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Abstract: In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-
emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and
CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron
microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately
32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately
225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was
carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion
had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion
against S. aureus significantly decreased the development of biofilm compared with CL-emulsion.
Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher
than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal
efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and
A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the
prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay
for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer
cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion.
Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity
and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, anti-
fungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical
applications after extensive studies in vivo.

Keywords: clove essential oil; CLSM; nanoemulsion; antimicrobial activity; antibiofilm activity;
anticancer activity; apoptosis

1. Introduction

Multidrug-resistant (MDR) bacteria are more common, which highlights a rising con-
cern about appropriate therapies for diseases brought on by these infections [1]. Humans
exposed to bacteria that are highly and/or multidrug-resistant have experienced significant
cases of illness and mortality due to the absence of appropriate treatments [2]. As a result,
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microbial resistance is an important issue for the community, and there is a need to research
and identify novel chemicals with antimicrobial activities that have no adverse effects on
the host body.

Nanotechnology has a wide range of applications across various fields such as medicine,
agriculture, electronics, energy, remediation, and water treatment [3–10]. Essential oil
nanoemulsion is a type of nanotechnology-based delivery system that allows for the
efficient encapsulation and delivery of essential oils. Nanoemulsions are stable, transparent,
and homogeneous mixtures of oil, water, and emulsifiers, with droplet sizes typically
ranging from 10 to 200 nm [11]. Nanoemulsion enhances the surface area of essential oil
by lowering the droplet size, making it easier for the body to absorb and consume [12].
Essential oil nanoemulsion has several possibilities in the food, cosmetics, and medical
sectors. They increase flavor and nutritional value in lotions, creams, sprays, and food
products [13–16]. Antimicrobial activity has been observed in essential oil nanoemulsion
against a broad spectrum of microorganisms, including bacteria, fungi, and viruses [17,18].
This antimicrobial activity is due to the presence of bioactive compounds in essential oils,
which can disrupt the cell membrane of microorganisms and inhibit their growth [19].

Clove is also known as the expanding buds of Syzygium aromaticum (L.). Syzygium is
the biggest class in the Myrtaceae family, with over 1200–1800 blooming plant varieties [20].
Steam distillation, cold pressing, or supercritical CO2 extraction and solvent extraction are
methods for obtaining clove essential oils, which are exceptionally concentrated herbal
extracts. [21]. Steam distillation is a technique used to separate volatile compounds from
nonvolatile substances, typically employed in the extraction of essential oils from plants.
Steam distillation is carried out by passing dry steam through the plant material whereby
the steam volatile compounds are volatilized, condensed, and collected in receivers [22].
Also, the extraction of oil using supercritical CO2 is a popular method in the extraction of
oils due to its efficiency, selectivity, and environmentally friendly nature [23]. Supercritical
CO2 refers to a state of CO2 where it is above its critical temperature (31.1 ◦C) and critical
pressure (73.8 bar) [24]. In this state, CO2 exhibits unique properties that make it useful
in the extraction of oils. Clove essential oil contains over 30 distinct substances, of which
eugenol makes up at least 50%, and the other 10–40% is composed of eugenyl acetate,
humulene, and caryophyllene [25]. Clove essential oil has been used to heal burns and
wounds, as well as anesthesia in dentistry. Furthermore, its usage in many commercial uses
has been described, and it is widely employed in fragrances, detergents, and as a washing
medium in histology work. Multiple investigations have found that aromatic plants such
as clove, thyme, and mint have antibacterial, antiviral, anticarcinogenic, and antifungal
properties. However, due to its significant antibacterial and antioxidant properties, clove
has earned a lot of popularity among various spices [26]. The advantages associated with
plant compounds have been known since time immemorial. However, their advantages
are becoming more well understood, owing to their diverse medicinal characteristics [27].
The antibacterial capacity of clove oil nanoemulsion has been discovered to be significantly
greater than that of conventional preparation [28].

Since nanotechnology has proven to be an effective technique for treating cancer,
researchers have concentrated their efforts on treating a variety of cancers. The effects
of CL-nanoemulsion on apoptosis in both breast (MCF-7) and liver (HepG2) cancer cells
were evaluated. These promising results suggest that a natural product, CL-nanoemulsion,
may hold the key to facilitating the development of cancer treatments, notably for breast
cancer. This work aims to prepare CL-nanoemulsion through an ecofriendly method and
to characterize it using TEM and DLS, as well as to assess its antibacterial, antibiofilm,
antifungal, and anticancer potentialities.

