxic activity in its isolated form and combined with
the chemotherapeutics 5-Fluorouracil (5-FU) and Gemcitabine (GEM) are evaluated. The
cytotoxicity experiments were counted with five Brazilian Amazon native gastric cancer lin-
eages (AGP01, AGP01 PIWIL1 KO, ACP02, and ACP03), with the models bearing a variety
of molecular profiles, including metastatic biomarkers and genetic modifications [41]. We
present novel discussions on the in vitro cytotoxicity of piperine against different gastric
cancer lineages, demonstrating the relationship between the molecule’s cytotoxic activity
and the phenotypes of the evaluated models. The results show that piperine has pro-
nounced activity against cells with a higher level of aggressiveness. In addition, we also
showed that besides acting in isolation in cancer models, piperine enhances the activity of
commercial chemotherapy drugs.

2. Results and Discussion
2.1. Isolation and Characterization of Piperine
2.1.1. Microscopy and X-ray Diffraction Analysis

The recrystallization of piperine from Piper nigrum L. extracts employing the three
heating-independent approaches proposed in this work revealed reliable and low-cost
methodologies. The obtained solid-state yellow-colored samples (P1, P2, and P3), shown
in Figure 2, exhibited good structural and color stability at room temperature for at least
120 days of storage.
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Figure 2. Photographs (top) and micrographs obtained by optical microscopy (bottom) of the P1
(A,D), P2 (B,E), and P3 (C,F) samples.

Optical microscopy analysis of these samples (Figure 2D–F) revealed that they are
composed of needle-shaped crystals, which along with their characteristic yellow color
are compatible with the reported piperine crystal [26,42,43]. Comparing the micrograph
of P3 with the results from P1 and P2, we observe that although aggregated, this sample
is still composed of needle-shaped crystals. This result confirms that adopting only pure
water as a recrystallization mediator is still effective for obtaining the piperine crystals,
even without employing KOH in the process.

As discussed later, further characterization with other techniques (e.g., XRD, NMR,
and FTIR) reveals no significant differences between the P1, P2, and P3 samples. This
trend led us to employ P2 as a representative for the other samples in the scanning electron
microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. In agreement with
the literature [26,44,45], in Figure 3A, it is demonstrated that the crystals in P2 follow the
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monoclinic system, with longitudinal lengths varying between ~100 µm and ~800 µm. The
EDS analysis (Figure 3B) reveals that the sample is mainly composed of carbon (70.0% of
relative weight) and oxygen (26.9% of relative weight) present in abundance in piperine
which is supportive of its level of purity.
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The XRD analysis reveals several atomic planes in all samples, with peaks identified
between 10◦ and 50◦ (Figure 4). The observed diffractograms agree with the literature
supporting the assignment of a monoclinic regime presented in piperine crystals [26,44,45].
As shown in Figure 4C, the XRD diffractogram of sample P3 exhibits an increased baseline,
which is suggestive of sample amorphousness and can correlate with the crystal aggregation
observed by optical microscopy.
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Figure 4. XRD diffractograms of (A) P1, (B) P2, and (C) P3 piperine samples.

2.1.2. Spectroscopy Analysis

Employing NMR spectroscopies (13C and 1H), we could track signatures from piper-
ine’s aromatic, amide, and aliphatic groups in all samples (P1, P2, and P3). Firstly, con-
sidering the 13C NMR spectra, depicted in Figure 5A–C, we verify that the π carbons
of the aromatic portion of piperine can be assigned [42,46,47] to the transitions located
at ca. 120 ppm, 123 ppm, and 144 ppm, while the O-C-O and C=C-O bonds correlate
with the transition at ~125 ppm and the transitions at ~28 ppm, ~45 ppm, and ~48 ppm,
respectively. The amide portion of piperine [42,46,48] is associated with the transitions at
~100 ppm (N-C=O), ~109 ppm, and ~150 ppm. Finally, the transitions located at ~132 ppm,
~139 ppm, and 166 ppm correlate with the aliphatic chain [42,47,49]. The transition at
~78 ppm is assigned to the reference solvent (CDCl3).

