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Abstract: BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone
proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases
such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain
(BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential
for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1
inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was
screened using in silico techniques. The efficiency of the AutoDock Vinal.1.2 software to anticipate
inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in
complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were
subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA
approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine
derivative, pyronaridine (SD003509), with an energy prediction (AGpinding) of —42.7 kcal/mol in
comparison with —41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties
predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding
pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies
can provide insight into novel protein-ligand regulators, specifically that pyronaridine is a potential
cancer drug candidate.

Keywords: cancer disease; bromodomain-containing protein 4; SuperDRUG2 database; molecular
docking; molecular dynamics simulations

1. Introduction

It is known that 46 proteins in the human body contain 61 isoforms of bromodomains
(BRDs), which can be categorized into eight groups and have about 140 amino acid residues
in their sequences [1,2]. According to earlier studies, BRDs have a highly conserved fold
structure that predominantly consists of two flexible loops (called the ZA-loop and BC-
loop), which are responsible for substrate specificity, and four a-helices, described as a A,
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«B, aC, and «Z [3,4]. The bromodomain and extra terminal domain (BET) family consists of
four members known as BRD2, BRD3, BRD4, and BRDT. BRD4 (bromodomain-containing
protein 4), an epigenetic reader, is one of the most important BET proteins. BRD4 has a
fundamental function in angiogenesis and subsequent health-related disorders, ranging
from inflammation-associated diseases to carcinoma diseases. Similar to the remaining BET
family members, BRD4 involves BD1 and BD2, as well as extra-terminal (ET) domains [5].
BD1 and BD2 identify lysine residues to arrange cycle progression and apoptosis [6-9].
Both BDs are extremely preserved and symmetrical [2]; each participates in protein-specific
binding differently and possesses different biological roles because of their interactions
with various types of proteins [1]. BRD4-BD1 demonstrates a greater affinity for the
H4 (tetra-acetylated histone) peptide. However, BRD4-BD2 relates to H3 (diacetylated
histone) [10].

Several inhibitors for BET are being utilized in clinical investigations, including
azepine BET inhibitors with nanomolar ICsy values [3,11,12]. (+)-JQ1 is the BET fam-
ily’s first and most well-studied inhibitor and is capable of inhibiting both the BD1 and BD2
of BRD4 [13-18]. BET inhibitors have limited selectivity among proteins within the family.
Olinone is a BRD4-BD1-selective inhibitor [19], but MS765 and RVX-208 inhibit BD2 more
selectively than BD1 [20,21]. Selective inhibitors allow for the differentiation of specific BD2
and BD1 roles in specific illnesses. According to a recent study, BRD4-BD1 can maintain
oncogene expression in established transcriptional pathways, in contrast to the essentially
ineffectual BRD4-BD2. However, no drug has yet been approved as a BRD4-BD1 inhibitor.
Therefore, there is still a demand to explore the potentialities of other active pharmaceutical
ingredients against BRD4-BD1.

Herein, the SuperDRUG2 database, which contains >4600 pharmaceutical compounds,
was screened against BRD4-BD1. Molecular docking was utilized to filter the database,
and the most potent BRD4-BD1 inhibitors were undergone MD simulations. The inhibitor-
BRD4-BD1 binding energy was evaluated utilizing the MM-GBSA approach. Ultimately,
physicochemical and ADMET features were predicted for the most promising drug can-
didates. The workflow of the utilized in silico methods is shown in Figure 1. This study
identified a compound with a promising inhibitor against BRD4-BD1, and additional
experimental investigations are recommended.

Positive Control

SuperDRUG2 database I

> 4600 compounds

Standard Docking Calculations 2
Threshold docking score less than-9.9

(Exhaustiveness number = 50 kcal/mol, giving 3 compounds

Expensive Docking Calculations Threshold docking score equal or less
(Exhaustiveness number = 200) than -9.9 kcal/mol, giving 3 compounds

olecular Dynamics Simulations Threshold binding energy less than |
(Simulation Time = 50 ns) -43.9 kcal/mol, giving 1 compound ‘

% ) (Ta 1BV 33 (B TS| L EYIT) Oy | Threshold binding energy less than
(Simulation Time =200 ns) —42.7 kcal/mol, giving 1 compound

