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Abstract: Organic thioethers play an important role in the discovery of drugs and natural prod-
ucts. However, the green synthesis of organic sulfide compounds remains a challenging task. The
convenient and efficient synthesis of 5-alkoxy-3-halo-4-methylthio-2(5H)-furanones from DMSO is
performed via the mediation of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), affording a facile
route for the sulfur-functionalization of 3,4-dihalo-2(5H)-furanones under transition metal-free con-
ditions. This new approach has demonstrated the functionalization of non-aromatic Csp2-X-type
halides with unique structures containing C-X, C-O, C=O and C=C bonds. Compared with traditional
synthesis methods using transition metal catalysts with ligands, this reaction has many advantages,
such as the lower temperature, the shorter reaction time, the wide substrate range and good functional
group tolerance. Notably, DMSO plays multiple roles, and is simultaneously used as an odorless
methylthiolating reagent and safe solvent.

Keywords: 2(5H)-furanone; thiolation; transition metal-free; dimethyl sulfoxide; C-S bond construction

1. Introduction

Sulfur is one of the most fundamental elements in the life system in the form of
proteins and amino acids [1], and its rich valence states [2] are the chemical basis for its
extensive use in medical drugs [3], pesticides [4] and organic luminescent materials [5,6]. In
particular, their universal role in biological metabolism makes them crucial for organisms
from the ocean to the terrestrial system [7]. Therefore, among the 362 sulfur-containing
drugs listed by the US Food and Drug Administration (FDA), sulfide and its derivatives are
one of a series of leading pharmaceutical active compounds [8]. For example, several nitro-
and amino-bound sulfides are biologically active ingredients and are widely used to treat
inflammation, Alzheimer’s disease, HIV, breast cancer, malaria and fungal-related diseases.
In a word, among numerous sulfur-containing compounds, thioethers are an important
structural component existing in many biological and pharmaceutical molecules [9] (some
important examples with the structure of the methyl sulfur group and nitrogen-containing
heterocyclic ring are shown in Figure 1 [10,11]).

Molecules 2023, 28, 5635. https://doi.org/10.3390/molecules28155635 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28155635
https://doi.org/10.3390/molecules28155635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28155635
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28155635?type=check_update&version=2


Molecules 2023, 28, 5635 2 of 14Molecules 2023, 28, x FOR PEER REVIEW 2 of 14 
 

 

Collismycin A

N S

N

Thioridazine Cyclobrassinin

N
H

S

N

S N
N

O

N
OH

S

 
Figure 1. Some natural products and drugs containing the structure of the methyl sulfur group. 

In addition, thioethers are also important intermediates in organic synthesis, which 
can be transformed into sulfones [12] and sulfoxides [13], or used as the substrates in the 
Sonogashira reaction [14] and other reactions [15]. At present, the construction methods 
of methyl sulfur compounds are mainly the reduction of sulfoxides [16,17] and the reac-
tion of aryl thiols with iodides [18] or dimethyl carbonate [19]. Among the methods 
mentioned above, some sources of sulfur have obvious defects. In particular, for the 
more commonly used reaction of thiols (thiophenols) [20,21], these sulfur reagents bring 
many shortcomings, such as unpleasant odors, toxicity and harsh reaction conditions. 
Therefore, the development and utilization of more stable, environmentally friendly and 
economical sulfur reagents for the synthesis of sulfide compounds still have important 
significance. 

Dimethyl sulfoxide (DMSO) is widely used as a high-quality solvent because of its 
high solubility for many organic and inorganic compounds [22,23]. In addition to being 
used as a solvent, DMSO has also been used as a multifunctional, inexpensive and safe 
reagent as a carbon [24,25], sulfur [26,27] and oxygen source [28,29] in many reactions. 
However, due to the low activity of reaction substrates (especially for chlorides) or the 
fact that these reactions often require a higher temperature and a longer reaction time, 
the synthesis research progress in using DMSO as a sulfur source with halo-
gen-containing compounds to construct molecules with the methyl sulfur group is rela-
tively slow. For example, in 2011, Cheng’s group [30] reported the copper-mediated me-
thylthiolation of aryl halide and DMSO (Scheme 1a). Later, Mal’s group [31] further op-
timized the Cu-mediated method via the methylthiolation of halogenated aromatic hy-
drocarbons and DMSO by changing the reaction conditions (Scheme 1b). 
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In addition, thioethers are also important intermediates in organic synthesis, which
can be transformed into sulfones [12] and sulfoxides [13], or used as the substrates in the
Sonogashira reaction [14] and other reactions [15]. At present, the construction methods of
methyl sulfur compounds are mainly the reduction of sulfoxides [16,17] and the reaction of
aryl thiols with iodides [18] or dimethyl carbonate [19]. Among the methods mentioned
above, some sources of sulfur have obvious defects. In particular, for the more commonly
used reaction of thiols (thiophenols) [20,21], these sulfur reagents bring many shortcomings,
such as unpleasant odors, toxicity and harsh reaction conditions. Therefore, the devel-
opment and utilization of more stable, environmentally friendly and economical sulfur
reagents for the synthesis of sulfide compounds still have important significance.