The same set of functional groups is observed in the 1H NMR spectra, as shown
in Figure 5D–F. The aromatic moiety is related to the transitions located at ca. 6.6 ppm,
7.3 ppm, 1.68 ppm (C=C-O), 1.73 ppm (C=C-O), and 3.6 ppm (C=C-O) [42,46,47]. The
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transition at ~5.9 ppm is characteristic of the N-C=O bond, which addresses the presence
of the piperine’s amide moiety. The signatures at ~6.8 ppm and ~7.1 ppm evidence the
aliphatic chain. The signal associated with the reference solvent (CDCl3) is located at
~7.5 ppm. According to all the presented results, there are no significant differences
between the NMR spectra of the P1, P2, and P3 samples. Furthermore, no additional
signals, other than the transitions specific from piperine and the adopted solvent, were
observed, suggesting that if impurities are present in the crystals, they display relatively
small concentrations regarding the concentration of piperine.
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Figure 5. 13C NMR (top) and 1H NMR (bottom) spectra of P1 (A,D), P2 (B,E), and P3 (C,F) piperine
samples.

The vibrational spectra of P1, P2, and P3 share significant similarities (Figure 6), with
all samples bearing vibrational modes located at 1033 cm−1 (symmetric =C-O-C stretching),
1132 cm−1 (asymmetric =C-O-C stretching), and 1580 cm−1 (aromatic stretching of the
benzene ring) [18,47,50] which identify the aromatic portion of the piperine structure. The
amide portion is associated with the vibrational mode at 1631 cm−1 (C=O-N bond) [46,51].
Finally, the high-energy vibrational mode centered at 2940 cm−1 [42,46,47] assigns the C-H
stretching in the aliphatic chain.

Since we measured the samples in their pristine form (solid-state), FTIR spectroscopy
also allows tracking further information on the presence of possible remnant undesired
substances. Of particular concern, the recrystallization of piperine could trap remnant
reagents such as water and KOH inside or outside the solid samples. As reported in the
literature, the water molecule exhibits active vibrational modes at ~3300 cm−1, correlated
with the symmetric and asymmetric stretching of its O-H bond [52]. Regarding KOH,
Snyder and co-workers [53] demonstrated that at room temperature (~23 ◦C), a broadband
vibrational mode at ~3600 cm−1 arises from its O-H stretching. After conducting a careful
evaluation in the high energy region of our spectra, we verified the existence of low-
intensity signals at ~3307 cm−1 and 3404 cm−1 (Figure 6b) assigned to the vibrational
modes of water [52]. Notably, the low intensity of these peaks regarding the piperine’s
vibrational modes suggest reduced amounts of moisture in all samples. No evidence of
KOH signatures is verified, endorsing the absence of remnant reagents in the samples.
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Figure 6. Fourier Transform Infrared spectra of P1 (green solid line), P2 (blue solid line), and P3 (red
solid line) piperine samples (a) in the range 950–3800 cm−1. In (b), the region of 3100–3800 cm−1 is
emphasized to track possible remnant contents of water and KOH in the solid samples.

From UV–Vis absorption spectroscopy, we verify that P1, P2, and P3 display character-
istic absorption bands centered at 299 nm, 311 nm, and 345 nm, respectively (Figure 7A).
These features are consistent with previously reported data [54–56] and can be associated
with electronic and vibronic transitions in piperine. The steady-state photoluminescence
(PL) spectra of the samples display a characteristic emission band centered at 440 nm,
which reportedly arises from piperine [57] (Figure 7B). Notably, no other emission bands
are observed in Figure 7B, suggesting that piperine is the only emissive compound in P1,
P2, and P3 samples. Comparing the most intense absorption and PL bands, we verify
Stokes shifts of ~6260 cm−1 in all samples, which is in agreement with the literature [57].
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2.2. Piperine Cytotoxicity in Gastric Cancer Models
2.2.1. Isolated Piperine

The cytotoxicity of the P1, P2, and P3 samples was evaluated for the AGP01 lineage,
which originates from peritoneal metastasis and has genetic alterations capable of providing
more resistance to the action of substances or chemotherapy [58–60]. As observed by the
MTT assay, all piperine samples are cytotoxic against the tested model, with IC50 values
of 16.81 µg/mL (P1), 12.06 µg/mL (P2), and 16.69 µg/mL (P3), as shown in Figure 8.
Furthermore, P1, P2, and P3 caused a decrease in cell viability as a function of the increase
in concentration, demonstrating a concentration dependency. The results also show that P2
displays higher cytotoxic activity, with a lower IC50 value and with a statistically significant
reduction in cell viability, starting from a concentration of 12.5 µg/mL (Figure 8B). Other
studies have also demonstrated that piperine causes a concentration-dependent reduction
in cell viability of rectal [61], cervical [62], and prostate cancer cells [63]. However, the IC50
of piperine in these studies lies around 30 µg/mL, showing that piperine is even more
active in metastatic gastric cancer.
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Figure 8. Cell viability of AGP01 cell line after 72 h of treatment with (A) P1, (B) P2, and (C) P3. The
results are expressed in percentages regarding the untreated control. Each point is equivalent to
the mean ± standard deviation of three replicates. Statistical analysis was performed with ANOVA
followed by Bonferroni’s posttest. Significant differences: ** p < 0.005, **** p < 0.0001.