Figure 1. Flowchart diagram of the employed computational methods and filtration process for the
SuperDrug?2 database.
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2. Results and Discussion

BRD4 has attracted special focus in treating carcinoma because of its vital role in
regulating oncogene expression [22]. Bromodomain-1 (BRD4-BD1) activity is primarily
related to carcinoma and can preserve oncogene expression in established transcriptional
pathways [23]. The inhibition of BRD4-BD1 is considered a good target for treating cancer.
Because no drug has yet been approved as a BRD4-BD1 inhibitor, exploring potential drug
candidates against BRD4-BD1 is needed [24]. Consequently, the SuperDRUG2 database
was examined and filtered to identify putative BRD4-BD1 inhibitors.

2.1. Docking Protocol Validation

Prior to data generation, the employed docking protocol and parameters for AutoDock
Vinal.1.2 were validated in accordance with the experimental data. The co-crystallized R6S
inhibitor was re-docked toward the BRD4-BD1 binding pocket, and the anticipated binding
mode was compared with its native structure (PDB ID: 7REK [25]). Figure 2 illustrates that
the predicted docking mode was almost the same as the native structure of R6S inside the
BRD4-BD1 binding pocket, with an RMSD value of 0.82 A. The binding pose displayed five
crucial hydrogen bonds (Figure 2). In detail, the NH groups of the R6S inhibitor displayed
two H-bonds with ASN140 (2.71 A) and PROS82 (3.04 A) (Figure 2). The nitrogen atom
of the pyrimidine ring established an H-bond with the NH, group of ASN140 (1.92 A).
Additionally, the (methylsulfonyl)methane group demonstrated two H-bonds with the NH
group of ASP88 (1.93 A) and the NH; group of LYS91 (2.45 A) (Figure 2). Notably, the
aromatic benzene ring of R6S exhibited a -7t T-shaped interaction with TRP81 (Figure 2).
Based on the re-docking results, the AutoDock Vinal.1.2 software correctly predicted the
proper binding mode of inhibitor-BRD4-BD1. Therefore, the AutoDock Vinal.1.2 software
was utilized to virtually screen the SuperDRUG2 database to hunt for prospective BRD4-
BD1 inhibitors.

2.2. Virtual Screening of the SuperDRUG2 Database

Virtual screening is a valid technique for rapidly identifying potential bioactive in-
hibitors during the premature stages of drug discovery [26,27]. The SuperDRUG2 database
was virtually screened against BRD4-BD1 by utilizing two stages of molecular docking
computations. Initially, standard docking calculations were performed for all inhibitors
in the database against BRD4-BD1 with an exhaustiveness number of 50, and the dock-
ing scores were predicted (Table 51). Based on the standard docking scores, only three
inhibitors had docking scores similar to or less than that of R6S (calc. —9.9 kcal/mol).
Consequently, these inhibitors were picked out for expensive docking calculations with an
exhaustiveness number of 200. Table 1 summarizes the binding features, docking scores,
and two-dimensional chemical structures of the three inhibitors. In addition, the binding
poses are illustrated in Figure 3. As demonstrated, the three inhibitors exhibited the same
binding poses within the BRD4-BD1 binding pocket.

Pyronaridine (SD003509), a benzonaphthyridine derivative, has been identified as
a potential anti-malaria drug candidate [28]. Pyronaridine had the lowest docking score
with BRD4-BD1 (calc. —10.2 kcal/mol), forming five hydrogen bonds against BRD4-BD1
(Table 1 and Figure 3). The docking pose of pyronaridine-BRD4-BD1 showed that the
NH of the 1-methylpyrrolidin-1-ium group formed two H-bonds with ASN140 (2.32 A)
and TYR97 (2.67 A). In addition, the NH of the dimethylamine demonstrated an H-bond
with PROS2 (2.23 A). Finally, the 6-methoxy-2,3-dihydropyridine group formed an H-bond
with the NH of ASP88 (1.95 A) (Table 1 and Figure 3). Notably, the pyronaridine inhibitor
demonstrated a 7-7t T-shaped interaction with TRP81 and 7-alkyl interactions with PROS82,
VALS7, LEU92, and ILE146 (Table 1 and Figure 3).
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Figure 2. (a) Three-dimensional superimpositions of the docked pose (in pink) and co-crystallized
pose (in mauve) of R6S; (b) three-dimensional depictions of intermolecular hydrogen bond interac-
tions; and (c) two-dimensional depictions of noncovalent interactions for the anticipated docking
mode of R6S inside the BRD4-BD1 binding pocket.

