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Abstract: Aminated lignin (AL) was obtained by modifying technical lignin (TL) with the Mannich
reaction, and aminated lignin-based titanate nanotubes (AL-TiNTs) were successfully prepared based
on the AL by a facile hydrothermal synthesis method. The characterization of AL-TiNTs showed that
a Ti–O bond was introduced into the AL, and the layered and nanotubular structure was formed in
the fabrication of the nanotubes. Results showed that the specific surface area increased significantly
from 5.9 m2/g (TL) to 188.51 m2/g (AL-TiNTs), indicating the successful modification of TL. The AL-
TiNTs quickly adsorbed 86.22% of Cr(VI) in 10 min, with 99.80% removal efficiency after equilibration.
Under visible light, AL-TiNTs adsorbed and reduced Cr(VI) in one step, the Cr(III) production rate
was 29.76%, and the amount of total chromium (Cr) removal by AL-TiNTs was 90.0 mg/g. AL-
TiNTs showed excellent adsorption capacities of Zn2+ (63.78 mg/g), Cd2+ (59.20 mg/g), and Cu2+

(66.35 mg/g). After four cycles, the adsorption capacity of AL-TiNTs still exceeded 40 mg/g. AL-
TiNTs showed a high Cr(VI) removal efficiency of 95.86% in simulated wastewater, suggesting a
promising practical application in heavy metal removal from wastewater.

Keywords: lignin; nanotubes; adsorption; photocatalysis; Cr(VI)

1. Introduction

Water pollution with heavy metals is commonly more sustainable than organic pol-
lution such as pesticides and dyes, and severe heavy metal pollution could result in
devastating effects on humans [1,2]. Particularly, in industrial processes such as metallurgy,
galvanization, and tannery, chromium (Cr) is widely used [3,4]. Generally, there are two
stable forms of Cr: Cr(III) and Cr(VI) [5]. The high toxicity, carcinogenicity, extreme sol-
ubility, and high mobility of Cr(VI), compared to Cr(III), make soil and water pollution
treatment extremely difficult [6]. Generally, treatment methods for Cr(VI) pollution include
biological reduction, chemical reduction, adsorption, photocatalysis, and electrochemical
technologies [7,8]. Among them, adsorption is regarded as a high-performance, low-cost,
and green technology in practice [9,10].

Recently, nanotube-based materials have attracted extensive attention as efficient
heavy metal adsorption materials [11,12]. For example, a carbon nanotube (CNT)-doped
hydrotalcite-hydroxyapatite (HT-HAp) material was prepared to adsorb Cr(VI) from tan-
nery wastewater. Under the action of ion exchange and electrostatic attraction, 76.97% of
Cr(VI) was adsorbed by HT-HAp [13]. Guo et al. loaded zirconium oxide (ZrO2) onto
halloysite nanotubes (ZrO2/HNTs) to enhance the average pore size and specific surface
area of halloysite nanotubes (HNTs), which resulted in an improved adsorption perfor-
mance of HNTs on As(III) (36.08 mg/g) [14]. The surface of the synthesized magnetic
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nanoparticles-phosphate-titanium nanotubes (MNP-PN-TNT) possessed rich hydroxyl
groups, which gave MNP-PN-TNT a removal performance of 35 mg/g of Cr(VI) by ion
exchange under acidic conditions [15]. Although these nanotube materials exhibited a
certain amount of heavy metal adsorption capacity, the high preparation costs significantly
hindered their applications [16]. Consequently, it is urgent to develop a cheap and effective
method to prepare nanotube materials to remove heavy metals from wastewater [17].

Lignin, as the second most naturally occurring amorphous aromatic molecular poly-
mer in nature after cellulose, is regarded as a key component of the lignocellulosic
biomass [18,19]. Technical lignin (TL) is mainly derived from by-products of the paper
and pulp industry, and the annual amount of TL produced is estimated to be 225 million
tons by 2030 [20]. However, only 5% of TL is utilized at a high-value level, and a large
amount of TL is burned as low-value fuel or disposed of as waste [21]. Low utilization
is still a challenge for TL [22]. To increase the TL utilization efficiency, chitin was intro-
duced to lignin to prepare chitin/lignin hybrid material for heavy metal removal. It was
found that chitin/lignin exhibited superb adsorption capacity of Cu2+ (75.70 mg/g), Zn2+

(82.41 mg/g), Ni2+ (70.41 mg/g), and Pb2+ (91.74 mg/g), which was probably attributed
to the abundant functional groups of chitin and lignin, such as phenols, hydroxyl, car-
boxyl, and ethers [23]. In addition, with functional groups and a three-dimensional
structure, lignin-based carbon nanotubes (L-CNTs) were prepared by introducing lignin
into the carbon nanotubes, which exhibited excellent adsorption performance of L-CNTs
for Pb2+ (235 mg/g) and the advantages of strong water dispersion and environmental
friendliness [24]. The results indicate that lignin is an effective material in heavy metal
removal and has a high potential in water pollution treatment.

However, poor water solubility and low surface area remain a challenge for lignin
utilization [25,26]. Structural modifications of lignin were reported to enhance the proper-
ties of lignin [27]. The main methods for lignin modification are acid hydrolysis, sulfonation,
ionic liquid modification, alkylation, steam activation, carboxylation, ball milling, amina-
tion, etc. [19,28]. Amination is a prospective method because the amine groups introduced
into the lignin ionize and generate a positive charge under acidic conditions. The Mannich
reaction for lignin modification is an excellent method because the aminated product is
highly dispersed, which improves the lignin adsorption capacity for heavy metals by four
to five times [29,30].