From the initial screening, the P2 sample (which showed the best activity among all
piperine samples) was evaluated for cytotoxicity in three other gastric cancer lineages:
a diffuse model (ACP02), an intestinal model (ACP03), and a metastasis model with
an inactivated PIWIL1 gene (AGP01 PIWIL1 KO). Additionally, aiming to investigate the
selectivity of the compound, a non-tumor cell line (VERO) was also evaluated. The results
show that P2 is cytotoxic in all tested models. However, there are very significant differences
in the obtained IC50 values. These values were 44.32 µg/mL, 26.28 µg/mL, 47.10 µg/mL,
and 43.44 µg/mL for AGP01 PIWIL1 KO, ACP02, ACP03, and VERO lineages, respectively
(Figure 9). The level of cell viability was also heterogeneous between the cell models, with
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most of them showing significant differences regarding the negative control only in the two
highest tested concentrations (50 and 100 µg/mL) (Figure 9A,C,D). Especially for ACP02,
this difference starts from 25 µg/mL (Figure 9B).
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Figure 9. Cell viability of different gastric cancer lineages: (A) AGP01 PIWIL1 KO, (B) ACP02,
(C) ACP03, and (D) a non-tumor cell (VERO), after 72 h of treatment with P2. The results are expressed
in percentages concerning the untreated control. Each point is equivalent to the mean ± standard de-
viation of three replicates. Statistical analysis was performed with ANOVA followed by Bonferroni’s
posttest. Significant differences: **** p < 0.0001.

According to the results, AGP01 (Figure 8B) is the most sensitive cell to treatment with
P2, presenting a lower IC50 when compared to the other tested models. Furthermore, this
lineage is the only selective, regarding the non-tumor model (VERO), with a selectivity
index (SI) [64,65] of 3.6, demonstrating that P2 has specific mechanisms in the tumor cells.
The selective action of piperine has been reported for other cancer models, with higher
cytotoxicity against tumor cells compared to normal ones [33,66]. These results show that
piperine is safe for therapeutic use, being even advantageous over other non-selective
tested molecules and substances of clinical use [67,68].

Multiple factors can explain this behavior, such as the intrinsic pathways of different
lineages under the action of piperine. Data from the literature have already demonstrated
that piperine displays distinct mechanistic actions, mainly attributed to its ability to interact
with different molecular targets, including kinases [32], transcription factors [69], cell cycle
proteins [70], receptors, and molecules of signaling [71], thus supporting its potential as
an anticancer agent. Among the studied effects of piperine, both in vitro and in vivo, are
included the induction of apoptosis [72,73], the inhibition of cell proliferation [63,74] with
cell cycle arrest [70,73], and the modulation of the expression of genes and proteins involved
in the processes of cell migration and invasion [75,76]. All these effects influence the
outcome of carcinogenesis of various types of tumors, such as breast [77,78], cervical [62,79],
and colorectal [80,81].
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Considering that the IC50 of P2 on the AGP01 lineage (12.06 µg/mL) was almost
four times lower than on the AGP01 PIWIL1 KO lineage (44.32 µg/mL), we can attribute
such better cytotoxicity to the inactivation of the PIWIL1 gene, since that is the only
difference between the lineages. According to the literature, the inactivation of the PIWIL1
gene is associated with a decrease in the cell’s ability to migrate and invade, promoting
a change in the gene expression related to these processes [82,83]. Therefore, considering
the higher cytotoxicity of P2 in AGP01, which has all these genes activated, and the data
reported on the action of piperine in other types of tumors [33,84,85], it is possible to
suggest that the effects of piperine in gastric cancer may be closely related to the presence of
specific pathways of cell migration and invasion. Moreover, piperine seems more effective
for treating tumor cells with high levels of aggressiveness.