Dimethyl sulfoxide (DMSO) is widely used as a high-quality solvent because of its
high solubility for many organic and inorganic compounds [22,23]. In addition to being
used as a solvent, DMSO has also been used as a multifunctional, inexpensive and safe
reagent as a carbon [24,25], sulfur [26,27] and oxygen source [28,29] in many reactions.
However, due to the low activity of reaction substrates (especially for chlorides) or the
fact that these reactions often require a higher temperature and a longer reaction time, the
synthesis research progress in using DMSO as a sulfur source with halogen-containing
compounds to construct molecules with the methyl sulfur group is relatively slow. For
example, in 2011, Cheng’s group [30] reported the copper-mediated methylthiolation of aryl
halide and DMSO (Scheme 1a). Later, Mal’s group [31] further optimized the Cu-mediated
method via the methylthiolation of halogenated aromatic hydrocarbons and DMSO by
changing the reaction conditions (Scheme 1b).

Molecules 2023, 28, x FOR PEER REVIEW 2 of 14 
 

 

Collismycin A

N S

N

Thioridazine Cyclobrassinin

N
H

S

N

S N
N

O

N
OH

S

 
Figure 1. Some natural products and drugs containing the structure of the methyl sulfur group. 

In addition, thioethers are also important intermediates in organic synthesis, which 
can be transformed into sulfones [12] and sulfoxides [13], or used as the substrates in the 
Sonogashira reaction [14] and other reactions [15]. At present, the construction methods 
of methyl sulfur compounds are mainly the reduction of sulfoxides [16,17] and the reac-
tion of aryl thiols with iodides [18] or dimethyl carbonate [19]. Among the methods 
mentioned above, some sources of sulfur have obvious defects. In particular, for the 
more commonly used reaction of thiols (thiophenols) [20,21], these sulfur reagents bring 
many shortcomings, such as unpleasant odors, toxicity and harsh reaction conditions. 
Therefore, the development and utilization of more stable, environmentally friendly and 
economical sulfur reagents for the synthesis of sulfide compounds still have important 
significance. 

Dimethyl sulfoxide (DMSO) is widely used as a high-quality solvent because of its 
high solubility for many organic and inorganic compounds [22,23]. In addition to being 
used as a solvent, DMSO has also been used as a multifunctional, inexpensive and safe 
reagent as a carbon [24,25], sulfur [26,27] and oxygen source [28,29] in many reactions. 
However, due to the low activity of reaction substrates (especially for chlorides) or the 
fact that these reactions often require a higher temperature and a longer reaction time, 
the synthesis research progress in using DMSO as a sulfur source with halo-
gen-containing compounds to construct molecules with the methyl sulfur group is rela-
tively slow. For example, in 2011, Cheng’s group [30] reported the copper-mediated me-
thylthiolation of aryl halide and DMSO (Scheme 1a). Later, Mal’s group [31] further op-
timized the Cu-mediated method via the methylthiolation of halogenated aromatic hy-
drocarbons and DMSO by changing the reaction conditions (Scheme 1b). 

 
Scheme 1. The synthesis of thioethers using DMSO. Scheme 1. The synthesis of thioethers using DMSO.



Molecules 2023, 28, 5635 3 of 14

In recent years, our group reported the methylthiolation reaction of the non-aromatic
CSP2-X compound 3,4-dihalo-2(5H)-furanone with DMSO, further expanding the construc-
tion scope of methyl sulfur compounds when using halides and DMSO as substrates
(Scheme 1c) [32]. Even so, it is a pity that, in these methods mentioned above, there are still
shortcomings, such as the higher reaction temperature, the longer reaction time and the
use of transition metal catalysis and ligands. Therefore, the green synthesis methods for
preparing methyl sulfur compounds from readily available starting materials still need to
be explored.