To our knowledge, titanate nanotubes have been extensively studied as semiconductor
materials with high specific surface area and reusable properties [31]. However, studies
combining the lignin-rich functional groups with the tubular structure of titanate nan-
otubes to effectively remove Cr(VI) have not been reported. In this study, TL was modified
by activation using the Mannich reaction to improve its disadvantages of easy agglom-
eration and low adsorption capacity. AL-TiNTs were successfully prepared by a simple
hydrothermal method for the first time (Scheme 1). The purpose of this study was to explore
(1) the physicochemical properties of AL-TiNTs; (2) the adsorption performance of AL-
TiNTs under different conditions; (3) the reduction performance of AL-TiNTs on Cr(VI) in
the photocatalytic process; (4) the selectivity of AL-TiNT adsorption in mixed solutions
and the wide absorbability on other heavy metal ions; and (5) the removal mechanism of
AL-TiNTs for Cr(VI) and the regenerative properties of AL-TiNTs.
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Scheme 1. The synthesis process of AL-TiNTs: (a) schematic diagram; (b) structural diagram. 
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In Figure 1, the SEM images of TL, AL, and AL-TiNTs are shown. When the magnifi-
cation was 5 kx, the pure TL particles were aggregated into a blocky structure (Figure 1a), 
the modified AL exhibited a more compact structure with some pores formed by depres-
sions on the surface (Figure 1b), and the AL-TiNTs presented a fluffy structure with an 
irregular spherical shape formed by the surface projections and more pores (Figure 1c). 
When the magnification reached 50 kx, the TL surface was smooth with fewer pores (Fig-
ure 1d), while the AL surface was rough and presented a few pores (Figure 1e). On the 
one hand, this could be due to the modified amino grafting on the pure TL, which changed 
its surface structure [32]; on the other hand, the washing and freeze-drying process might 
leave pores [30]. In particular, the AL-TiNTs presented a randomly entangled nanotube-
like structure, along with a nanotube cross-shaped porous network structure (Figure 1f), 
which was related to the Ti–O–Ti bond breaking and the formation of sodium titanate 
during the hydrothermal process [33]. Results indicated that the hydrothermal and mod-
ification synthesis of AL-TiNTs not only improved the disadvantages of lignin which was 
prone to agglomeration but also formed the nanotubular structure, which greatly im-
proved the specific surface area of AL-TiNTs and thus promoted the adsorption and pho-
tocatalytic reduction properties of AL-TiNTs [34]. 

Scheme 1. The synthesis process of AL-TiNTs: (a) schematic diagram; (b) structural diagram.

2. Results and Discussion
2.1. Characterization of AL-TiNTs
2.1.1. SEM

In Figure 1, the SEM images of TL, AL, and AL-TiNTs are shown. When the magnifica-
tion was 5 kx, the pure TL particles were aggregated into a blocky structure (Figure 1a), the
modified AL exhibited a more compact structure with some pores formed by depressions
on the surface (Figure 1b), and the AL-TiNTs presented a fluffy structure with an irregular
spherical shape formed by the surface projections and more pores (Figure 1c). When the
magnification reached 50 kx, the TL surface was smooth with fewer pores (Figure 1d),
while the AL surface was rough and presented a few pores (Figure 1e). On the one hand,
this could be due to the modified amino grafting on the pure TL, which changed its sur-
face structure [32]; on the other hand, the washing and freeze-drying process might leave
pores [30]. In particular, the AL-TiNTs presented a randomly entangled nanotube-like
structure, along with a nanotube cross-shaped porous network structure (Figure 1f), which
was related to the Ti–O–Ti bond breaking and the formation of sodium titanate during
the hydrothermal process [33]. Results indicated that the hydrothermal and modification
synthesis of AL-TiNTs not only improved the disadvantages of lignin which was prone
to agglomeration but also formed the nanotubular structure, which greatly improved the
specific surface area of AL-TiNTs and thus promoted the adsorption and photocatalytic
reduction properties of AL-TiNTs [34].
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Figure 1. SEM pictures: (a) TL with 5 kx; (b) AL with 5 kx; (c) AL-TiNTs with 5 kx; (d) TL with 50 
kx; (e) AL with 50 kx; (f) AL-TiNTs with 50 kx and 200 kx. 

2.1.2. EDS 
The EDS mapping of the AL-TiNTs is presented in Figure 2. The presence of the ele-

ment N in Figure 2c was evidence of the presence of the amino group. The high degree of 
overlap between the Ti (Figure 2a) and O (Figure 2d) elements indicated the possible pres-
ence of Ti-O bonds in the AL-TiNTs, and it was assumed that the synthesis of Na2Ti3O7 
took place. Meanwhile, the dense distribution of Ti (Figure 2a), C (Figure 2b), and N (Fig-
ure 2c) elements proved the involvement of AL in the dispersion of titanate nanotubes, 
further proving the successful synthesis of AL-TiNTs. 

 
Figure 2. EDS mapping of AL-TiNTs: (a) Ti; (b) C; (c) N; and (d) O. 

