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Abstract: A domino aldol-SNAr-dehydration [3+3] annulation strategy has been utilized to fuse
six-membered cyclic amides onto aromatic substrates. 2-Arylacetamides have been reacted with
2-fluorobenzaldehyde derivatives activated toward SNAr reaction by an electron-withdrawing sub-
stituent (NO2, CN, CF3, CO2Me) at C5 to prepare 3,6-disubstituted quinolin-2(1H)-ones. Additionally,
3-substituted 1,8-naphthyridin-2(1H)-ones have been similarly derived from 2-fluoronicotinaldehyde.
Fifteen examples are reported, and two possible mechanistic scenarios are presented and discussed.

Keywords: quinolin-2(1H)-ones; 1,8-naphthyridin-2(1H)-ones; heterocycle synthesis; aldol-SNAr-
dehydration reactions; domino reactions; [3+3] annulation

1. Introduction

Over the past 15 years, our group has reported numerous cases of domino reactions
involving the SNAr reaction to fuse heterocycles to pre-existing aromatic frameworks. Our
early contributions in this area have been reviewed [1]. More recent projects have broad-
ened the scope of these processes. One study described an imine addition-SNAr reaction
to tert-butyl (2-fluoro-5-nitrobenzoyl)acetate to give 4-oxo-1,2,3,4-tetrahydroquinoline-3-
carboxylic esters [2]. Further use of domino procedures on Morita-Baylis-Hillman acetates
afforded efficient access to naphthalenes and quinolines [3] as well as dihydroquinolines,
dihydronaphthyridines and quinolin-4(1H)-ones [4]. Additionally, we have also reported a
domino Michael-SNAr-heteroaromatization sequence using SNAr-activated 2-fluoroaryl-
acrylate esters to prepare highly substituted 1H-indole-3-carboxylate esters [5].

An earlier study from this laboratory described a synthetic approach to 4H-1-benzo-
pyrans involving a domino SN2 alkylation of a β-ketoester by 2-fluoro-5-nitrobenzyl bro-
mide followed by SNAr ring closure through the enolate oxygen of the alkylated product [6].
This annulation utilized a [3+3] strategy combining a double nucleophile (a β-ketoester)
and a double electrophile (a benzyl bromide aryl-activated for SNAr addition). The reaction
was originally performed in acetone using an eight-fold excess of K2CO3, but subsequent
experiments revealed that it could proceed with less base (four equiv.) in DMF solvent.

Since this report, many additional studies of [3+3] cyclizations to prepare heterocycles
have been advanced. Two acid-catalyzed aza-annulations have been reported by the
Hsung lab as strategies for the synthesis of alkaloids. The first described an attempt to
assemble propyleine via intramolecular reaction of a ring-embedded vinylogous amide
with a vinyliminium salt (Reaction (1)), but only modest results were achieved [7]. On the
other hand, a chiral auxiliary was successfully used in an intermolecular variant of this
reaction to generate a common precursor to two stereochemical scaffolds indigenous to the
Lepadin family of alkaloids (Reaction (2)) [8].
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Four additional papers explored additions of nitrogen heterocycles to allylic esters. 

Tong and co-workers reported access to thiopyrano[2,3-b]indoles by addition of indoline-
2-thiones to β-acetoxy allenoates (Reaction (3)) [9]. A related study by the Swamy group 
described the preparation of α-carbolines from β-acetoxy allenoates with iminoindolines 
[10] (Reaction (4)). A further investigation by the Guo lab enantioselectively produced 
substituted spirocyclohexenes by reaction of Morita-Baylis-Hillman carbonates with α-
arylidene pyrazolinones in the presence of a chiral dihydroquinidine catalyst (Reaction 
(5)) [11]. The fourth investigation by Satham and Namboothiri presented a synthesis of 2-
aryl terephthalates from nitroallylic acetates with stabilized sulfur ylides (Reaction (6)) 
[12]. 