2. Results and Discussion
2.1. Preparation and Characterization of CL-Nanoemulsion

Clove oil was extracted from Syzygium aromaticum using the ecofriendly method. To
convert clove oil to emulsion or nanoemulsion, an emulsifying agent must be used through



Molecules 2023, 28, 5812 3 of 16

an emulsification process [29]. Emulsification is a process that involves the mixing and
stabilization of two immiscible liquids, typically oil and water, to form a stable emulsion. An
emulsion is a mixture of tiny droplets of one liquid dispersed in another liquid. Emulsions
can be either oil-in-water (O/W) or water-in-oil (W/O), depending on the continuous
phase [30]. Thus, in the current study, Tween 80 was used as an emulsifying agent in
emulsion and nanoemulsion formation from clove oil. Tween 80 is widely used for the
formation of emulsions due to Tween having a high hydrophilic–lipophilic balance (HLB)
value, which supports the creation of oil-in-water emulsions [31]. The result revealed that
changing color to white indicates the formation of emulsion or nanoemulsion according to
the method used. To confirm the formation of CL-nanoemulsion, dynamic light scattering
and TEM analyses were carried out.

2.2. Dynamic Light Scattering

Figure 1 shows the stable CL-nanoemulsion prepared by the ultrasonication method
for 40 min at 350 W after 40 days of storage at room temperature. Previous studies con-
firmed that surfactant concentrations affected significantly the hydrodynamic diameter and
polydispersity of nanoemulsions [32,33]. Results revealed that CL-nanoemulsion droplets
were approximately 32.67 nm in size; the polydispersity index (PDI) for particles was 0.355,
as shown in Figure 1B. On the other hand, CL-emulsion droplets were approximately
225.8 nm in size; the PDI for particles was 0.242, as illustrated in Figure 1A. Dai et al. [34]
reported that nanoemulsion has a small droplet size in the presence of double bonds in
the nonpolar chain of non-ionic surfactants. Hashem, Abdelaziz, Hassanin, Al-Askar,
AbdElgawad, and Attia [18] succeeded in the preparation of CL-nanoemulsion where
mean droplets were 91.3 nm and PDI was 0.448. The mean hydrodynamic diameter rose in
direct proportion to the quantity of additional clove essential oil because of an increase in
the internal capacity of the nanoparticles covered by the oil. This may also be a result of
changes in the organic viscosity and physicochemical properties of solvents released into
water. Krishnamoorthy et al. [35] prepared cleome viscosa oil nanoemulsion and noticed
the dimensions of droplets NE retention at ambient temperature varied significantly, rang-
ing from 10 to 19 nm, 23 to 24 nm, and 163 to 63 nm for 1:3, 1:2, and 1:1 (oil: surfactant
(v/v)), respectively. Enayatifard et al. [36] illustrated that oregano nanoemulsion exhibited
low PDI (0.11), and the mean droplet was 72.26 nm.
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Figure 1. DLS of CL-emulsion (A) (peak at 225.8 nm and PDI = 0.242) and CL-nanoemulsion (B) (peak
at 32.67 nm and PDI = 0.355).

2.3. Transmission Electron Microscopy (TEM)

The actual dimensions and shape of the CL-nanoemulsion drops are revealed by TEM
analysis. The TEM micrograph showed that the CL-nanoemulsion was spherical in shape.
CL-nanoemulsion droplets were in the range of 27.7–52 nm (Figure 2B). CL-emulsion
was also spherical in shape. CL-emulsion droplets were in the range of 242.9–428.6 nm
(Figure 2A). The obtained results were in agreement with Hashem, Abdelaziz, Hassanin,
Al-Askar, AbdElgawad, and Attia [18], who found that TEM micrograph CL-nanoemulsion
was spherical in shape and droplet size was in the range of 36.4–57.1 nm. Hammad and
Hasanin [37] reported that the shape of spearmint and thyme nanoemulsions was spherical
with mono- or di-dispersed; also, the size was in the ranges (5.91–9.77) and (25.4–32.9),
respectively. Abd-Elsalam and Khokhlov [38] illustrated that TEM results of eugenol oil
nanoemulsion appeared spherical and the size was in the range of 50–110 nm.