Lumacaftor (SD003873) is an aromatic amide used to treat cystic fibrosis (CF) [29,30].
Lumacaftor also displayed a good docking score toward the BRD4-BD1 protein (calc.
—10.1 kcal/mol) (Table 1). Investigating the docking pose of lumacaftor inside the BRD4-
BD1 binding pocket showed that the carboxylic group demonstrated two H-bonds with
the acetamide group of GLN85 (2.45 and 3.08 A) (Table 1 and Figure 3). Additionally,
lumacaftor exhibited 7-rt T-shaped interactions with TRP81 and 7r-alkyl interactions with
VALS87, TRP81, LEU92, and ILE146 (Table 1 and Figure 3).
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Table 1. Evaluated docking scores and binding features of the top three inhibitors with BRD4-BD1 2.

Docking Score
s . . . (kcal/mol) N
No. Inhibitor Name/Code Two-Dimensional Chemical Structure Binding Features
Standard Expensive
ASN140 (H-bond, 2.71, 1.92 A), PRO82
HN N— (H-bond, 3.04 A; -Alkyl, 5.07 A), LYS91

(H- bond, 2.45 A),
ASP88 (H- bond, 1.93 A),
LEU92 (r-Alkyl, 4.75, 4.85,5.49 A),

VALSY (r-Alkyl, 5.22,4.92 A),
R6S HN —99 —10.0 LEUY% (n-Alkyl, 5.10 A),
PHES3 (r-Alkyl, 4.17 A),
CYS136 (r-Alkyl, 5.36 A),
TLE146 (r-Alkyl, 4.19 A),
TRPS1 (r-Alkyl, 5.03 A; -7t T-shaped,
5.25A)

ASN140 (H-bond, 2.32, 2.06 A), TYR97
(H-bond, 2.67 A),
ASP88 (H-bond, 1.95 A),
PROS82 (H-bond, 2.23 A; m-Alkyl, 5.13,
—-10.1 —-10.2 5.47 A),
LEU92 (r-Alkyl, 4.39, 4.68 A),
VALSY7 (r-Alkyl, 4.44 A),
ILE146 (m-Alkyl, 4.90 A),
TRRP81 (-7t T-shaped, 4.89, 4.92 A)

Pyronaridine
(SD003509)

GLNS85 (H-bond, 2.45, 3.08 A),
LEU92 (r-Alkyl, 4.42 A),
—-10.1 -10.1 VALS7 (m-Alkyl, 4.87 A),
ILE146 (m-Alkyl, 4.21, 4.68 A), TRP81
(m-Alkyl, 4.87 A; -7t T-shaped, 5.15 A)

5 Lumacaftor
(SD003873)

LEU92 (n-Alkyl, 4.50, 4.99 A),
© VALS7 (m-Alkyl, 5.22, 4.86 A), CYS136
-99 —10.0 (m-Alkyl, 5.13 A),
TRRPS81 (7-rt T-shaped, 5.29, 5.21 A)

N-benzoylstaurosporine

3 (SD006001)

2 Data sorted in accordance with the expensive docking scores.

N-benzoylstaurosporine (SD006001), an oral inhibitor of protein kinase C, has the
potentiality for cell cycle targeting [31]. N-benzoylstaurosporine also revealed a favor-
able docking score against BRD4-BD1 (calc. —10.0 kcal/mol). The docking pose of N-
benzoylstaurosporine did not show any H-bonds with the critical residues of the BRD4-BD1
binding pocket. For the m-based interactions, the 3,7-dihydro-2H-indole group exhibited
two m-alkyl interactions with the alkyl group of LEU92 (4.50 and 4.99 A) (Table 1 and
Figure 3). In addition, the two benzene rings formed two 77t T-shaped interactions with
the alkyl group of VAL87 with bond lengths of 4.86 and 5.22 A. Furthermore, the benzene
ring of the 3,7-dihydro-2H-indole group interacted through m-alkyl with CYS136 (Table 1
and Figure 3).
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Figure 3. Three-dimensional depictions of intermolecular hydrogen bond interactions and two-
dimensional depictions of noncovalent interactions for (a) pyronaridine (SD003509), (b) lumacaftor
(SD003873), and (c) N-benzoylstaurosporine (SD006001) within the BRD4-BD1 binding pocket.