2.1.3. BET 
Figure 3a presents a type II isotherm of a very small H3 hysteresis loop, which was 

in accordance with the previously reported conclusion that lignin is predominantly a 

Figure 1. SEM pictures: (a) TL with 5 kx; (b) AL with 5 kx; (c) AL-TiNTs with 5 kx; (d) TL with 50 kx;
(e) AL with 50 kx; (f) AL-TiNTs with 50 kx and 200 kx.

2.1.2. EDS

The EDS mapping of the AL-TiNTs is presented in Figure 2. The presence of the
element N in Figure 2c was evidence of the presence of the amino group. The high degree
of overlap between the Ti (Figure 2a) and O (Figure 2d) elements indicated the possible
presence of Ti-O bonds in the AL-TiNTs, and it was assumed that the synthesis of Na2Ti3O7
took place. Meanwhile, the dense distribution of Ti (Figure 2a), C (Figure 2b), and N
(Figure 2c) elements proved the involvement of AL in the dispersion of titanate nanotubes,
further proving the successful synthesis of AL-TiNTs.
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2.1.3. BET

Figure 3a presents a type II isotherm of a very small H3 hysteresis loop, which was
in accordance with the previously reported conclusion that lignin is predominantly a
microporous structure and has less content of mesoporous structure [35]. Compared to
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the TL, although AL presented a relatively large H3 hysteresis loop (Figure S1), it was
still a type II isotherm, suggesting that the amination modification was not significant in
affecting the lignin pore structure and that the microporous structure was still predominant
in AL. Conversely, Figure 3b presents the typical appearance of type IV isotherms and
H3 hysteresis loops, showing their mesoporous structures with diameters of 2–50 nm [36].
The PSD curves calculated by the BJH method are depicted in the insets of Figure 3a,b.
Compared to Figure 3a, the PSD curves in Figure 3b exhibit dramatic peaks, and the pore
diameter at 3–4 nm corresponds to the pores contained within the AL-TiNT tubes [5]. The
9–12 nm corresponds to spaces between the aggregated tubes of AL-TiNTs, which was in
accordance with the SEM characterization results [37]. The BET results for TL, AL, and
AL-TiNTs are presented in Table S1. Compared to TL (5.9037 m2/g) and AL (6.7762 m2/g),
the AL-TiNTs offered a larger specific surface area (188.51 m2/g), owing to the special
tubular structure and resulting in a higher adsorption capacity [16].
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2.1.4. XRD

The composites prepared with different AL to nano-TiO2 ratios displayed similar
XRD patterns (Figure 3c). The AL-TiNTs synthesized in different ratios presented charac-
teristic peaks with diffraction angles of 48◦, 28◦, and 24.5◦, which were the characteristic
peaks of titanate nanotubes and belonged to the (020), (211), and (110) planes of TiNTs,
respectively [38]. The characteristic peak at 10◦ corresponded to one of the (001) crystal
planes of Na2Ti3O7 [39], and the peaks at 48◦, 28◦, and 24.5◦ indicated that the composite
contains sodium titanate compounds and hydrogen titanate compounds [39]. The broad
peak at 10◦ corresponded to a layer spacing of approximately 0.7–0.85 nm between layers
of titanate [40]. In addition, the lack of anatase diffraction peaks demonstrated that all of
the TiO2 was converted to titanate nanotubes [41].

2.1.5. FT-IR

It was obvious that the absorption peaks of modified lignin were weakened, which
was because of the involvement of the O–H bond during the Mannich reaction, resulting
in the reduction of the O–H group (Figure 3d). However, following the synthesis of the
AL-TiNTs, the increased absorption peak at 3415 cm−1 suggested the formation of a new
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O–H group, which could be the stretching vibration of O–H in the Ti–OH bond on the
nanotubes [2]. High peaks at 2849 and 2937 cm−1 occurred due to the aromatic methoxy
C–H vibration. Aromatic skeletal vibrational peaks at 1422, 1461, 1511, and 1600 cm−1

were found in TL, AL, and AL-TiNT fractions, which were typical peaks of lignin [42,43].
The C–N vibrational peak at 1048 cm−1 and the N–H in-plane bending vibrational peak at
1640 cm−1 were found in the AL and AL-TiNTs, which indicated the successful introduction
of amino groups on lignin [44]. Meanwhile, the O–Ti and Ti–O–Ti bond at 467 cm−1 was
found in AL-TiNTs [45], indicating the successful synthesis of sodium titanate Na2Ti3O7,
which was in accordance with the SEM and XRD analyses [46].

2.2. Adsorption
2.2.1. Mass Ratios of AL/Nano-TiO2

The AL/nano-TiO2 mass ratio played a remarkable influence on Cr(VI) removal when
the AL/nano-TiO2 ratios were set as 0.25, 0.5, 1, and 2. Pure AL and nano-TiO2 were
also considered (Figure 4a). When the AL/nano-TiO2 mass ratio was 0.25, only 78.14% of
Cr (VI) was removed. As the AL/nano-TiO2 mass ratio improved, the content of amino
functional groups gradually increased, more adsorption active sites were exposed, and the
removal efficiency increased gradually. When the mass ratio of AL/nano-TiO2 was 1:1, the
removal efficiency could reach 99.80%, which was found to be the optimum mass ratio of
AL/nano-TiO2.
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(c) AL-TiNT dosage; and (d) initial concentration of Cr (VI) and kinetic analysis (AL-TiNT dosage:
0.05 g; pH = 2; temperature: 25 ◦C).