Regarding the action of P2 in primary gastric cancer models (ACP02 and ACP03),
the cytotoxicity was higher in the diffuse type model (ACP02; IC50: 26 µg/mL) concern-
ing the intestinal type (ACP03; IC50: 47 µg/mL). Diffuse gastric cancer (CGD) exhibits
a more aggressive characteristic, with undifferentiated cells, mutations, and changes in
the expression of genes involved in the epithelial-mesenchymal transition (EMT) [86–88].
In this scenario, we can infer that the more pronounced cytotoxicity of P2 on the ACP02
lineage once again shows that piperine has a better action on cancer cells with a more
aggressive phenotype and that possibly its mechanism of action is involved with the mi-
gration and invasion pathways, supporting its potential use. Corroborating our results,
Gunasekaran and co-workers showed that piperine has a remarkable in vitro action on
hepatocellular carcinoma, an aggressive and difficult-to-treat tumor [89]. In breast cancer
with a triple-negative phenotype, a similar result has been reported, with piperine showing
antiproliferative activity [90]. This tumor is considered one of the most aggressive breast
cancers due to its rapid growth and increased probability of generating metastasis [91],
which endorses our hypothesis that piperine is more active in more aggressive cells capable
of expressing migration and invasion pathways.

Following the results, new opportunities for evaluating therapeutic interventions in
gastric neoplasms with aggressive phenotype arise, which is appropriate since they are
diagnosed later, with a worse prognosis and with high mortality rates [92,93]. However,
further investigations regarding the intracellular and molecular mechanisms by which
piperine acts in gastric cancer are necessary for complete elucidation.

2.2.2. Piperine in Association with 5-Fluorouracil and Gemcitabine

The fact that piperine has shown increased activity in cells with a more aggressive
phenotype, i.e., characterized by high levels of mutations, genomic instability, and the
improved ability to grow and spread [94,95], is associated with its already reported capacity
to enhance the activity of other drugs opens promising opportunities. Therefore, we
evaluated the cytotoxic activity against the metastatic lineage AGP01 by combining piperine
with two chemotherapeutics of clinical use in gastric cancer, 5-Fluorouracil (5-FU) and
gemcitabine (GEM).

Regarding 5-FU, the results show that this chemotherapeutic displays concentration-
dependent cytotoxicity in the tested model, leading to a reduction in its cell viability,
with a significant difference in comparison to the negative control, starting at the lowest
concentration tested (0.313 µg/mL). As present in Figure 10A, the viability percentage
at this concentration is approximately 90%, reaching 50% only at the concentration of
2.5 µg/mL. This result shows that at lower 5-FU concentrations there is only a small
variation in cell viability, with great variations requiring the highest tested concentrations.

Combining 5-FU prepared in the same concentration range (0–10 µg/mL) with a single
concentration of piperine (P2), set to its IC50 value (~12 µg/mL), we observed a signifi-
cant improvement in the concentration-dependent cytotoxic effect of 5-FU. As depicted in
Figure 10B, the combination improves the activity of 5-FU, allowing the lowest concentra-
tion of the chemotherapeutic (0.313 µg/mL) to decrease cell viability to 50% in the presence
of piperine. Since in the absence of piperine, the viability only reaches 50% for 2.5 µg/mL,
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this trend demonstrates that the combination effectively enhances the action of 5-FU, allow-
ing the same cytotoxic effect in cells even employing concentrations approximately eight
times lower.
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Figure 10. Cell viability of AGP01 cell line, after 72 h of treatment with (A) 5-FU, (B) 5-FU in
combination with piperine, (C) GEM, and (D) GEM in combination with piperine. The results
are expressed in percentages concerning the untreated control. Each point is equivalent to the
mean ± standard deviation of three replicates. Statistical analysis was performed with ANOVA
followed by Bonferroni’s posttest. Significant differences: **** p < 0.0001.

The cytotoxicity evaluation of GEM followed a similar behavior. As shown in
Figure 10C, GEM is cytotoxic to the AGP01 lineage over the entire concentration range
tested (0–10 µg/mL). For the lowest concentration tested (0.313 µg/mL), cell viability
reaches 70%. As the concentration increases, a saturation pattern is achieved (Figure 10C).
However, the combination of piperine with GEM significantly enhances the cytotoxic effect.
As depicted in Figure 10D, the viability of the lower concentration of GEM (0.313 µg/mL)
decreases to approximately 30% in the presence of piperine. Although viability still satu-
rates with the increase of concentration, we verify that in the combination test, the limit
value is lower (~12%) concerning the viability found in the absence of piperine (~50%).