Notably, the interactions of docked structures of pyronaridine, lumacaftor, and N-
benzoylstaurosporine confirmed the great significance of 7-alkyl, hydrogen bonding, and
mi-1t T-shaped interactions with the fundamental residues of the BRD4-BD1 binding pocket
in the eminent docking scores of these inhibitors.

2.3. Molecular Dynamics (MD)

To assess the docking results and gain more insight into the constancy of the inhibitor-
receptor complexes, MD simulations were executed [32,33]. MD simulations were con-
ducted for the three promising inhibitors complexed with the BRD4-BD1 protein for
50 ns. Furthermore, the binding energies were computed utilizing the MM-GBSA ap-
proach (Table 2). The data imply that only pyronaridine exhibited a binding energy
(AGpinding) 0f —46.2 kcal/mol, which is smaller compared with that of the R6S inhibitor
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(calc. —43.9 kcal/mol). However, lumacaftor and N-benzoylstaurosporine showed low
binding affinities with AGpjinding of —27.8 and —20.0 kecal/mol, respectively (Table 2). To
obtain more reliable results, MD simulation for pyronaridine complexed with the BRD4-
BD1 protein was prolonged to 200 ns, followed by a binding energy estimation (Table 2).
Pyronaridine showed promising binding affinity throughout the 200 ns MD simulations,
with a AGypingding 0f —42.7 kcal/mol in comparison with —41.5 kcal/mol for R6S complexed
with the BRD4-BD1 binding pocket (Table 2). For more reliable results, the MD simulation
was repeated two more times for pyronaridine-BRD4-BD1 complex over 200 ns MD simula-
tions, followed by binding energy computations. Pyronaridine unveiled almost identical
binding affinities in the duplicates, with a AGpinding 0f —42.1 and —43.7 keal/mol. An
MM-GBSA binding energy comparison of pyronaridine with R6S demonstrated competing
binding affinities, suggesting the in silico potentiality of the two compounds as BRD4-
BD1 inhibitors. These findings demonstrated that pyronaridine and RS6 are promising
BRD4-BD1 inhibitors and may act as prospective drug candidates for cancer remediation.

Table 2. Calculated binding energies (in kcal /mol) throughout the 50 and 200 ns MD simulations for
the three most potential drug candidates complexed with the BRD4-BD1 protein.

Inhibitor Name/SuperDRUG2 Code

MM-GBSA Binding Energy (kcal/mol)

50 ns 200 ns

R6S —43.9 —41.5

Pyronaridine (SD003509) —46.2 —42.7
Lumacaftor (SD003873) —27.8 ---a
N-benzoylstaurosporine (SD006001) —20.0 ---a

200

150

100

50

MM-GBSA Binding Energy (keal/mol)
=

2 Not calculated.

The decomposition of binding energies was carried out to reveal the type of interac-
tions that are dominating the binding of pyronaridine within the BRD4-BD1 binding pocket,
as presented in Figure 4. The E, 4 energy significantly contributed to the pyronaridine-
and R65-BRD4-BD1 binding affinities (calc. —47.9 and —47.5 kcal/mol, respectively). Fur-
thermore, Ej, also favorably contributed with values of —44.8 and —46.6 kcal/mol for the
pyronaridine- and R65-BRD4-BD1 complexes, respectively.

O I N ]

.2 L '

Figure 4. Binding energy decomposition for pyronaridine (SD003509) and R6S inhibitor complexed
with the BRD4-BD1 protein over a 200 ns MD simulation.
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To find the proximal amino acids inside the BRD4-BD1 protein that participate in
interactions with the inhibitor, per-residue energy decomposition was performed for the py-
ronaridine and R6S complexed with BRD4-BD1 during the 200 ns MD simulation. Figure 5a
shows the energy contributions of the residues with binding energy < —0.5 kcal/mol. The
PROS82, VALS87, ASP88, ASN140, and ILE146 residues significantly contributed to the inter-
actions between the BRD4-BD1 protein and pyronaridine and R6S (Figure 5a). For instance,
PROB82 contributed substantially to AGpinding With values of —3.5 and —2.4 kcal/mol for
pyronaridine and R6S complexed with BRD4-BD1 protein, respectively (Figure 5a). In
addition, both TRP81 and ILE146 had a significant impact on the binding of pyronaridine
and R6S with BRD4-BD1 protein (Figure 5a).