2.2.2. pH

Cr(VI) existed in three main forms in aqueous solution, mainly in CrO4
2− at pH > 6.0

and in H2CrO4 and HCrO4
− at pH < 6.0 [47]. It was found that the acidic environments

were beneficial in improving the AL-TiNT adsorption capacity (Figure 4b). AL-TiNTs
showed a clear downward trend of the Cr(VI) removal efficiency as the pH increased.
When the solution became neutral, the removal efficiency increased slightly. Results
indicated that under strongly acidic conditions, the AL-TiNTs exhibited better adsorption
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performance and could remove 99.80% of Cr(VI) at pH 2. The reactions during adsorption
were as follows [48]:

−NH+
3 + HCrO−

4 
 −NH+
3 HCrO−

4 (1)

2 − NH+
3 + CrO2−

4 

(
−NH+

3
)

2CrO2−
4 (2)

2 − NH+
3 + Cr2O2−

7 

(
−NH+

3
)

2Cr2O2−
7 (3)

2.2.3. AL-TiNT Dosage

Figure 4c exhibits the effect of the AL-TiNT dosage (0.01, 0.02, 0.03, 0.05, 0.07, and
0.10 g) on the adsorption performance. When the adding amount of AL-TiNTs increased,
the Cr(VI) removal efficiency gradually increased, while the AL-TiNT adsorption capacity
decreased. There was a slope of the removal efficiency curve that tended to slow down
between 0.02 and 0.10 g and a 100% removal of Cr(VI) by AL-TiNTs at 0.10 g. In contrast,
the adsorption capacity of AL-TiNTs at the lower dosing of 0.01 g reached 70.87 mg/g,
which was higher than the adsorption capacity of 0.1 g AL-TiNTs. The AL-TiNT adsorption
capacity decreased sharply with increasing the dosage of AL-TiNTs from 0.01 to 0.03 g.
This could be explained as follows: as the amount of the AL-TiNTs increased, the AL-
TiNTs were exposed to more adsorption sites, resulting in more Cr(VI) being adsorbed on
AL-TiNTs [49]. Therefore, the optimum dosage of AL-TiNTs was 0.05 g based on the
removal efficiency and cost.

2.2.4. Temperature

The highest Cr(VI) removal efficiency was found to be 100% at 35 ◦C, while it was only
96.51% at 20 ◦C (Figure S2). The performance of AL-TiNTs in removing Cr(VI) decreased
with decreasing temperatures, which may be due to the decreased vibrational frequency of
Cr(VI) at lower temperature [50].

2.2.5. Cr(VI) Concentration

Figure 4d presents the effect of the initial Cr(VI) concentration (C0). As the results
indicated, with the increase in C0, the removal efficiency declined. The equilibrium re-
moval efficiency of AL-TiNTs for Cr(VI) was 85.72% at the C0 of 150 mg/L, which was
comparatively lower. However, the AL-TiNT adsorption capacity was relatively higher
reaching 77.15 mg/g. This could be explained by that when the dosage of AL-TiNTs was
constant, the total number of active adsorption sites was also limited. At the lower Cr(VI)
concentrations, the AL-TiNTs displayed a relatively greater number of adsorption sites
where Cr(VI) could be adsorbed more efficiently. Adsorption sites of AL-TiNTs were con-
tinuously occupied with the increasing amount of pollutant, and thus, the excess amount
of Cr(VI) could not be adsorbed.

2.3. Photodegradation Study

The photodegradation of the AL-TiNTs was investigated under light (Figure 5a,b). At
low Cr(VI) concentration (50 mg/L), the AL-TiNTs were able to adsorb almost 100% of
Cr(VI). Therefore, to study the reductive efficiency of AL-TiNTs under visible light, Cr(VI)
concentration with 150 mg/L was used. The removal efficiency of Cr(VI) by the AL-TiNTs
of AL/nano-TiO2 ratios of 1:1 and 2:1 could reach 90.48% and 94.48% after the adsorption
and photocatalytic reaction, respectively (Figure 5a). However, the AL-TiNT materials with
the AL/nano-TiO2 mass ratio of 1:1 achieved a conversion of Cr(III) of up to 29.76% at
40 min under light exposure (Figure 5b). Therefore, the reduction of Cr(VI) provided more
evidence of the better performance of AL-TiNTs with the AL/nano-TiO2 ratio of 1:1. The
reason for the existence of low amounts of Cr(III) before the photocatalytic reaction was
that under strongly acidic conditions, a high concentration of Cr(VI) could react with some
hydrochloric acid to produce low amounts of Cr(III) (Figure 5b). After the photocatalysis,