Sulfoxides are also a class of extremely important compounds because they are not only
widely used as intermediates in synthesis but also as chiral ligands in various asymmetric
catalysis [33,34]. In addition, sulfoxides can also be applied in many fields such as fine
chemicals, pharmaceuticals, pesticides and functional materials [35,36]. On the basis
of our interest in the synthesis of sulfur-containing compounds [37–39], especially the
construction of a series of sulfur-containing compounds through the reaction of 3,4-dihalo-
2(5H)-furanone with various sulfur-containing reagents (Scheme 2) [40–43], we aimed to
introduce the sulfoxide group at the 4-position of 3,4-dihalo-2(5H)-furanone instead of
the 4-halo group by controlling reaction conditions, in order to make the whole work of
2(5H)-furanone chemistry more systematical. However, as an unexpected result, a thioether
structure instead of the sulfoxide group was found (Scheme 2).
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veloped a simple, mild and transition metal-free method to realize the greener methyl-
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It is worth noting that different 2(5H)-furanone compounds have been developed
in many fields such as modern organic synthesis [44], drug molecular design [45] and
natural product total synthesis [46] due to their potential high biological activities, such as
antiviral [47] or anti-HIV activity [48]. In particular, the thioetherified 2(5H)-furanone can
be a kind of potential drug molecule with good anticancer activity, as Li’s group reported
before [49]. Therefore, it is quite important to develop a new method for the more efficient
synthesis of the methylthioetherified 3,4-dihalo-2(5H)-furanone 3 (Scheme 1, this work). In
addition, as a kind of compound containing multiple functional groups, the structure can
be further modified in the next development and the obtained potential bioactive molecules
may play an important role in drug development and design.

Thus, herein, on the basis of our group’s previous research on various functionalization
reactions of 3,4-dihalo-2(5H)-furanones for bioactive compounds [50,51], we developed a
simple, mild and transition metal-free method to realize the greener methylthiolation of



Molecules 2023, 28, 5635 4 of 14

3,4-dihalo-2(5H)-furanones by further optimizing the conditions of the methylthiolation
reaction from 3,4-dihalo-2(5H)-furanone and DMSO (Scheme 2, this work).

2. Results and Discussion
2.1. Optimization of Reaction Conditions

At the beginning of this study, 5-methoxy-3,4-dibromo-2(5H)-furanone 1a was used as
a model substrate to screen the reaction conditions in DMSO (Table 1).

Table 1. Optimization of reaction conditions [a].
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Entry Activator
(Equiv.) Temp. (◦C) Time (h) Yield of 3a (%) [b]

1 NBS (1.0) 80 5 65

2 NCS (1.0) 80 5 43

3 DBDMH (1.0) 80 5 87

4 DBDMH (0.5) 80 5 78

5 DBDMH (1.5) 80 5 93

6 DBDMH (2.0) 80 5 90

7 DBDMH (1.5) 60 5 85

8 DBDMH (1.5) 100 5 87

9 DBDMH (1.5) 80 8 89

10 DBDMH (1.5) 80 3 57
[a] Reaction conditions: 1a (0.4 mmol) and 2 (2 mL) were added and stirred for 5 h. [b] Isolated yield.

Firstly, we optimized the activating agent (entries 1–3). Obviously, compared with
N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS), when using 1,3-dibromo-
5,5-dimethylhydantoin (DBDMH) as an activator, the obtained effect is the best, and the
corresponding yield is as high as 87% (entry 3).

Next, based on the above results, we chose DBDMH as the activator to further optimize
the dosage of DBDMH (entries 3–6). It can be found that, when its dosage is 1.5 equivalents,
the conversion rate of this reaction is up to 93% (entry 5). Therefore, we selected 1.5 equiv.
DBDMH to further optimize the temperature required for the reaction (entry 5 vs. entries
7–8). As can be seen from a series of temperature exploration experiments, 80 ◦C is more
conducive to the reaction (entry 5).

Finally, we also explored the time required for the reaction (entry 5 vs. entries 9–10). It
is obvious that prolonging or reducing the reaction time is not beneficial for improving the
yield, and the best time is still 5 h (entry 5).

Thus, taking the reaction of 5-methoxy-3,4-dibromo-2(5H)-furanone 1a in DMSO 2
as an example, the relatively ideal reaction conditions are as follows: using 0.4 mmol
5-methoxy-3,4-dibromo-2(5H)-furanone 1a to react with 2 mL DMSO at 80 ◦C for 5 h, the
isolated yield of product 3a can reach 93%.

2.2. Investigation into the Range of Reaction Substrates

With the optimal conditions in hand, the substrate scope of this transformation was
assessed. The results have been summarized, and are shown in Table 2.
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Table 2. Substrate scope of various 5-substituted-3,4-dihalo-2(5H)-furanone intermediate 1 [a,b] [32].
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[b] Isolated yield.

Firstly, the tolerance of 3,4-dihalo-2(5H)-furanone substrates with different substituents
R1 at the 5-position is examined when the halogen on the furanone ring is the bromine atom.
Although the substituent groups at the 5-position on the furanone ring are different, the
reaction can proceed smoothly (3a–3j, 74–93%). In particular, the reaction is well tolerated
even for the substitution of a strong electron-withdrawing group of biphenyl, giving a 46%
yield of product 3k.