The combination with P2 increases the cytotoxic activity of GEM so significantly
that the effect on gastric cancer cells at the lowest concentration of the combined curve
(0.313 µg/mL) is even greater than that of the highest concentration (10 µg/mL) in the
absence of piperine, where the cell viability values are 32.75% and 47.3%, respectively.
This evidence shows that piperine can improve the action of GEM in gastric cancer cells
considerably and that the combined treatment could decrease the employed concentration
of the chemotherapeutic, causing better effects than in its isolated form.

One of the main disadvantages of current chemotherapy for gastric cancer is the
increased toxicity of drugs, especially at high concentrations [96,97]. Therefore, evaluating
new substances able to increase their effects at lower doses would eventually reduce this
toxicity [98–100]. The combination of drugs in cancer therapy is a valuable treatment
modality, as it increases the effectiveness of drugs, seeking to act on the main pathways in
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a synergistic or additive way [101]. This approach can decrease resistance to chemotherapy
and provide anticancer benefits such as reduced cell proliferation and metastasis [102].
Thus, the results observed for the combination between piperine, and the chemotherapy
drugs 5-FU and GEM corroborate the data already reported in the literature, which show
significant effects of piperine in increasing the bioavailability of other compounds, such
as antitubercular compounds [103], anti-inflammatory compounds [104], antibiotics, and
even chemotherapeutics [105]. These reports demonstrate that different systems combined
with piperine can have a higher impact on the bioavailability of co-administered drugs
by diverse mechanisms, including inhibiting efflux transport, inhibiting intestinal and
hepatic metabolism, and modulation of activity and expression of metabolic response
enzymes [106].

The action of piperine combined with chemotherapeutic agents for clinical use in
other types of cancer has also been reported. In breast cancer cells, piperine was combined
with cisplatin and led the cells to apoptosis more effectively than the drug administered
alone, reducing the toxic dose used in chemotherapy [40]. The combination of piperine and
docetaxel brought an improved antiproliferative response against taxane-resistant prostate
cancer in vitro and in vivo models [107,108]. Furthermore, in an in vitro model of cervical
cancer (HeLa linage), piperine combination with paclitaxel demonstrated a synergistic
effect, sensitizing tumor cells toward the drug’s action [109]. Therefore, chemotherapeutic
systems combined with piperine are effective in the cytotoxicity of tumor cells, generating
increased absorption and therapeutic efficacy of the drugs and allowing lower concen-
trations to produce the same or even improved effects [71,110,111]. This trend endorses
our findings in gastric cancer models since piperine enhanced the activity of the tested
chemotherapeutic drugs, decreasing their required effective concentrations in vitro. Be-
cause piperine exhibits multiple mechanisms in gastric cancer cells, its enhancing ability
may still bring other benefits in the search for more effective treatments.

3. Materials and Methods
3.1. Reagents and Chemicals

Potassium hydroxide (KOH) flakes (≥90.0%), P.A. ethyl alcohol (≥99.9%), and P.A.
deuterated chloroform (CDCl3) (≥99.8%) were purchased from Êxodo Científica (Sumaré,
São Paulo, Brazil). The 5-fluorouracil (≥99.9%) and Gemcitabine (≥98.0%) chemotherapeu-
tics, the P.A. dimethyl sulfoxide (DMSO) (≥99.5%), and the MTT salt (3-(4,5-dimethylthiazole-
2-yl)-2,5-diphenyltetrazolium) were purchased from Sigma-Aldrich/Merck (Darmstadt,
Germany). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and
Penicillin (100 U/mL)/Streptomycin (10,000 units/mL of penicillin and 10,000 µg/mL of
streptomycin) were purchased from Gibco® (Grand Island, NY, USA). All reagents and
chemicals were used as received with no further purification processing.

3.2. Plant Material and Obtention of Piperine Crystals

Dried seeds of black pepper (Piper nigrum L.), purchased from a local market of
Abaetetuba city in the state of Pará, Brazil, were milled mechanically employing a porcelain
crucible and pestle arrangement (A-100, Chiarotti, Mauá, São Paulo, Brazil). Afterward, we
immersed 200.0 g of the crushed black pepper into 1.0 L of P.A. ethyl alcohol. The solution
was stored at room temperature (~30 ◦C) for seven days until submitted to simple filtration
to remove remnant milled pepper, resulting in the ethanolic extract of Piper nigrum (EEPN).