Molecules 2023, 28, 5789 8 of 18

the Cr(III) concentration gradually increased. The Cr(III) in solution might have entered
the titanate nanotubes and limited the complexation of electrons and holes, increasing the
AL-TiNT photocatalytic activity and leading to a higher rate of Cr(III) production [35]. At
40 min, the production rate of Cr(III) decreased because of the photocatalysis, which could
result from the gradual photocatalysis equilibrium at this time, and more Cr(III) could be
adsorbed by the AL-TiNTs [51]. Finally, the removal amount of AL-TiNTs for total Cr was
90.00 mg/g. The reduction of AL-TiNTs for Cr(VI) following photoelectron production is
displayed in Text S1 [52].
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The effects of different light intensities on AL-TiNTs were investigated by varying the
current of the xenon lamp light source to regulate the light intensity (Figures S3 and S4).
When the operating current was 5 A, the photocatalytic performance of different AL/nano-
TiO2 mass ratios of AL-TiNTs was poor, among which the photocatalytic reduction of
AL-TiNTs with an AL/nano-TiO2 mass ratio of 2:1 was the worst, which was only 5.54%
(Figure S4a). When the operating current was adjusted to 12 A, the photocatalytic effect
of AL-TiNTs was significantly improved, and the Cr(VI) reduction efficiency of AL-TiNTs
with the AL/nano-TiO2 mass ratio of 1:4 could reach up to 23.53%, which was twice as
much as that of its Cr(VI) reduction efficiency when the current of the xenon lamp source
was 5 A (Figure S4b). It could be seen that light intensity was crucial for the photocatalytic
activity of AL-TiNTs.

2.4. Co-Existing Anions

When the co-existing ion concentrations were 5 and 50 mg/L, the influence of co-
existing ions on Cr(VI) removal can be neglected (Figure S5), indicating that AL-TiNTs were
highly resistant to complex solutions. It was found that Cu2+ and Zn2+ had a positive impact
on the Cr(VI) removal by AL-TiNTs when each of the co-existing cation concentrations was
500 mg/L (Figure 5c). However, the adsorption performance of AL-TiNTs was slightly
inhibited by the high concentration of Ca2+ and Mg2+ (5000 mg/L). On the one hand, this
may be due to the high ion concentration which shielded the electrostatic attraction. On
the other hand, the high concentration of the co-existing cation significantly hindered the
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movement of Cr(VI) to the AL-TiNTs [53]. The six co-existing anions exhibited a slight
influence on the AL-TiNT adsorption performance. However, at the high co-existing anion
concentration of 5000 mg/L, the six anions indicated different degrees of inhibition of the
removal capacity of AL-TiNTs (Figure 5d). This could be explained by a reduction in the
AL-TiNT active sites due to the occupation by an excess amount of anions. In addition,
CO3

2− inhibited Cr(VI) removal by AL-TiNTs, probably because the addition of CO3
2−

could increase the pH of the solution, which was not conducive to the protonation of amino
groups on the AL-TiNTs, and the electrostatic attraction was not liable to occur [29]. The
inhibitory effect of SO4

2− may be attributed to the nature of SO4
2− with its greater charge

and higher radius ratio (z/r) and its stronger interaction with the adsorption site [54].

2.5. Theoretical Study
2.5.1. Adsorption Kinetics

The kinetic studies were performed at different Cr(VI) concentrations at 298 K
(Figures 4d and 6, Text S2). The pseudo-second-order kinetic model (Figure 4d) and
the largest R2 values (0.9991–0.9999) for the kinetic model (Table S2) suggested that the
secondary kinetic model was highly relevant to the Cr(VI) adsorption process. Compared
to other kinetic models (Figure 6a–d), the theoretical equilibrium adsorption capacities of
the proposed secondary kinetic model showed a high degree of similarity to the actual
equilibrium adsorption capacities, demonstrating that the kinetic model exactly described
the adsorption process of the AL-TiNTs [55]. It could be concluded that processes such as
electron transfer and the sharing of active sites between Cr(VI) and the AL-TiNTs occurred
at the microscopic level with chemisorption playing a crucial role. Both the second and
third curves did not pass through the origin of the coordinates in the fitted curves of the
intraparticle diffusion model (Figure 6d), and the fit was poor. This indicated that intra-
particle diffusion would not be the single limiting factor and would not be as dominant as
chemical interactions.
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2.5.2. Adsorption Isotherms

Adsorption was analyzed using four different isotherm models such as Langmuir
(Figure S6a), Freundlich (Figure S6b), Temkin (Figure S6c), and D-R isotherm models
(Figure S6d), and the details are presented in Text S3. The highest R2 value (0.9912–0.9972)
for the Langmuir model in Table 1 suggested that the Langmuir model described the
adsorption processes involved in this study to a considerable extent, suggesting a consistent
adsorption process for single-molecular-layer adsorption [35]. At different temperatures,
the RL < 1 indicated that AL-TiNTs readily adsorb Cr(VI) [27]. The RL value diminished
as the concentration increased, indicating that the adsorption process of AL-TiNTs was
irreversible as Cr(VI) concentration increased, and there are intense interactions between
the AL-TiNTs and the adsorbate molecules Cr(VI) [56]. In the Freundlich isotherm fit
results, 0 < 1/n < 1 indicated that the adsorption process involved in this study was easy to
carry out, which led to the same conclusion as that obtained from the Langmuir isotherm
fit [57]. Furthermore, in the D-R model, the high E value (>8 kJ/mol) indicated that there
was a predominantly chemisorption process for the AL-TiNTs.

Table 1. Fitting results for different sorption isotherm models.