O WD D v e W
D PP L FT RS TTS TN
SRR R RS O @ @ SN
FTEFT T T FTITITITITT s S

=03 |
)

£ 08
=
12}

& 13 |
&

5—1.8
=

B =23
£

S —28

2 33
n

g -8

§_4.3

—438

LEU

VAL @

87
() (i)
Interactions
[ Conventional Hydrogen Bond [ Alkyl
["]Carbon Hydrogen Bond [ Pi-Alkyl
[ Pi-Sigma [ Pi-Pi T-shaped

(b)

Figure 5. (a) Per-residue energy participation of the critical residues (in kcal/mol) and (b) two-
dimensional depiction of the binding modes of (i) pyronaridine (SD003509) and (ii) the R6S inhibitor
with the BRD4-BD1 protein based on the average structure throughout the MD simulation.

The average structures of pyronaridine and R6S within the BRD4-BD1 protein over the
200 ns MD simulations are also represented (Figure 5b). The average structure displayed
a similar binding mode to the docked structure of pyronaridine, forming three H-bonds
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with BRD4-BD1 critical residues over the 200 ns MD simulation. Notably, a H-bond with
TYR97 in the docked pyronaridine-BRD4-BD1 complex was absent in the average structure
(Figure 5b). This demonstrates the significance of conducting MD simulations to obtain
trustworthy results.

2.4. Post-MD Analyses

In order to evaluate the consistency of pyronaridine- and R65-BRD4-BD1 complexes,
post-MD analyses were carried out throughout the 200 ns MD simulation and compared
with those of the co-crystallized R6S inhibitor.

2.4.1. Binding Energy Per Trajectory

A binding energy vs. time analysis was conducted to investigate the steadiness of py-
ronaridine and R6S inhibitors within the BRD4-BD1 binding pocket (Figure 6). According to
Figure 6, pyronaridine and R6S displayed excellent stability, with AGpinding values of —42.7
and —41.5 kcal/mol, respectively. These outcomes prove the steadiness of pyronaridine-
and R65-BRD4-BD1 complexes over the simulation time.

0

= Pyronaridine (SD003509)
— RS6

I
—
<
1

1

d
—
|

I
o
(]

1

|
N
(—]

MM-GBSA Binding Energy (kcal/mol)
3 L
=) )

I
~
<

|
oo
=]

T T T T T T T T T T T T T T T

I I
20 40 60 80 100 120 140 160 180 200
Time (ns)

=]

Figure 6. Variations in the binding energies for pyronaridine (SD003509) (in dark red) and R6S
inhibitor (in navy) against the BRD4-BD1 protein throughout the MD simulation.

2.4.2. H-Bond Analysis

During the 200 ns MD simulations, an H-bond analysis between the inhibitor and
BRD4-BD1 protein was utilized to evaluate the interaction steadiness. The number of
H-bonds established between the pyronaridine /R6S and BRD4-BD1 protein in the collected
snapshots was computed (see Figure 7). There were three estimated H-bonds for both
the pyronaridine- and R6S-BRD4-BD1 complexes. Overall, these results indicate a good
agreement with the average structures illustrated in Figure 5b.
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Number of Hydrogen Bond

0

20

40

—— Pyronaridine (SD003509)| ] ——R6S

Number of Hydrogen Bond
=S
1

60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time (ns) Time (ns)
(a) (b)

Figure 7. Number of H-bonds established between (a) pyronaridine (SD003509) and (b) R6S and the
BRD4-BD1 protein throughout the MD simulations.

2.4.3. Center-of-Mass Distance (CoM)

The CoM distance between pyronaridine/R6S and PRO82 was investigated to better
understand the inhibitor’s stability within the binding pocket of the BRD4-BD1 protein
(Figure 8). According to the CoM data in Figure 8, the measured CoM distance remained
steady for pyronaridine and R6S with the BRD4-BD1 protein, with average values of 5.2
and 7.1 A, respectively. Notably, pyronaridine displayed a CoM distance of about 2.1 A less
than that of R6S complexed with the BRD4-BD1 protein throughout the simulation period.
This may be attributed to the difference in the molecular weight of the two inhibitors. These
steady distance variations proved that the investigated inhibitors could stably interact with
the critical residues.