Considering that isolating natural molecules from extracts is generally a difficult en-
deavor in which undesired products (e.g., essential oils, isomers, and other metabolites) can
be obtained concomitantly, we opted to employ three heating-independent recrystallization-
based isolation methodologies to force piperine to crystallize and form solid-state samples
(P1, P2, and P3). The obtention of P1 counts with the mixing, at room temperature, of
a 100.0 mL EEPN aliquot with 10.0 mL of an aqueous KOH solution (4% v/v) and 40.0 mL
of distilled water. The sample P2 followed a similar methodology, mixing a 100.0 mL
EEPN aliquot with 10.0 mL of an ethanolic KOH solution (4% v/v) and 40.0 mL of distilled
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water. Finally, sample P3 originates from a green extraction method, free of KOH, in which
a 100.0 mL EEPN aliquot is mixed directly with 50.0 mL of distilled water. All three
mixtures were stored at room temperature for seven days forming yellow-colored solid
precipitates after this period. The samples were filtered, and their solid phases (piperine
crystals) were isolated for further characterization. Since there are no reports demonstrating
that other components available in Piper nigrum L. extracts can produce yellow-colored
needle-shaped crystals, we expect these substances to remain in the liquid phase, discarded
after sample filtration. Six replicates were prepared to ensure the reproducibility of the
proposed isolation methods.

3.3. Characterization Methods
3.3.1. X-ray Diffraction (XRD)

The X-ray diffractograms were obtained with the samples in the solid-state in a
BRUKER (Leipzig, Germany) diffractometer model D2 PHASER, equipped with a goniome-
ter (θ/θ), radius: 141.1 nm, a copper anode ceramic X-ray tube (Cu-Kα1), and a 1D Lynxeye
detector with a 5◦, 2θ aperture and 192 channels. The characteristic emission line is located
at 1.540598 Å/8.047 keV, with a maximum power of 300 W (30 kV × 10 mA).

3.3.2. Optical Microscopy and Scanning Electron Microscopy (SEM) Coupled with
Energy-Dispersive X-ray Spectroscopy (EDS)

Scanning electron micrographs were obtained for the solid-samples in a SEM micro-
scope model TM 3000 Hitachi (Tokyo, Japan) coupled with a Energy-Dispersive X-ray
Spectroscopy (EDS) TESCAN S8000 detector (Brno, Czech Republic), model VEGA TC. Op-
tical microscopy analysis of the solid samples was performed employing a phase contrast
optical microscope, Axio Observer 5 Zeiss (Oberkochen, Germany).

3.3.3. Nuclear Magnetic Resonance (NMR)

The 1H and 13C NMR spectra were obtained using an instrument from Bruker (Leipzig,
Germany), model Advance 400, which is equipped with a 5 mm cryogenic probe with
16 acquisitions each at a temperature of 25.7 ◦C. For the measurements, 30.0 mg of the P1,
P2, and P3 samples were dissolved in deuterated chloroform (CDCl3). This solvent was
used as an internal reference for the calibration of the equipment. The spectral widths for
1H and 13C were 15 ppm and 200 ppm, respectively.

3.3.4. Infrared Spectroscopy

The infrared spectra of the solid-state P1, P2, and P3 samples were measured in
a Fourier infrared spectrometer from Bruker (Leipzig, Germany), model Vertex 70v, which
is equipped with a high efficiency interferometer (spectral resolution of ~1.0 cm−1) and
a vacuum pump detector.

3.3.5. UV–Vis Absorption and Photoluminescence (PL) Spectroscopies

Absorption spectra were acquired in a JASCO V-670 spectrophotometer (Easton, MD,
USA) whereas steady-state photoluminescence (PL) spectra were measured in a Deltaflex
TCSPC Lifetime Fluorometer from Horiba (Kyoto, Japan), equipped with a pulsed excitation
source (λexc = 352 nm with 8.0 MHZ of repetition rate). All measurements were conducted
in quartz cuvettes (1.0 cm path length) with the P1, P2, and P3 samples dissolved in P.A.
dimethyl sulfoxide (DMSO).