Isotherm Model Parameter
Temperature (K)

293 K 298 K 303 K 308 K

Langmuir
qm (mg/g) 88.97 89.85 88.18 86.13
KL (L/mg) 0.24 0.43 0.61 1.12
R2 0.9923 0.9972 0.9948 0.9912

Freundlich

KF ((mg/g)
(L/mg)1/n) 30.39 37.83 42.65 49.86

1/n 0.30 0.28 0.24 0.21
R2 0.9843 0.9839 0.9905 0.9774

Temkin
KT (L/mol) 3.34 7.41 15.30 49.06
B1 (J/mol) 17.66 16.63 14.82 12.80
R2 0.9856 0.9893 0.9891 0.9731

Dubinin–
Radushkevich

qm (mol/g) 0.0042 0.0041 0.0037 0.0033
KD (mol2/g2) 0.0029 0.0025 0.0020 0.0016
R2 0.9866 0.9879 0.9917 0.9804
E (kJ/mol) 13.09 14.29 15.69 17.68

2.5.3. Thermodynamics

A thermodynamic approach to reveal the orientation and complexity of the reac-
tion process is shown in Figure S7 and Text S4. The consequences are given in Table S3.
A negative value for ∆G0 indicated that the reaction was spontaneous. It was confirmed
by ∆H0 > 0 that the AL-TiNT adsorption process was heat-absorbing. ∆S0 > 0 implied an
improvement in the stoichiometry of the AL-TiNT/solution interface [50].

2.6. Selective Adsorption

The selective adsorption performance of AL-TiNTs on heavy metals was investigated
(Figure 7a). The methods for the analysis of Zn2+, Cd2+, and Cu2+ are presented in Text S5.
Under acidic conditions (pH = 2), AL-TiNTs exhibited excellent adsorption performance for
Cr(VI), while poorer adsorption performance for Zn2+, Cd2+, and Cu2+ was observed. These
results were also found in the binary and quaternary systems. The reason may be that Cr(VI)
appeared in the solution as the negatively charged anions (Cr2O7

2−, CrO4
2−, and HCrO4

−),
which were more easily adsorbed to the protonated amino groups on AL-TiNTs by the
electrostatic attraction. It could be demonstrated that under acidic conditions, titanate
nanotubes (TiNTs) were positively charged, while Zn2+, Cd2+, and Cu2+ were also positively
charged metal ions, which could be electrostatically repelled by AL-TiNTs [58]. Ultimately,
these heavy metal ions could only weakly physically adsorb through the pores of the AL-
TiNTs. The adsorption performance of AL-TiNTs on Zn2+, Cd2+, and Cu2+ under neutral
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conditions without pH adjustment is displayed in Figure 7b. Interestingly, a significant
improvement in the adsorption capacities of Zn2+ (63.78 mg/g), Cd2+ (59.20 mg/g), and
Cu2+ (66.35 mg/g) by AL-TiNTs was observed. It revealed that under acidic conditions, AL-
TiNTs performed exceptional selective adsorption of Cr(VI), and under neutral conditions,
AL-TiNTs performed broad-spectrum adsorption of heavy metals, which was beneficial to
the wide application of AL-TiNTs in heavy-metal-containing wastewater treatment.
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AL-TiNTs were added to the solutions containing methylene blue (MB), Congo red
(CR), and rhodamine B (RhB). The selective adsorption performance of AL-TiNTs on dyes
was investigated in the mixed ternary system at different pH conditions, respectively
(Figure 7c,d). The methods for the testing of MB, CR, and RhB are described in Table S4.
Results revealed that under neutral conditions, the adsorption performance of AL-TiNTs
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on dyes was in the order of MB > RhB > CR. Considering that the discoloration range of
CR was 3.5–5.2, the adsorption of AL-TiNTs for CR was further investigated by adjusting
the pH to 5.5 (Figure 7d). There was a remarkable change in the adsorption performance
of AL-TiNTs for CR (69.45 mg/g). However, in the mixed ternary system, AL-TiNTs still
prefer to adsorb MB. Under neutral conditions without pH adjustment, MB exhibited
the most obvious color change from dark blue to light blue, while CR and RhB showed
very little color change in the single system, (Figure 7e). In the mixed ternary system, the
color changed from blue-purple to light pink because of the selective adsorption of MB
(86.86 mg/g) by the AL-TiNTs, and only 41.72 and 9.45 mg/g were found for RhB and
CR, respectively (Figure 7f). The excellent selective adsorption ability of AL-TiNTs for MB
may be explained by the π-π stacking and electrostatic interactions between MB molecules
and the aromatic rings on AL-TiNTs [59,60]. On the contrary, the spatial site resistance
caused by the long side chains of the RhB molecule would inhibit its π-π stacking and
electrostatic attraction with the AL-TiNTs, making it difficult for RhB to be removed by
AL-TiNTs. The low AL-TiNT adsorption capacity for CR was attributed to the fact that both
TiNTs and CR were negatively charged under neutral conditions, which may produce a
strong electrostatic repulsion [61]. The results indicated that AL-TiNTs exhibited strong
selective adsorption of MB in a wide pH range, which was beneficial for the application of
AL-TiNTs in dye-containing wastewater treatment.