2.4. Determination of MIC and MBC

CL-emulsion and CL-nanoemulsion have good antibacterial activity against bo-
th Gram-positive and Gram-negative bacteria, according to extensive research in the
literature [39]. The preliminary detection of CL-emulsion and CL-nanoemulsion against
tested bacteria was carried out using a microbroth double dilution assay. Using a resazurin-
mediated microtiter plate test, a visual evaluation of the inhibitory impact of the test
compounds was done using the color shift of the resazurin indicator [40]. MIC of the CL-
emulsion against B. cereus, S. aureus, E. coli, and K. oxytoca was 1.25, 2.5, 10, and 5 mg/mL,
respectively, while MIC of the clove oil nanoemulsion against B. cereus, S. aureus, E. coli,
and K. oxytoca was 0.31, 0.62, 1.25, and 5 mg/mL, respectively. Our results showed that
clove oil nanoemulsion possesses the lowest MIC ranging from 0.31 to 5 mg/mL (Table 1).
The MBC is the lowest quantity of CL-nanoemulsion necessary to totally eliminate the
bacteria under certain circumstances (no development on the agar dish) [2,41]. MBC of the
clove oil nanoemulsion against B. cereus, S. aureus, E. coli, and K. oxytoca were 0.62, 1.25,
2.5, and 10 mg/mL, respectively, whereas the MBC of the CL-emulsion was 2.5, 5, 20, and
10 mg/mL, respectively. One of the previous studies by Sharma [42] reported that Gram-
negative bacteria such as E. coli were shown to be more vulnerable to CL-nanoemulsion
than Gram-positive bacteria; this is in agreement with our results. One probable reason is
that the walls of their cells differ in content depending on whether they are Gram-positive
or Gram-negative. E. coli has a distinctive cell membrane with a periplasmic gap that
renders it more susceptible to antimicrobial effects [43]. Also, the improvement in CL-
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emulsion bioavailability within the nanoemulsion leads to homogeneous oil dispersion
and discharge that is adequate to suppress bacterial growth.
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Table 1. MIC (mg/mL) and MBC (mg/mL) of CL-emulsion and CL-nanoemulsion.

B. subtilis S. aureus E. coli K. oxytoca

MIC
(mg/mL)

MBC
(mg/mL) MIC MBC MIC MBC MIC MBC

CL-emulsion 1.25 2.5 2.5 5 10 20 5 10
CL-nanoemulsion 0.31 0.62 0.62 1.25 1.25 2.5 5 10
Ciprofloxacin 0.62 1.25 0.62 1.25 1.25 1.25 0.62 1.25

2.5. Antibiofilm Activity of CL-Emulsion and CL-Nanoemulsion

Biofilm suppression was determined with a conventional crystal violet technique. At
0.5 × MIC and 0.25 × MIC, the antibiofilm efficacy of CL-emulsion and CL-nanoemulsion
against S. aureus decreased the development of biofilm by 10.3 and 9.4% and 52 and
36.5%, respectively. Bacterial biofilm inhibition of CL-emulsion and CL-nanoemulsion
showed considerable biofilm-inhibiting action against S. aureus (p < 0.05) (Figure 3). This
medication had the strongest inhibitory capacity for biofilm formation against S. aureus at
tested sub-MIC dosages without hindering planktonic development. The granularity of
CL-nanoemulsions constitutes one of the key factors in their influence on biofilm inhibition
action since tiny particles have a greater surface area for contact with microbes [44,45].
The presence of the S. aureus biofilm generated on the coverslip glass was visualized
using CLSM. The microscopy image was obtained 48 h following the CL-nanoemulsion
treatment at 0.5 MIC. Qualitative assessment to confirm biofilm inhibition was generated
using Live/Dead labeling in CLSM (Figure 4). The untreated biofilm had numerous live
adhering cells that had been well incorporated into the biofilm (Figure 4A). Biofilm treated
with CL-nanoemulsion at 0.5, 0.25, and 0.06 MIC showed a small number of dead cells
among the population (Figure 4B–D). Biofilm treated with CL-emulsion at 0.5, 0.25, and
0.06 MIC showed a small number of dead cells among the population (Figure 4E–G).
When produced in the absence of the CL-nanoemulsion, dense biofilm forms with a tight
topology characterized by a big cluster shape, and uniformly dispersed fluorescent green
colors of active cells can be readily seen in the control biofilm. In contrast, the alleged CL-
nanoemulsion might be an effective instrument for disrupting the biofilm and preventing its
adhesion to the outer layer of the coverslips while also preventing the evolution of S. aureus.
This finding matched up with our investigations on crystal violet biofilm inhibition. The
susceptibility of mature biofilm toward CL-nanoemulsion was also seen with a substantial
decrease (p < 0.01) in bacterial counts in biofilms treated in comparison to control biofilm.
Our results agree with Chaieb et al. [46], who showed that P. aeruginosa strain creation
of biofilm resulted in biofilm breakdown, with biofilm losing its rigidity entirely in the
absence of living cells. This demonstrates the excellent effectiveness of levofloxacin loaded
with CL-nanoemulsion in the elimination of preformed biofilms.