10

Pyronaridine (SD003509)
—R6S

CoM distance (A)

3 I LA DL LA EL A AL LA R DL LA B 1
0 20 40 60 80 100 120 140 160 180 200
Time (ns)

Figure 8. CoM distance between pyronaridine (SD003509) (in dark red) and the R6S inhibitor (in
navy) and PRO8?2 inside the BRD4-BD1 active site throughout the MD simulation.

2.4.4. Root-Mean-Square Deviation (RMSD)

To check the structural variations of BRD4-BD1 complexed with pyronaridine and R6S,
the RMSD of the backbone atoms, with respect to the first frame, was measured (Figure 9).
The apo-, pyronaridine-, and R65-BRD4-BD1 complexes exhibited overall steadiness, with
average RMSD values of 0.22, 0.22, and 0.14 nm, respectively. A slight difference of 0.08 nm
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was observed between the RMSD curves of the pyronaridine- and R6S-BRD4-BD1 complexes,
demonstrating the similar dynamics of the two systems. According to the current findings,
pyronaridine does not disturb the overall structure of the BRD4-BD1 protein.

0.7
Apo-BRD4-BD1
Pyronaridine (SD003509)-BRD4-BD1
0.6 —— R6S-BRD4-BD1
0.5
E 0.4
a
n
=
&

00— T 1T I
0 20 40 60 80 100 120 140 160 180 200
Time (ns)

Figure 9. RMSD of apo-BRD4-BD1 (in green), pyronaridine (5SD003509)-BRD4-BD1 (in dark red), and
R6S-BRD4-BD1 (in navy) throughout the MD simulation.

2.4.5. Root-Mean-Square Fluctuation (RMSF)

The RMSF of the C, atoms was studied to investigate the backbone conformational
variation and stability of the apo-, pyronaridine-, and R65-BRD4-BD1 complexes (Figure 10).
As shown in Figure 10, the average RMSF values were 0.11, 0.11, and 0.10nm for the
apo-, pyronaridine-, and R6S-BRD4-BD1 complexes, respectively. In addition, the RMSF
values of residues 84 to 100 in the R6S-BRD4-BD1 complex were lower than those of
apo- and pyronaridine-BRD4-BD1, demonstrating that R6S tends to reduce this region’s
flexibility. The larger size of the R6S inhibitor may be the reason for this rigidity. Overall,
the RMSF results revealed that the amino acid residues were stationary during the 200 ns
MD simulations in the identified compound complex, which is in line with the RMSD data.

0.7
Apo-BRD4-BD1
Pyronaridine (SD003509)-BRD4-BD1
0.6 ——R6S-BRD4-BD1

RMSF (nm)

¥ +—7—7—
42 56 70 84 98 112 126 140 154 168
Residue

Figure 10. RMSF of apo-BRD4-BD1 (in green), pyronaridine (SD003509)-BRD4-BD1 (in dark red),
and R65-BRD4-BD1 (in navy) throughout the 200 ns MD simulations.
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2.5. ADMET Characteristics

Particularly in the precocious stages of medication discovery, investigating ADMET
characteristics is a convenient tool for overcoming the limitations of clinical trials [34].
Consequently, the pkCSM webserver was applied to study the pharmacokinetic features
of pyronaridine and R6S as BRD4-BD1 inhibitors. The pharmacokinetic features were
predicted and gathered in Table 3. In all drug discovery processes, it is necessary to con-
sider absorption features such as Caco-2 permeability and HIA. The absorbance rates of
pyronaridine (93.6%) and R6S (90.8%) were favorable [35]. Both pyronaridine and R6S
demonstrated low Caco-2 permeability (<0.9 cm/s). The VDss characteristics were evalu-
ated to investigate the drug distribution [36]. Pyronaridine and R6S had high distribution
volumes, with log VDss values of 1.41 and 1.15, respectively. The total clearance of the
investigated inhibitors was calculated by multiplying their excretion rates by their con-
centrations in the body (Table 3). The excretion rates were 0.5 and 1.2 mL/min/kg for
pyronaridine and R6S, respectively. Furthermore, toxicity is crucial to identifying suitable
therapeutic compounds [36]. Pyronaridine and R6S do not have any AMES toxicity.