In addition, as expected, the yield decreased slightly with the extension of the carbon
chain and the enhanced steric hindrance effect (e.g., 3a vs. 3d vs. 3h, 93% vs. 88% vs.
78%). Even so, it is satisfied that for the menthoxy group with large steric hindrance, the
corresponding target product 3j can be obtained with an isolated yield of 74%.



Molecules 2023, 28, 5635 6 of 14

When the halogen is chlorine on the furanone ring, due to the activity difference
between the bromine and chlorine atoms, the yield of the corresponding target products
3l–3t is between 49 and 72%, and the steric hindrance effect of the substitution group at the
5-position is similar.

It is noteworthy that although the yield of the electron-withdrawing group was rel-
atively low (e.g., Ph- in 3t, 49%) compared with the yield data of the known compounds
reported before [32], most of them were improved, especially for the cases where the
previous yield was relatively low.

2.3. Structural Characterization Analysis

Firstly, the compounds synthesized herein were characterized using nuclear magnetic
resonance (NMR) technology. From the 1H NMR spectra of the target compounds (please
see the Supplementary Materials), it can be seen that the 1H NMR data of compounds 3a–3t
are consistent with the corresponding hydrogens in these target products. Similarly, the
13C NMR test results are also consistent.

In particular, for the synthesized new compounds, their spectra of high-resolution
mass spectrometry (HR-MS) were also tested. Taking the target compound 3c as an example,
it can be found that HR-MS can also correspond well with the structure of compound 3c
(Figure 2). In short, from the analysis of the obtained HR-MS results in combination with
other results, it is confirmed that DMSO can indeed react smoothly with 3,4-dihalo-2(5H)-
furanones that are substituted with different alkoxy groups at the 5-position, giving the
anticipated products.
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Importantly, although nuclear NMR and mass spectrometry tests have confirmed the
expected structure, in order to further determine the product structure, the single-crystal
structure of 3a (CCDC 2270564) [52] is also obtained (the detailed data can be seen in Table 3,
and the corresponding molecular structure of 3a can be seen in Table 2), which fully proves
the structure of the anticipated product. Thus, the structures of the serial compounds are
well characterized.

Table 3. Crystal data and structure refinement for 3a.

Compound 3a

Empirical formula C6H7BrO3S

Formula weight 239.09

Temperature (K) 297

Wavelength (Å) 0.71073

Crystal system Monoclinic

Space group P21

Unit cell dimensions (Å, ◦)
a = 4.1083 (8), b = 7.6804 (19), c = 13.739 (3)

α = 90, β = 90.079 (17), γ = 90

Volume (Å3) 433.22 (16)

Z 2

Density (calculated) (g/cm3) 1.833

Absorption coefficient (mm−1) 4.941

F(000) 236.0

Theta range for data collection 3.981 to 22.995

Index ranges −4 ≤ h ≤ 4, −9 ≤ k ≤ 9, 0 ≤ l ≤ 16

Reflections collected 1464

Independent reflections 1464 [Rsigma = 0.1075]

Completeness to theta = 1.78◦ 99.6%

Absorption correction Multiscan

Max. and min. transmission 1.000 and 0.101

Refinement method Least squares minimization

Data/restraints/parameters 1464/1/103

Goodness-of-fit on F2 1.040

Final R indices [I > 2 sigma (I)] R1 = 0.0545, wR2 = 0.0955

R indices (all data) R1 = 0.0707, wR2 = 0.1048

Largest diff. peak and hole 0.58 and −0.84 e.Å−3

2.4. Mechanism Investigation and Gram-Scale Experiment

To have a deeper understanding into the reaction process, we performed two control
experiments accordingly. Firstly, we added two equiv. radical scavenger 2,2,6,6-tetra-
methylpiperidin-1-yloxyl (TEMPO) to the reaction system. It was found that the corre-
sponding compound 3a can also be obtained in a 91% yield (Scheme 3a). And, compared
with the reaction situation under the standard conditions, it is clear that the yield has almost
no effect. This fully demonstrates that the reaction may not be involved in the pathway of
radical participation.
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Subsequently, the reaction under standard conditions for 5 h but without the addition
of the activator DBDMH could not proceed smoothly (Scheme 3b). This indicates that
DBDMH may be crucial in this transformation.

Compared with other brominating agents, such as NBS, or N-bromoacetamide, DB-
DMH as a special brominating agent has many advantages, e.g., high active bromine
content, good storage stability and economic use [53–55]. In addition, acting as an oxidant
in chemical synthesis, it also can be widely used in various transformations [56,57].

Thus, based on these relevant properties of DBDMH and the above-mentioned control
experimental results, we proposed a possible reaction mechanism (Scheme 4), referring to
the relevant literature reported before [58,59]:

Molecules 2023, 28, x FOR PEER REVIEW 8 of 14 
 

 

 
Scheme 3. Control experiments. 