3.4. In Vitro Cytotoxicity Activity
3.4.1. Cell Culture

Gastric adenocarcinoma cell lines of the intestinal and diffuse Lauren’s types [112,113]
were used, including AGP-01 (malignant ascites), AGP-01 PIWIL1 KO (PIWIL1 gene inacti-
vated) [82], ACP02 (primary cancer of the diffuse type), and ACP03 (primary cancer of the
intestinal type), as well as non-neoplastic African Green Monkey Kidney (VERO) cell for
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comparison. Cells were grown in adherent monolayer cultures in Dulbecco’s modified Ea-
gle’s medium (DMEM) supplemented with 10% fetal bovine serum, penicillin (100 U/mL),
and streptomycin (100 mg/mL) and maintained at 37 ◦C in 5% carbon dioxide.

3.4.2. Cytotoxicity Assay

The cytotoxic activity of the P1, P2, and P3 samples was evaluated for all lineages
(AGP01, AGP01 PIWIL1 KO, ACP02, and ACP03) using the MTT colorimetric assay. The
5-fluorouracil (5-FU) and gemcitabine (GEM) chemotherapeutics were evaluated for AGP01
lineage. This assay is based on the conversion of the yellow MTT salt to formazan, a purple
chromogenic product [114–116] by metabolically viable cells. All solid-state samples (P1,
P2, and P3) were dissolved in dimethyl sulfoxide for the MTT assay. Cells were seeded in
96-well plates at a density of 103 cells/well for 24 h to allow adhesion in the plate. The
treatment was accomplished in a dose–response curve, with seven concentrations ranging
from 1.56 µg/mL to 100 µg/mL, with further incubation at 37 ◦C for 72 h. The dissolved
piperine samples in DMSO were added to the DMEM culture medium for cell treatment.
The negative control was taken as the untreated cells, and the experiments were performed
in triplicate. After treatment, 100 µL of MTT solution, 5 mg/mL stock solution, diluted 1:10
v/v in DMEM medium, was added to each well of the plate and incubated at 37 ◦C for 3 h.
Absorbance of each plate was measured using a microplate spectrophotometer at 570 nm
(SYNERGY/HT microplate reader, BioTek, Winooski, VT, USA).

Considering the individual IC50 values of P2 piperine (selected after the results analy-
ses), of 5-FU and GEM, different concentrations of the chemotherapeutics (0.313–10 µg/mL)
were combined to a constant concentration (IC50) of P2 (12 µg/mL), and the cell viability
was obtained through of the MTT assay as described above.

3.4.3. Data Analysis

A sigmoidal dose–response equation (non-linear regression) was used to determine
the half maximal inhibitory concentration (IC50) and their respective confidence intervals
(95% CI). Cell viability was obtained from the percentages relative to the negative control,
using Equation (1), where Absexp and Absctr account for the absorbance tracked at 570 nm
for the experimental and control samples, respectively. To verify differences between the
experimental groups, the ANOVA test (two way), followed by Bonferroni’s posttest, was
performed, with significance levels p > 0.005 (**) and p > 0.0001 (***).

Cell viability (%) =

(
Absexp

Absctr

)
∗ 100 (1)

4. Conclusions

In summary, in the present study, three heating-independent extraction methods
proved to be low-cost alternatives and reliable for the easy extraction of piperine crystals
from black pepper seeds. These processes introduce new approaches to obtaining piperine.
The samples originating from these processes (P1, P2, and P3) showed cytotoxic effects on
gastric cancer cells, with P2 exhibiting the best cytotoxicity and selectivity. Furthermore,
piperine was more active in cells with an aggressive phenotype, and possibly its mechanism
of action involves cell migration and invasion pathways. This finding demonstrates for
the first time the relationship between piperine cytotoxic activity and the phenotype of the
gastric cancer lineages. Additionally, the results showed that besides acting in isolation on
cancer models, when tested in combination, piperine provides considerable improvement
in the activity of commercial chemotherapeutics such as 5-Fluorouracil and Gemcitabine,
which is a very promising finding with possible outcomes in future research and clinical
endeavors. This action leads to a decrease in the effective concentration of chemotherapeutic
drugs on cells, which may mean more effective therapeutic perspectives and a reduction
in toxicity. This set of results demonstrates the potential use of piperine in both isolated
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and combined forms in gastric cancer models, supporting the promising applicability of
natural products in generating new therapies.
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