Table 3. Predicted ADMET properties of the identified drug candidate compared with R6S utilizing
the pkCSM server.

Absorption Distribution Metabolism . Toxicity
(A) (M) Excretion (E) (T)
Inhibitor Code Caco?
o1 Human Intestinal CYP3A4 Total AMES
Perr(rclﬁia}s))lhty Absorption (HIA) VDss (Human) Inhibitor/Substrate Clearance Toxicity
Pyronaridine
(SD003509) 0.62 93.60 1.41 Yes 1.21 No
R6S 1.12 90.84 1.15 Yes 0.57 No

2.6. Drug-Likeness Characteristics

Using the Molinspiration online tool, physicochemical properties were predicted
for pyronaridine and R6S and are listed in Table 4. As shown in Table 4, the MlogP
value of pyronaridine was below five (calc. 2.8), indicating that pyronaridine has a good
permeability across the cell membrane. However, the MlogP value of R6S was above five
(calc. 6.0). The pyronaridine and R6S were predicted to be easily transported, dispersed,
and absorbed since their molecular weight was found to be slightly more than 500 (calc.
520.1 and 552.7 dalton, respectively). Additionally, consistent with Lipinski’s rule of five
(ROS), the number of hydrogen bond acceptors (nON) and donors (nOHNH) of the two
compounds were less than 10 and 5, respectively. Furthermore, the TPSA values of the two
compounds were found to be less than 140 A2 (calc. 76.1 and 90.5 A?, respectively). The
two compounds may have potent cell membrane permeability and oral bioavailability, as
shown by the calculated %ABS data (calc. 82.73% and 77.79%, respectively).

Table 4. The investigated physicochemical properties of the identified drug candidate and R6S.

Compound Name MLogP TPSA nON nOHNH Nrotb MWt %ABS
R6S 6.0 76.1 7 2 6 552.7 82.7
Pyronaridine (SD003509) 2.8 90.5 5 4 7 520.1 77.8

3. Computational Methods
3.1. BRD4-BD1 Preparation

The 3D structure of BRD4-BD1 bound to R6S (PDB code: 7REK [25]) was obtained and
prepared for in silico analysis. For preparation purposes, crystallographic water molecules,

R6S, and ions were eliminated. The H++ web-based server was utilized for the investigation
of the protonation states of the BRD4-BD1 residues [37].
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3.2. Database Preparation

The SuperDRUG2 database (http://cheminfo.charite.de/superdrug?2 (accessed on
9 June 2023)), which includes more than 4600 candidates, was accessed in SDF format [38].
On the basis of InChIKey (International Chemical Identifier), the duplicated compounds
were eliminated. The Omega 2.5.1.4 software was then utilized for the generation of
the three-dimensional chemical structures of the inhibitors [39,40]. Using the SZYBKI
1.9.0.3 software, the three-dimensional structures were minimized based on MMFF94S
force fields [41,42]. The prepared SuperDRUG2 database was applicable through www.
compchem.net/ccdb (accessed on 9 June 2023).

3.3. Docking Calculations

All docking computations were executed utilizing the AutoDock Vinal.1.2 software [43].
The BRD4-BD1 pdbqt file was prepared for molecular docking using MGL tools (version
1.5.7) [44]. Two stages of docking calculations were performed, namely, standard and
expensive docking computations. All docking parameters, except the exhaustiveness
value, were set to their default parameters. For standard and expensive computations,
the exhaustiveness values were modified to 50 and 200, respectively. The grid size was
designed to have XYZ dimensions of 15 A x 15 A x 15 A, encompassing the binding pocket.
The grid spacing value was 1.0 A. Additionally, the grid was centered at 6.636, 9.814, and
—49.078 (in XYZ coordinates) for the BRD4-BD1 protein.