Subsequently, the reaction under standard conditions for 5 h but without the addi-
tion of the activator DBDMH could not proceed smoothly (Scheme 3b). This indicates 
that DBDMH may be crucial in this transformation. 

Compared with other brominating agents, such as NBS, or N-bromoacetamide, 
DBDMH as a special brominating agent has many advantages, e.g., high active bromine 
content, good storage stability and economic use [53–55]. In addition, acting as an oxi-
dant in chemical synthesis, it also can be widely used in various transformations [56,57]. 

Thus, based on these relevant properties of DBDMH and the above-mentioned con-
trol experimental results, we proposed a possible reaction mechanism (Scheme 4), refer-
ring to the relevant literature reported before [58,59]: 

O
S S

O O

O
+

O

X X

ORO
S+

O

S X

ORO

X

O

S X

ORO

MeX

(1)

(2)

1 A 3

DBDMH

+

 
Scheme 4. A plausible reaction pathway. 

Initially, with the promotion of DBDMH and heating, DMSO is successfully de-
composed into dimethyl sulfide [60]. Subsequently, 5-alkoxy-3,4-dihalo-2(5H)-furanone 1 
is attacked by dimethyl sulfide to form the intermediate A. Next, after a nucleophilic at-
tack to intermediate A by halides in the reaction system, the target product 3 is obtained. 

In order to demonstrate the feasibility of synthetic applications of this transfor-
mation, a gram-scale experiment was carried out, and the reaction was performed with 5 
mmol dosage. As shown in Scheme 5, when using 1.35 g 1a to react with DMSO under 
standard conditions, the reaction can still be efficiently carried out, giving 1.06 g of the 
target compound 3a with an excellent yield (89%). 

 
Scheme 5. Gram-scale reaction. 

Therefore, the experimental results show that the novel method of this interesting 
halide 1 and DMSO 2 under the simple and mild reaction conditions without the partic-
ipation of transition metal is indeed successful, which is very important in the actual 
production for the drug development from potential bioactive compounds. 

Scheme 4. A plausible reaction pathway.

Initially, with the promotion of DBDMH and heating, DMSO is successfully decom-
posed into dimethyl sulfide [60]. Subsequently, 5-alkoxy-3,4-dihalo-2(5H)-furanone 1 is
attacked by dimethyl sulfide to form the intermediate A. Next, after a nucleophilic attack
to intermediate A by halides in the reaction system, the target product 3 is obtained.

In order to demonstrate the feasibility of synthetic applications of this transformation,
a gram-scale experiment was carried out, and the reaction was performed with 5 mmol
dosage. As shown in Scheme 5, when using 1.35 g 1a to react with DMSO under standard
conditions, the reaction can still be efficiently carried out, giving 1.06 g of the target
compound 3a with an excellent yield (89%).
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Therefore, the experimental results show that the novel method of this interesting
halide 1 and DMSO 2 under the simple and mild reaction conditions without the par-
ticipation of transition metal is indeed successful, which is very important in the actual
production for the drug development from potential bioactive compounds.
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3. Materials and Methods
3.1. General Information

The spectra of 1H and 13C NMR were collected using an AVANCE NEO-600 in CDCl3,
using tetramethylsilane (TMS) as an internal standard. High-resolution mass spectra
(HR-MS) were obtained using a MAT 95XP mass spectrometer. Single-crystal X-ray anal-
ysis was obtained using Agilent Gemini E. Reactions were monitored using thin-layer
chromatography (TLC) and visualized via UV light at 254 nm.

All reagents and solvents were purchased from the commercial sources and used
without further purification.

3.2. Experimental Procedure for Intermediate Compounds 1

Different intermediate 5-alkoxy(aryloxy)-3,4-dihalo-2(5H)-furanones 1 were synthe-
sized according to the procedure in the literature [43]. As shown in Scheme 6, after the
slow addition of 1–2 drops of concentrated H2SO4 into the mixture of mucobromic acid or
mucochloric acid (20 mmol) and the corresponding alcohol (30 mL) in a three-neck flask,
the obtained mixture was heated to continue refluxing for 36–72 h.
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Once the reaction was completed, the reaction mixture was quenched via the saturated
solution of sodium chloride and extracted with ethyl acetate. Then, the organic layer was
dried over anhydrous sodium sulfate solid. Finally, after filtration, the evaporation of the
solvents under reduced pressure gave the crude product, which was further purified via
column chromatography on silica gel to obtain intermediate 1.

3.3. Experimental Procedure for Compounds 3a–3t

As shown in Scheme 7, 3,4-dihalo-2(5H)-furanone compound 1 (0.40 mmol) and
DBDMH (0.60 mmol) were mixed in DMSO (2 mL), and the mixture was stirred at 80 ◦C
for 5 h.
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Scheme 7. Synthesis route of target products 3a–3t.