2.6. Antifungal Activity

Antifungal activity of CL-emulsion and CL-nanoemulsion was assessed against
C. albicans, C. neoformans, A. brasiliensis, A. flavus, and A. fumigatus, where both MIC and
MFC were determined as shown in Table 2. Results revealed that CL-nanoemulsion ex-
hibited antifungal activity higher than CL-emulsion toward all selected fungal strains.
Moreover, MICs of CL-nanoemulsion were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL against
C. albicans, C. neoformans, A. brasiliensis, A. flavus, and A. fumigatus, respectively. Also,
MFCs of CL-nanoemulsion were 12.5, 6.25, 3.12, 1.56, and 6.25 mg/mL, respectively. These
findings demonstrate the potential of CL-nanoemulsion against all investigated fungus
strains, where the most sensitive strains were A. brasiliensis and A. flavus, but C. albicans
was the least sensitive strain, among others. On the other hand, CL-emulsion showed
weak antifungal activity toward all investigated fungal strains, where MICs were 50, 25,
6.25, 6.25, and 12.5 mg/mL against C. albicans, C. neoformans, A. brasiliensis, A. flavus, and
A. fumigatus, respectively. Moreover, MFCs were 100, 25, 25, 12.5, and 50 mg/mL, respec-
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tively. Alghaith et al. [47] found that CL-nanoemulsion has antifungal activity toward the
dermatophyte fungus Trichophyton rubrum. Another study reported that CL-nanoemulsion
has promising antifungal activity against A. niger ATCC 1015 and C. albicans ATCC 3153 in
which the impediment areas were 2.13 and 3.19 mm, respectively. Antifungal activity of CL-
nanoemulsion may be attributed to the presence of eugenol, which can disrupt fungal cell
membranes or inhibit germination and sporulation of the fungus. Also, it may be attributed
to CL-nanoemulsion having the ability to inhibit ergosterol synthesis, inhibit enzymes of
cell wall synthesis, altering of the morphology of the cell wall, and produce ROS [48].
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Table 2. MIC (mg/mL) and MFC (mg/mL) of CL-emulsion and CL-nanoemulsion toward fungal strains.

Fungal
Strains

CL-Emulsion CL-Nanoemulsion Voriconazole

MIC * MFC MIC MFC MIC MFC

C. albicans 50 100 12.5 12.5 25 50
C. neoformans 25 25 3.12 6.25 12.5 12.5
A. brasiliensis 6.25 25 0.78 3.12 6.25 12.5
A. flavus 6.25 12.5 1.56 1.56 3.12 3.12
A. fumigatus 12.5 50 1.56 6.25 6.25 25

* MIC means minimum inhibitory concentration (mg/mL).

2.7. Cytotoxic Effect of CL-Emulsion and CL-Nanoemulsion

Nanoemulsions are employed as drug carriers to deliver medicines and phytochemicals
to cells in an efficient way. They enhance the biological effects of their ingredients, including
their antibacterial, antioxidant, and anticancer capabilities. The use of nanoemulsions as
secure, biocompatible, and effective drug delivery devices has significantly changed can-
cer treatment plans and demonstrated a high level of safety [49]. Numerous research has
used thyme, eucalyptus, cinnamon, and clove oil essential oils as therapeutic nanoemul-
sions [50]. In the current study, essential CL-oil (dissolved in DMSO), CL-emulsion, and
CL-nanoemulsion were tested for their cytotoxic effects on HepG2 liver cancer cells and MCF-
7 breast cancer cells, respectively. The most potent cytotoxic effect was seen in MCF-7 cells, as
shown by the lowest IC50 values (Figure 5). Treatment with CL-nanoemulsion produced the
lowest IC50 value of 12.93 ± 0.49 µg/mL. Additionally, treatment with CL-emulsion resulted
in IC50 values of 43.36 ± 1.63 µg/mL, while the IC50 for Taxol was 8.90 ± 0.73 µg/mL.
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2.8. Effect of CL-Emulsion and CL-Nanoemulsion on CASP8 and CASP9 Activities