3.4. Molecular Dynamics (MD)

MD simulations were accomplished utilizing the AMBER16 software [45]. MD simula-
tion details are described elsewhere [46—48]. In summary, BRD4-BD1 was characterized
employing the FF145B AMBER force field, whereas the inhibitors were parameterized
through GAFE2 (the general AMBER force field) [49,50]. The charges of the studied drugs
were determined using the RESP (restrained electrostatic potential) approach. Prior to
charge estimations, the investigated compounds were optimized at the HF/6-31G* level
of theory using the Gaussian09 software [51,52]. Inhibitor-BRD4-BD1 complexes were sol-
vated in a truncated octahedron water box with a 12 A distance. To neutralize the solvated
systems and preserve the isosmotic condition, Na* and Cl~ were added. To eliminate
geometrical clashes, the constructed complexes were first minimized for 5000 cycles. There-
after, the complexes were slowly warmed up for 50 ps up to 310 K. After that, a production
step lasting 200 ns was carried out after an equilibration stage of 10 ns. The frames were
collected every 10 ps for post-dynamic analyses. All MD simulations were conducted using
the CompChem GPU/CPU hybrid cluster (hpc.compchem.net (accessed on 9 June 2023)).
All visualizations were implemented utilizing BIOVIA DS Visualize 2020 [53].

3.5. Binding Energy Evaluation

The binding energy of the investigated inhibitors complexed with BRD4-BD1 was com-
puted utilizing MM-GBSA (molecular mechanics—generalized Born surface area) approach
based on the gathered snapshots [54]. The following equation was utilized to determine
the MM-GBSA binding energy:

AGbinding = GComplex - (Gdrugs + GBrD4-BD1) (1)
The G term was evaluated as
G =Gsa + Evgw + G + Eele )

Ege indicates electrostatic energy. Ggsa stands for nonpolar solvation-free energy.
Eqw is van der Waals energy. Ggp is the electrostatic solvation energy. The entropy of
the inhibitors complexed with BRD4-BD1 was ignored because of its high computing
expense [55,56].
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3.6. ADMET Characteristics

The ADMET (absorption, distribution, metabolism, excretion, and toxicity) values of
the investigated inhibitors were anticipated using pkCSM (http:/ /biosig.unimelb.edu.au/
pkesm/prediction (accessed on 9 June 2023)) [34]. The absorption characteristic involved
Caco-2 permeability and HIA (human intestinal absorption). The distribution was antici-
pated using the VDss (steady-state volume of distribution). The metabolism was estimated
based on the CYP3A4 substrate/inhibitor. The excretion was determined via the drug total
clearance. Based on AMES toxicity, the toxicity was predicted [57].

3.7. Drug-Likeness Characteristics

The physicochemical properties of the identified BRD4-BD1 drug candidate were cal-
culated using the online cheminformatics tool Molinspiration (http:/ /www.molinspiration.
com (accessed on 9 June 2023)). The topological polar surface area (TPSA), the number
of hydrogen bond donors (nOHNH), the number of hydrogen bond acceptors (nON), the
molecular weight (MWt), the percentage of absorption (%ABS), and the partition coefficient
log P (MLogP) parameters were assessed. The %ABS was evaluated as follows [58]:

%ABS = 109 — [0.345 x TPSA]

4. Conclusions

N-terminal bromodomain (BD1) is essential for disrupting BRD4 interactions and
is a promising protein for cancer therapy. The SuperDRUG2 database, containing over
4600 pharmaceutical compounds, was virtually screened against the BRD4-BD1 binding
pocket utilizing molecular docking and MD simulations. The binding affinities of the iden-
tified inhibitors were then evaluated utilizing the MM-GBSA approach. According to the
presented results, only three inhibitors out of the SuperDRUG2 database disclosed docking
smaller scores than those of the R6S inhibitor (calc. —9.9 kcal/mol) within the BRD4-BD1
binding pocket. Interestingly, over a simulation time of 200 ns, pyronaridine (SD003509)
revealed a binding affinity with a AGpinging value of —42.7 kcal/mol against BRD4-BD1,
which was less than that of R6S (calc. —41.5 kcal/mol). Furthermore, energetical and struc-
tural analyses revealed the steadiness of the pyronaridine- and R65-RD4-BD1 complexes
during a simulation course of 200 ns. It is worth mentioning that E,qw and E.j. consid-
erably contributed to pyronaridine- and R6S-BRD4-BD1 binding affinities. Additionally,
the physicochemical and ADMET properties of pyronaridine were promising. Experi-
mental investigations are planned to explain the function of pyronaridine as a potential
anticancer medication.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28155713/s1: Table S1. Evaluated standard docking scores (in
kcal/mol) for the investigated compounds with docking scores less than —7.0 kcal/mol against the
BRD4-BD1 (exhaustiveness number = 50).
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