2.7. Mechanism Study

Figure 8 explains the removal mechanism of AL-TiNTs for Cr(VI), which involved the
following processes:

(1). The amino group in AL grafted onto titanate nanotubes was protonated and adsorbed
Cr(VI) by electrostatic attraction under acidic conditions;

(2). Under visible light, the AL-TiNTs generated electrons, and the Cr(VI) adsorbed on the
AL-TiNTs was reduced to Cr(III);

(3). The positively charged Cr(III) reached the electronegative surface of the titanate
nanotubes by electrostatic attraction and was eventually absorbed by the titanate
nanotubes through ion exchange with Na+ and H+ between the nanotube layers or
through complexation and co-precipitation [4].
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2.8. Regenerative and Applicative Study

The durability and stability of the material are important indicators for assessing the
performance of the AL-TiNT materials, as well as for evaluating their application prospects.
It was appropriate to use NaOH solution as the desorption reagent for the reasons presented
in Text S6. The effect of desorption solution pH on the desorption efficiency of Cr(VI) was
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explored (Figure S8). The result indicated that the desorption efficiency was essentially
stable at 81.32% when the pH value was greater than 10. Continuing to increase the pH
value, the desorption efficiency was hardly improved. The adsorption capacity of TL and
AL-TiNTs diminished with the number of applications (Figure 9a). On the one hand, the
structure of the AL-TiNTs may have changed after several adsorption–desorption cycles.
On the other hand, the re-obtained AL-TiNTs after the adsorption of Cr(VI) (AL-TiNTs-Cr)
are more stable compared to the original AL-TiNTs, and many active sites may be blocked.
In addition, in the first-time application, the adsorption capacity for Cr(VI) was seven to
eight times higher by AL-TiNTs than that by TL. After four cycles, the adsorption capacity
of AL-TiNTs was 49.50 mg/g, which was much higher than the adsorption capacity of
amino-modified titanate nanotubes TNTs-RNH2 after three cycles (23.9 mg/g) [37]. Under
the condition of the adsorbent undergoing alternating acidic and basic conditions, the
AL-TiNTs still retained excellent stability.
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A comparison of the adsorption capacity of AL-TiNTs and other adsorbents for Cr(VI)
is presented in Table 2. The adsorption capacity of AL-TiNTs after four cycles was still
higher than that of the first-used iron oxide-coated cellulose/hydrotalcite (Fe3O4@CelHT)
(29.00 mg/g) [62], multi-wall carbon nanotube (MWCNT) (11.41 mg/g) [63], mesoporous
carbon nitride (MCN) (48.31 mg/g) [64], and fox nutshell activated carbon (FNAC)
(46.21 mg/g) [65].

Table 2. Comparison of Cr(VI) adsorption capacity of AL-TiNTs with some reported adsorbents.

Adsorbent Qm (mg/g) References

AL-TiNTs 77.15 This study
TNTs-RNH2 69.10 [37]

Fe3O4@CelHT 29.00 [62]
MWCNT 11.41 [63]

MCN 48.31 [64]
FNAC 46.21 [65]

The applicability of AL-TiNTs in different water sources was further investigated
(Figure 9b), and the detailed parameters of the simulated electroplating wastewater are
described in Table S5. After 2.5 h of reaction, the removal efficiencies obtained by AL-
TiNTs for Cr(VI) were 97.81%, 96.97%, and 95.86% in the deionized water, tap water, and
simulated electroplating wastewater, respectively. Although the removal efficiencies were
relatively lower compared to those in ultra-pure water (99.80%), they were all above 95%,
indicating the potential of AL-TiNTs for practical applications.
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3. Materials and Methods
3.1. Materials and Chemicals

The TL used was the same as we mentioned before [53]. TiO2 (99.8%, 40 nm), potas-
sium dichromate (K2Cr2O7), formaldehyde (CH2O), potassium ferricyanide (K3[Fe(CN)6]),
triethylenetetramine (TETA), acetone (C3H6O), and phosphoric acid (H3PO4) were obtained
from Damao Chemical Reagent Co., Ltd. (Tianjin, China). Further material information is
provided in Text S7.

3.2. Preparation of AL-TiNTs
3.2.1. Amination of TL

Amine modification of TL by Mannich reaction [2]: First, 5 g of TL was dissolved in
0.4 mM sodium hydroxide (NaOH) solution (30 mL). Then, 4 mL of TETA and 3.6 mL of
CH2O were added and stirred (500 rpm) for 15 min. After that, the mixture was placed in
water at 75 ◦C for 3 h. The mixed solution was filtered and collected. Then, an excess of
K3[Fe(CN)6] solution was added to the filtrate to allow the modified cationic lignin amine
to precipitate out. To obtain aminated lignin (AL), the product was cleaned with ethanol
and alternating ultra-pure water and freeze-dried for 24 h. The physical pictures of TL and
AL samples are presented in Figure S9a,b.

3.2.2. Synthesis of AL-TiNTs

A total of 1.0 g of nano-titanium dioxide (nano-TiO2) powder was dissolved into 10 M
NaOH solution (50 mL) with magnetic stirring (500 rpm) for 30 min. After that, 1.0 g of AL
was added and stirred magnetically (500 rpm) for 45 min. Then, AL and titanium dioxide
nanoparticles were well dispersed in the NaOH solution. The suspension was transported
to a 100 mL PTFE-lined reactor, and the reaction was performed continuously at 150 ◦C for
24 h [66]. Finally, we filtered the solution and washed the precipitate to pH 7. The product
was freeze-dried for 24 h and named AL-TiNTs. AL-TiNTs with AL/nano-TiO2 mass ratios
of 2:1, 1:2, and 1:4 were obtained by varying the AL and nano-TiO2 addition ratios, with
other steps remaining the same. The physical image of the AL-TiNT sample is shown in
Figure S9c.