In Figure 6, we see how CL-emulsion and CL-nanoemulsion affect the apoptotic mark-
ers CASP8 and -9. Treatment of MCF-7 cells with CL-emulsion substantially boosted CASP8
and CASP9 activity (0.523 ± 0.037 ng/mL and 16.9 ± 0.38 pg/mL, respectively) compared
to the control (0.257 ± 0.061 ng/mL and 2.714 ± 0.19 pg/mL, respectively). In addition,
compared to CL-emulsion treatments, CASP8 and -9 activities were shown to be greatest
after being exposed to CL-nanoemulsion (0.811 ± 0.049 ng/mL and 21.63 ± 0.42 pg/mL,
respectively). Apoptosis activates DNA fragmentation enzymes through CASP8 and -9
activations [51]. These compounds caused MCF-7 cells to undergo apoptosis via CASP8
and -9 activations.
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2.9. Effect of CL-Emulsion and CL-Nanoemulsion on VEGFR-2

Figure 7 shows that the levels of VEGFR-2 were dramatically reduced by CL-emulsion
and CL-nanoemulsion compared to the control (1.793 ± 0.036 ng/mL).

When comparing CL-emulsion (0.748 ± 0.016 ng/mL) to CL-nanoemulsion
(0.499 ± 0.017 ng/mL), VEGFR-2 levels were found to be much lower in the latter. Overacti-
vation of VEGFR-2 is known to drive angiogenesis that promotes solid tumor development,
which corroborated the findings of Falcon et al. For many cancers, including breast cancer,
blocking the VEGFR-2 pathway has emerged as an essential therapeutic strategy [52–54].

The dependability of cellular proliferation and development can be attributed to the
role of apoptosis pathways, which are impaired in cancer cells. These cancer cells inhibit
apoptotic pathways, leading to a reduction in apoptotic gene expressions and ultimately
preventing apoptotic death. Caspases 8 and 9 are recognized as the effectors of the apoptosis
response, and their primary function is to facilitate the induction of the tumor cells’ death.
The apoptotic effect on breast cancer cells has been found to be upregulated by the cytotoxic
properties of several plant essential oils, including Syzygium aromaticum (clove) [55]. Clove
is noted for its significant antioxidant properties attributed to its constituent compounds
such as tannins, flavonoids, glycosides, and volatile phenolic oils such as eugenol and
acetyl eugenol. The phytochemical ingredients present in cloves exhibit potent antioxidant,
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antiproliferative, antimicrobial, disinfectant, and anti-inflammatory properties, thereby
rendering them suitable agents for cancer chemoprevention [56]. The efficacy of this
compound can be further enhanced by using a nanoemulsion formulation. Nanoemulsions
have garnered significant attention from scientists in the pharmaceutical industry and in
the discipline of cancer treatment due to their capacity to enhance the solubility and efficacy
of therapeutic agents, including tetanus toxoid, insulin, and anticancer agents, during
drug delivery [57].
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In addition, it is noteworthy that plant-derived bioactive substances, such as phenolic
and flavonoids, exhibit therapeutic potential but possess limited solubility in polar sol-
vents. Consequently, the efficacy of plant-based anticancer substances is hindered by their
inadequate solubility and gastrointestinal absorption. The enhancement of solubility and
gastrointestinal uptake of plant bioactive substances can be achieved by incorporating them
into a suitable carrier, including nanoemulsions. This approach can effectively address the
aforementioned issue. The utilization of nanoemulsions in drug delivery can be advanta-
geous due to the enhanced solubility of the therapeutic agent, the prolonged half-life, and
the potential to surmount the resistance of cancerous cells toward chemotherapy [58].