After the completion of the reaction, the reaction mixture was quenched with the
saturated solution of sodium chloride (15 mL) and extracted with ethyl acetate (3 × 15 mL).
Then, the organic layer was dried over anhydrous sodium sulfate solid. Finally, after
filtration, the evaporation of the solvents under reduced pressure gave the crude product,
which was further purified via column chromatography on silica gel to afford the desired
product 3.
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3.4. Structural Characterization Data of Compounds 3a–3t

The structures of the serial compounds 3a–3t were systematically characterized via
NMR, HR-MS, etc., and the corresponding data are summarized in the following.

(1) 3-Bromo-5-methoxy-4-methylthiofuran-2(5H)-one (3a), yellow solid, m.p.: 84.7–85.9 ◦C
(86.7–87.8 ◦C [32]), 89 mg, 93%; 1H NMR (600 MHz, CDCl3), δ, ppm: 2.60 (s, 3H, SCH3), 3.54
(s, 3H, OCH3), 5.90 (s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.2, 54.8, 101.9, 105.6,
160.0, 164.9; ESI-HRMS, m/z: calcd for C6H8BrO3S [M + H]+: 238.9372, found: 238.9369.

(2) 3-Bromo-5-ethoxy-4-methylthiofuran-2(5H)-one (3b), yellowish oil, 85 mg, 84%
(83% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 1.31 (t, J = 7.2 Hz, 3H, CH3), 2.61 (s, 3H,
SCH3), 3.73–3.92 (m, 2H, OCH2), 5.94 (s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ, ppm:
13.2, 15.0, 64.6, 101.3, 105.4, 160.3, 165.0; ESI-HRMS, m/z: calcd for C7H10BrO3S [M + H]+:
252.9529, found: 252.9524.

(3) 3-Bromo-4-methylthio-5-propoxyfuran-2(5H)-one (3c), yellowish oil, 92 mg, 86%;
1H NMR (600 MHz, CDCl3), δ, ppm: 0.98 (t, J = 6.0 Hz, 3H, CH3), 1.67–1.74 (m, 2H, CH2),
2.61 (s, 3H, SCH3), 3.61–3.81 (m, 2H, OCH2), 5.95 (s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ,
ppm: 10.5, 13.2, 22.7, 70.4, 101.4, 105.4, 160.3, 165.0; ESI-HRMS, m/z: calcd for C8H12BrO3S
[M + H]+: 266.9685, found: 266.9683.

(4) 3-Bromo-5-isopropoxy-4-methylthiofuran-2(5H)-one (3d), yellowish oil, 94 mg, 88%
(79% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 1.31 (d, 3H, J = 6.0 Hz, CH3), 1.33 (d, 3H,
J = 6.0 Hz, CH3), 2.60 (s, 3H, SCH3), 4.13–4.18 (m, 1H, OCH), 5.96 (s, 1H, CH); 13C NMR
(150 MHz, CDCl3), δ, ppm: 13.2, 22.0, 23.2, 73.7, 100.5, 105.6, 160.3, 165.2.

(5) 3-Bromo-5-butoxy-4-methylthiofuran-2(5H)-one (3e), yellowish oil, 92 mg, 82%;
1H NMR (600 MHz, CDCl3), δ, ppm: 0.94 (t, J = 7.2 Hz, 3H, CH3), 1.38–1.44 (m, 2H, CH2),
1.62–1.67 (m, 2H, CH2), 2.60 (s, 3H, SCH3), 3.64–3.83 (m, 2H, OCH2), 5.93 (s, 1H, CH);
13C NMR (150 MHz, CDCl3), δ, ppm: 13.2, 13.7, 19.2, 31.4, 68.5, 101.4, 105.5, 160.2, 165.0;
ESI-HRMS, m/z: calcd for C9H14BrO3S [M + H]+: 280.9842, found: 280.9837.

(6) 3-Bromo-4-methylthio-5-pentyloxyfuran-2(5H)-one (3f), yellowish oil, 93 mg, 79%;
1H NMR (600 MHz, CDCl3), δ, ppm: 0.92 (t, J = 6.0 Hz, 3H, CH3), 1.32–1.39 (m, 4H, 2CH2),
1.65–1.70 (m, 2H, CH2), 2.61 (s, 3H, SCH3), 3.64–3.84 (m, 2H, OCH2), 5.94 (s, 1H, CH); 13C
NMR (150 MHz, CDCl3), δ, ppm: 13.2, 14.0, 22.3, 28.1, 29.0, 68.8, 101.4, 105.4, 160.3, 165.1;
ESI-HRMS, m/z: calcd for C10H16BrO3S [M + H]+: 294.9998, found: 294.9998.