3.3. Characterizations

The morphology of TL, AL, and AL-TiNTs was investigated by scanning electron
microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) (Czech TESCAN MIRA
LMS). X-ray diffraction (XRD) was obtained with an Ultima IV X-ray diffractometer (Rigaku,
Tokyo, Japan). The Fourier transform infrared spectrometer (FT-IR, Nicolet iS10 spectrome-
ter) and the specific surface area (Micromeritics ASAP 2460 Version 3.01) were performed
by the KBr particle technique and Brunauer–Emmett–Teller (BET) technique, respectively.

3.4. Experimental Design
3.4.1. Adsorption Experiment

A total of 0.05 g of AL-TiNTs was added to the conical flask, which contains Cr(VI)
solution (50 mg/L), and shaken well with a constant temperature shaker (150 rpm). The
pH was adjusted with HCl and NaOH. Using a disposable syringe, the sample solution
was aspirated at a fixed time in 2 mL and filtered. Cr(VI) was measured with UV-Vis
spectrophotometer (UV6100s, MAPADA, Shanghai, China). Details of the parameters
influencing the adsorption performance of AL-TiNTs are described in Text S8.

3.4.2. Photocatalytic Degradation Experiments

Exploring Cr(VI) adsorption by AL-TiNTs through preliminary experiments, the
adsorption–desorption balance was reached at around 40 min. Therefore, 0.05 g AL-
TiNTs were incorporated into Cr(VI) (150 mg/L) solution (30 mL, pH = 2) at 25 ◦C and
agitated magnetically for 40 min; then, the 300 W xenon lamp (wavelength > 420 nm) was
switched on and illuminated continuously for 120 min. Sample solutions were collected at
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various times during the reaction and filtered with a 0.22 µm filter membrane. The total Cr
concentration was detected by inductively coupled plasma mass spectrometry (iCAP6300).
The degradation rate was calculated by

Degradation rate (%) =
(C0 − Ct)

C0
× 100% (4)

where C0 (mg/L) and Ct (mg/L) represent the Cr(VI) concentrations at the beginning
of photocatalysis with the light source on and at time t (min) during the photocatalytic
process, respectively.

3.4.3. Reusability Study

The post-use AL-TiNTs were added to 0.1 M NaOH solution and stirred to desorb
Cr(VI) to investigate the reuse efficiency of AL-TiNTs. The calculation of Cr(VI) desorption
efficiency is provided in Text S6. The reuse efficiency of AL-TiNTs was determined as follows:

Reuse e f f iciency (%) =
qn

q1
× 100% (5)

where q1 is the amount of adsorption of AL-TiNTs for the first time, and qn is the amount
adsorbed by recycling for the time n.

4. Conclusions

A novel layered nanotube material, AL-TiNT, was successfully prepared by a simple
hydrothermal method. Under the synergistic effect of adsorption and photocatalysis, the
AL-TiNTs provided the potential to adsorb and reduce Cr(VI) in one step. The adsorption
capacity of AL-TiNTs for total Cr was 90.00 mg/g. The AL-TiNTs exhibited strong resistance
to complex solutions and showed excellent selectivity for Cr(VI) in a mixed system of
quaternary heavy metal ions at pH 2. In a ternary dye-mix system, the AL-TiNTs were also
selective for the adsorption of MB at pH 7. In addition, AL-TiNTs displayed broad-spectrum
adsorption of Zn2+, Cd2+, and Cu2+ in a neutral environment. The adsorption mechanisms
of AL-TiNTs were mainly monolayer adsorption, electrostatic interaction, ion exchange, and
complexation. AL-TiNTs performed well (95.86%) in simulated electroplating wastewater,
which has the potential for practical application.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28155789/s1. References [61,67–70] are cited in Sup-
plementary Materials. Figure S1: Adsorption-desorption isotherms and pore distribution of AL;
Figure S2: Effect of temperature on the adsorption of Cr (VI) by AL-TiNTs and kinetic analysis;
Figure S3: Physical diagrams of light intensity corresponding to different xenon lamp source cur-
rents: (a) 5 A; (b) 8.5 A; (c) 12 A; Figure S4: Effect of different xenon lamp light source currents
on the removal of Cr(VI) by AL-TiNTs: (a) 5 A; (b) 12 A (AL-TiNTs: 0.05 g; pH = 2; temperature:
25 ◦C); Figure S5: The effect of co-existing anions insolution on removal of Cr(VI) by AL-TiNTs:
(a) cations and (b) anions of different ionic strengths (AL-TiNTs: 0.05 g; solution pH = 2; experimental
temperature: 25 ◦C); Figure S6: Adsorption isotherms (a) Langmuir; (b) Freundlich; (c) Temkin; and
(d) D-R isotherm models (AL-TiNTs: 0.05 g; pH = 2); Figure S7: Thermodynamics; Figure S8: Effect
of pH on desorption efficiency of Cr(VI); Figure S9: (a) TL; (b) AL; (c) AL-TiNTs. Table S1: Pore
structures and specific surface areas of samples; Table S2: Fitting results for different sorption models;
Table S3: Thermodynamic parameters for Cr(VI) removal by AL-TiNTs; Table S4: Details of MB, CR
and RhB and detection wavelengths; Table S5: The content of substances in simulated wastewater;
Text S1: The reduction process of Cr(VI); Text S2: Kinetics models; Text S3: Isotherm models; Text S4:
Thermodynamic; Text S5: Measurement methods of Zn2+, Cd2+, and Cu2+; Text S6: Desorption of
Cr(VI); Text S7: Materials; Text S8: Calculation equations of removal efficiency and capacity.
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