3. Material and Methods
3.1. Chemicals and Reagents

Taxol (paclitaxel) was bought from Sigma Chemical in St. Louis, MO. Sigma Aldrich
(Sigma, St. Louis, MO, USA) supplied the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) and the dimethyl sulfoxide (DMSO). From Gibco (Gibco, TFS
frpm PPA, Pasching, Austria) we obtained fetal bovine serum (FBS), phosphate buffer saline
(PBS), Dulbecco’s modified Eagle’s medium (DMEM), penicillin/streptomycin (Pen/Strep)
solution, and trypsin-EDTA. Phosphotungstic acid, ethanol 95%, SYTO 9, propidium iodide
(PI), Tween 80, and resazurin dye were purchased from Sigma Aldrich, Sparks, NV, USA.
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3.2. Preparation of CL-Nanoemulsion and CL-Emulsion

The steam distillation method was used for the extraction of clove essential oil accord-
ing to the method used by [59]. Dried and ground clove flower buds (50 g) were put in a
steam flask. The steam distillation lasted 6 h. The recovered condensate was distilled again
using n-hexane as the solvent. By evaporating the n-hexane, clove oil was produced. To
prepare CL-nanoemulsion, 5 mL of Tween 80 was added slowly to 20 mL of CL with gentle
stirring for 40 min, and then completed to 100 mL with distilled water. The mixture was
sonicated using an ultrasonicator for 40 min at 350 W. The essential oil emulsion was made
in the manner described above but without the use of a sonicator.

3.3. Measurement of CL-Nanoemulsion Droplet Size

At room temperature, the Zeta Nano ZS (Malvern Instruments, UK) was used to
measure the size of the CL-nanoemulsion droplets using a dynamic light scattering analysis.
Before testing, 30 µL of CL-nanoemulsion was diluted with 3 mL of water at 25 ◦C. The
mean of the Z-average of three separate batches of the CL-nanoemulsion was used to
express particle size information. We examined the CL-nanoemulsion’s droplet size and
polydisparity index (PDI).

3.4. Transmission Electron Microscopy (TEM)

On a film-coated 200-mesh copper specimen grid, 20 µL of sample was placed. Then,
one drop of 3% phosphotungstic acid was used to stain the grid and allowed to dry for
3 min. Using a TEM microscope (Tecnai G20, Super twin, double tilt, FEI, The Netherlands)
set to 200 kV, the coated grid was analyzed [60]. TEM of CL-nanoemulsion was carried
out at RCMB, Al-Azhar University, while TEM of CL-emulsion was carried out at the
Agricultural Research Center (ARC), Egypt.

4. Antibacterial Activity
4.1. Microorganisms

Bacillus cereus ATTC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC
35218, and Klebsiella oxytoca ATCC 51983 were selected for antibacterial screening, while
Staphylococcus aureus (MSSA) ATCC-25923 was used as positive controls of biofilm production.

4.2. MIC Determination by Resazurin Dye Method

Microbroth dilution method by resazurin dye method was applied for the determina-
tion of antimicrobial activities [61]. First, 100 µL of bacterial suspension was added to the nu-
trient broth and cultured for 24 h at 37 ± 2 ◦C to test the antibacterial effectiveness [62–65].
Microdilutions of overnight established culture strains were grown in Luria-Bertani broth
in 96-well plates (McFarland turbidity of 0.5). CL-emulsion and CL-nanoemulsion at
various concentrations (20, 10, 5, 2.5,1.25, 0.62, 0.31, 0.15, and 0.07%) were added [66].
The lowest concentration of chemicals tested at which the dye colour changed. The mini-
mum bactericidal concentration (MBC) was determined when no colonies formed on the
agar plate.

4.3. Evaluation of Antibiofilm Activity

The effect of CL-emulsion and CL-nanoemulsion on Staphylococcus aureus (MSSA) ATCC-
25923 biofilm development was determined by the crystal violet staining technique [67,68].
Six levels lowered from 0.5 × MIC of CL-emulsion and CL-nanoemulsion were added to
96-well plates as previously described. For 48 h, the liquid combination was eliminated,
and the wells were stained for 15 min with 0.1 mL 0.4% crystal violet after being cleaned
twice with sterile water. Following that, the dye attached to the biofilm was dissolved
using 95% ethanol. The plates were read at 492 nm in an ELISA reader, and all tests were
done in triplicate [46,69]:
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4.4. Observation of Biofilm Reduction by Confocal Laser Scanning Microscopy (CLSM)

At 0.5 MIC, one-milliliter cell suspensions of Staphylococcus aureus ATCC 25923 were
distributed onto microtiter plate wells containing CL-emulsion and CL-nanoemulsion.
Following incubation, the coverslips were carefully rinsed with 0.01 M buffered saline
to carefully eliminate non-adhered bacteria and were stained with 500 µL of a combined
dye solution of SYTO 9 and propidium iodide (PI) [44]. Following that, visualization was
carried out using a ZEISS LSM laser scanning microscope with a 40 oil-immersion lens
with settings for the green signal of 488 nm and the red signal of 461 nm and long-pass
emission filters of 500–550 nm and 590–650 nm, respectively [70].