(7) 3-Bromo-5-heptyloxy-4-methylthiofuran-2(5H)-one (3g), yellowish oil, 84 mg, 76%;
1H NMR (600 MHz, CDCl3), δ, ppm: 0.89 (t, J = 7.2 Hz, 3H, CH3), 1.25–1.38 (m, 8H, 4CH2),
1.59–1.68 (m, 2H, CH2), 2.60 (s, 3H, SCH3), 3.63–3.82 (m, 2H, OCH2), 5.93 (s, 1H, CH); 13C
NMR (150 MHz, CDCl3), δ, ppm: 13.2, 14.2, 22.6, 25.9, 28.9, 29.3, 31.7, 68.8, 101.4, 105.5,
160.3, 165.0; ESI-HRMS, m/z: calcd for C12H20BrO3S [M + H]+: 323.0311, found: 323.0305.

(8) 3-Bromo-5-cyclohexyloxy-4-methylthiofuran-2(5H)-one (3h), yellowish oil, 95 mg,
78% (78% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 1.19–1.59 (m, 6H, 3CH2), 1.74–2.01 (m,
4H, 2CH2), 2.60 (s, 3H, SCH3), 3.81–3.86 (m, 1H, OCH), 6.00 (s, H, CH); 13C NMR (150 MHz,
CDCl3), δ, ppm: 13.3, 23.9, 24.0, 25.3, 32.1, 33.2, 79.3, 100.4, 105.5, 160.5, 165.3.

(9) 5-Benzyloxy-3-bromo-4-methylthiofuran-2(5H)-one (3i), yellowish oil, 93 mg, 74%
(75% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 2.49 (s, 3H, SCH3), 4.70–4.87 (m, 2H, OCH2),
5.97 (s, 1H, CH), 7.36–7.41 (m, 5H, ArH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.2, 70.5,
100.0, 105.5, 128.8, 128.9, 134.9, 160.5, 165.0.

(10) 3-Bromo-5-menthoxy-4-methylthiofuran-2(5H)-one (3j), yellowish oil, 107 mg,
74% (71% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 0.85–0.91 (m, 10H, CH, 3CH3),
1.24–1.34 (m, 3H, CH, CH2), 1.57–1.73 (m, 3H, CH, CH2), 1.89–2.31 (m, 2H, CH2), 2.63 (s, 3H,
SCH3), 3.99–4.03 (m, 1H, OCH), 5.88 (s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.6,
14.1, 18.8, 19.6, 26.6, 28.0, 37.1, 44.9, 47.7, 49.5, 88.0, 102.9, 106.0, 160.5, 165.2.

(11) 5-([1,1′-Biphenyl]-4-yloxy)-3-bromo-4-methylthiofuran-2(5H)-one (3k), yellowish
oil, 69 mg, 46% (39% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 2.66 (s, 3H, SCH3), 6.41 (s,
1H, CH), 7.26 (d, J = 9.0 Hz, 2H, ArH), 7.38 (t, J = 7.2 Hz, 1H, ArH), 7.42–7.52 (m, 2H, ArH),
7.58 (d, J = 8.4 Hz, 2H, ArH), 7.61 (d, J = 8.4 Hz, 2H, ArH); 13C NMR (150 MHz, CDCl3), δ,
ppm: 13.6, 99.5, 106, 117.2, 127.0, 127.4, 128.7, 128.9, 137.6, 140.1, 154.9, 159.8, 164.6.
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(12) 3-Chloro-5-methoxy-4-methylthiofuran-2(5H)-one (3l), yellowish oil, 56 mg, 72%
(60% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 2.61 (s, 3H, SCH3), 3.54 (s, 3H, OCH3), 5.89
(s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.1, 55.0, 100.9, 117.1, 155.4, 164.4.

(13) 3-Chloro-5-ethoxy-4-methylthiofuran-2(5H)-one (3m), yellowish oil, 52 mg, 63%
(58% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 1.31 (t, J = 7.2 Hz, 3H, CH3), 2.60 (s, 3H,
SCH3), 3.73–3.92 (m, 2H, OCH2), 5.93 (s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ, ppm:
13.2, 15.0, 64.6, 101.3, 105.5, 160.2, 165.0.

(14) 3-Chloro-4-methylthio-5-propoxyfuran-2(5H)-one (3n), yellowish oil, 55 mg, 62%;
1H NMR (600 MHz, CDCl3), δ, ppm: 0.97 (t, J = 6.0 Hz, 3H, CH3), 1.66–1.73 (m, 2H, CH2),
2.61 (s, 3H, SCH3), 3.60–3.81 (m, 2H, OCH2), 5.92 (s, 1H, CH); 13C NMR (150 MHz, CDCl3), δ,
ppm: 10.5, 13.1, 22.7, 70.5, 100.4, 117.0, 155.7, 164.6; ESI-HRMS, m/z: calcd for C8H12ClO3S
[M + H]+: 223.0190, found: 223.0187.