4.5. Antifungal Activity

Antifungal activity of CL-emulsion and CL-nanoemulsion was assessed against
Candida albicans ATCC 90028, Cryptococcus neoformans ATCC 14116, Aspergillus brasiliensis
ATCC 16404, A. flavus RCMB 02782, and A. fumigatus ATCC 204305. The MIC and MFC
of the CL-emulsion and CL-nanoemulsion were analyzed using the broth microdilution
method [71]. The microdilution broth method was applied for detecting the MIC of all
tested fungal stains. Briefly, in a microplate, 10 µL of each fungal strain was added to
Sabouraud Dextrose broth amended with different concentrations of CL-emulsion and
CL-nanoemulsion (100–0.19 mg/mL), and then incubated at 30 ◦C for 48 h. For detection
of MIC for unicellular fungi, 20 µL of resazurin dye was added. A visual assessment was
done from blue to pink dye inside viable cells. On the other hand, MIC for filamentous
fungi was detected by examining growth visually without adding dye [7,8,72]. To detect
minimum fungicidal concentration (MFC), 100 µL was transferred from a well that had no
visible growth to Sabouraud Dextrose plates and then incubated at 30 ◦C for 48 h.

5. Anticancer Activity
5.1. Cell Lines

Cell lines for both breast (MCF-7) and liver (HepG2) cancers were obtained from ATCC
(Manassas, VA, USA) and grown in DMEM (Invitrogen, Carlsbad, CA, USA) with 10% fetal
bovine serum (FBS) and 1% pen/strep solution (TFS Inc., City of Fairfax, VA, USA) at 37 ◦C
(with 5% carbon dioxide).

5.2. Cell Viability Assay

The MTT assay was used to quantify cytotoxic activity [73]. In 96-well plates, the
cells were planted at a density of 1.2 × 104 cells/well and given 24 h to grow. After 24 h,
the media with the various essential CL-oil (dissolved in DMSO), CL-emulsion, and CL-
nanoemulsion concentrations were changed. After 48 h, the MTT test was carried out by
adding 100 µL (5 mg/mL of MTT in PBS) followed by 4 h of incubation at 37 ◦C in the
wells. Each well had 100 µL of DMSO added to it to dissolve the formazan crystals. Ten
minutes were spent incubating the plates at 37 ◦C. Microplate reader readings at 570 nm
were used to calculate optical densities [74].

5.3. Assessment of Caspase-8 (CASP8) and Caspase-9 (CASP9) Activities and VEGFR-2

ELISA kits from DRG International Inc. (Springfield, NJ, USA) were used to test
CASP8 (human, EIA-4863) and CASP9 (human, EIA-4860). VEGFR-2 was measured using
an ELISA kit (Catalogue #: OKAG02083) (AVIVA system biology, San Diego, CA, USA) per
manufacturer instructions.

5.4. Statistical Analysis

GraphPad Prism 8.0 examined all findings. Means ± SD were reported for at least
three separate experiments (n = 3). ANOVA and Tukey’s multiple comparisons tests
examined all groups’ significant differences. p < 0.05 was significant.
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6. Conclusions

In the current study, CL-nanoemulsion and CL-emulsion were successfully prepared
using an ecofriendly method. Also, CL-nanoemulsion and CL-emulsion were characterized
using DLS and TEM. Results confirmed that the prepared CL-nanoemulsion was in nano
form with a spherical shape. Results revealed that CL-nanoemulsion exhibited outstanding
antibacterial activity compared with CL-emulsion, where CL-nanoemulsion possesses the
lowest MIC ranging from 0.31 to 5 mg/mL toward pathogenic Gram-negative and Gram-
positive bacteria. Moreover, the antibiofilm efficacy of CL-nanoemulsion against S. aureus
has significantly decreased the development of biofilm compared with CL-emulsion. Fur-
thermore, CL-nanoemulsion displayed promising antifungal action against both unicellular
and multicellular fungi. Also, the anticancer impact of CL-nanoemulsion is due to the
induction of apoptosis in MCF-7 breast cancer cells by increasing caspase-8 and -9 activity
and decreasing VEGFR-2 compared with CL-emulsion.
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