(15) 3-Chloro-5-isopropoxy-4-methylthiofuran-2(5H)-one (3o), yellowish oil, 50 mg,
56% (55% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 1.31 (d, 3H, J = 6.0 Hz, CH3), 1.33 (d,
3H, J = 6.0 Hz, CH3), 2.61 (s, 3H, SCH3), 4.12–4.17 (m, 1H, OCH), 5.94 (s, 1H, CH); 13C NMR
(150 MHz, CDCl3), δ, ppm: 13.1, 22.0, 23.2, 73.8, 99.5, 117.1, 155.8, 164.8.

(16) 5-Butoxy-3-chloro-4-methylthiofuran-2(5H)-one (3p), yellowish oil, 67 mg, 71%;
1H NMR (600 MHz, CDCl3), δ, ppm: 0.94 (t, J = 7.2 Hz, 3H, CH3), 1.37–1.45 (m, 2H, CH2),
1.62–1.68 (m, 2H, CH2), 2.61 (s, 3H, SCH3), 3.64–3.85 (m, 2H, OCH2), 5.91 (s, 1H, CH);
13C NMR (150 MHz, CDCl3), δ, ppm: 13.1, 13.7, 19.1, 31.4, 68.7, 100.4, 117.0, 155.6, 164.6;
ESI-HRMS, m/z: calcd for C9H14ClO3S [M + H]+: 237.0347, found: 237.0346.

(17) 3-Chloro-4-methylthio-5-pentyloxyfuran-2(5H)-one (3q), yellowish oil, 69 mg,
69%; 1H NMR (600 MHz, CDCl3), δ, ppm: 0.91 (t, J = 6.0 Hz, 3H, CH3), 1.33–1.38 (m, 4H,
2CH2), 1.64–1.69 (m, 2H, CH2), 2.61 (s, 3H, SCH3), 3.63–3.84 (m, 2H, OCH2), 5.91 (s, 1H,
CH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.1, 13.9, 22.3, 28.1, 29.0, 69.0, 100.4, 117.0, 155.6,
164.6; ESI-HRMS, m/z: calcd for C10H16ClO3S [M + H]+: 251.0503, found: 251.0502.

(18) 3-Chloro-5-cyclohexyloxy-4-methylthiofuran-2(5H)-one (3r), yellowish oil, 54 mg,
52% (51% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 1.22–1.50 (m, 6H, 3CH2), 1.75–2.01
(m, 4H, 2CH2), 2.61 (s, 3H, SCH3), 3.80–3.85 (m, 1H, OCH), 5.98 (s, 1H, CH); 13C NMR
(150 MHz, CDCl3), δ, ppm: 13.2, 23.9, 24.0, 25.3, 32.1, 33.2, 79.3, 99.4, 117.1, 155.9, 164.8.

(19) 5-Benzyloxy-3-chloro-4-methylthiofuran-2(5H)-one (3s), yellowish oil, 54 mg, 50%
(52% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 2.52 (s, 3H, SCH3), 4.71–4.88 (m, 2H, OCH2),
5.96 (s, 1H, CH), 7.37–7.41 (m, 5H, ArH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.2, 70.6,
98.9, 117.1, 128.8, 128.9, 135.0, 155.8, 164.5.

(20) 3-Chloro-4-methylthio-5-phenoxyfuran-2(5H)-one (3t), yellowish oil, 50 mg, 49%
(46% [32]); 1H NMR (600 MHz, CDCl3), δ, ppm: 2.63 (s, 3H, SCH3), 6.35 (s, 1H, CH),
7.15–7.18 (m, 3H, ArH), 7.35–7.39 (m, 2H, ArH); 13C NMR (150 MHz, CDCl3), δ, ppm: 13.4,
98.5, 116.9, 124.4, 130.0, 155.3, 155.6, 164.1.

The detailed 1H, 13C NMR and spectra for all compounds 3a–3t are provided in the
Supplementary Materials.

4. Conclusions

In conclusion, we have disclosed a methylthiolating reaction of 5-alkoxy (or 5-aryoxy)-
substituted 3,4-dihalo-2(5H)-furanone with DMSO. DMSO cannot only be used as a reaction
raw material, but also as a solvent for the reaction. In addition, this transformation without
any transition metal catalysts only requires a lower temperature and a shorter time. In
particular, the simple reaction system is easy to operate, giving a better yield, even for the
gram-scale reaction. This successful investigation provides a valuable reference for the
introduction of the methyl sulfur group in organic synthesis.

Notably, due to the marked acetal and lactone ring structure of the reaction substrate
with different functional groups such as C-X (X = Cl or Br), C-O, C=O and C=C bonds, the
simple and green method will be attractive for synthesizing potentially bioactive methyl
sulfur compounds with multifunctional groups.
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