(3) 

 

(4) 

 

(5) 

 

(6) 

 
Four other articles have appeared describing metal- and organocatalyzed fusion of 

heterocycles to pre-existing rings. Huang and co-workers disclosed a copper-promoted 
synthesis of quinolines from aryl ketoximes and 2-fluorobenzaldehydes (Reaction (7)) 
[13]. Kanchupalli et al. unveiled a chemodivergent Rh(III)-catalyzed annulation involving 
indoles and iodonium carbenes to generate tri- and tetracyclic nitrogen heterocycles (Re-
action (8)) [14]. The Wang group developed a zinc-catalyzed enantioselective ring 
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(Reaction (9)). Finally, the chemical synthesis team at the Sichuan Key Laboratory published
a route to several chiral spiro-δ-lactam oxindoles from 3-carboxamides and β,γ-unsaturated-
α-ketoesters using bifunctional urea and squaramide organocatalysts (Reaction (10)) [16].
Numerous other [3+3] annulations are detailed in a review by Feng and Liu [17].
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The current study reports the use of a domino aldol-SNAr-dehydration reaction to
prepare quinolin-2(1H)-ones and 1,8-naphthyridin-2(1H)-ones via the [3+3] annulation
(Figure 1) of a double nucleophile (a 2-arylacetamide) with a double electrophile (an SNAr-
activated 2-fluorobenzaldehyde or 2-fluoronicotinaldehyde). The aromatic aldehydes are
commercially available or easily prepared. The arylacetamides are relatively scarce and
expensive to purchase but can be readily synthesized from the corresponding 2-arylacetyl
chlorides. The current transformation represents the first use of an activated acetamide to
construct potential drug candidates.
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Figure 1. Generic [3+3] annulation leading to quinolin-2(1H)-ones reported in this work.

The 3-arylquinolin-2(1H)-one scaffold comprises the core ring system of several im-
portant drug candidates (see Figure 2). Compound 1 is a CDK 5 inhibitor and as such may
prove useful in the treatment of Alzheimer’s disease and amyotrophic lateral sclerosis [18].
The benzimidazole-linked derivative 2 slowed the growth of NCI-H460 large lung tumor
cells in a xenograft mouse model [19]. The quinolone-chalcone hybrid 3 showed significant
tubulin polymerization inhibition [20] and thus could find use in curbing the growth of
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cancer cells by interfering in the mitotic process. Finally, the benzimidazole-substituted
quinolin-2(1H)-one 4 demonstrated promising activity against MDA-MB-231 (a model for
late-stage breast cancer) and PC-3 (human prostate cancer) cell lines by decreasing CDK-1
and stabilizing the levels of Hsp90 and Hsp70 without initiating a heat shock response [21].
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2. Results and Discussion

2-Fluoro-5-nitrobenzaldehyde (5) [22] and 5-carbomethoxy-2-fluorobenzaldehyde (8) [5]
were prepared as previously described. Other benzaldehydes—5-cyano-2-fluoro-benzaldehyde
(6), 2-fluoro-5-(trifluoromethyl)benzaldehyde (7), and 2-fluoronicotinaldehyde (9)—were com-
mercially available. Phenylacetamide (10), 2-(phenylsulfonyl)acetamide (11), ethyl malonate
monoamide (12), and 2-(4-methoxyphenyl)acetamide (13) were also acquired from a com-
mercial source, while 2-(2-fluorophenyl)acetamide (14), 2-(4-chlorophenyl)acetamide (15),
and 2-(2,5-dimethylphenyl)acetamide (16) were prepared from the corresponding acid chlo-
rides [23].

A listing of the quinolin-2(1H)-ones and 1,8-naphthyridin-2(1H)-ones prepared in this
study is given in Table 1. The sequence entails initial aldol addition of the carbanion derived
from the 2-arylacetamide to the aldehyde carbon or SNAr addition-elimination of the amide
nitrogen at the fluoro-substituted carbon of the activated 2-fluorobenzaldehyde. Following
bond rotation of the aldol adduct or equilibration of the amide rotamer to bring the reactive
centers into proximity, heterocyclic ring closure would occur to give the ring-fused product.
The entire process occurred in a single reaction vessel using K2CO3 as the base with DMF
as the solvent. No other catalysts or promoters were added, and this simplified the process
optimization. Four activating groups at C5 of the aromatic aldehyde, including NO2, CN,
CF3, and CO2Me, have been validated and 2-fluoronicotinaldehyde also gave successful
cyclization. Acetamides activated by aromatic or ester groups at C2 were found to be
successful, while derivatives incorporating C2 cyano or ketone groups failed to successfully
undergo the reaction sequence.

Table 1. Synthesis of quinolin-2(1H)-one and 1,8-naphthyridin-2(1H)-one derivatives.
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Table 1. Cont.

Aldehyde Amide Product Product No. Yield (%) a
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As briefly mentioned above, two mechanisms for the formation of the target hetero-
cycles are plausible, differing in the initial bond-forming step (see Scheme 1). Since the
pKa values for the pseudo-acidic methylene and amido groups of the 2-arylacetamides
are comparable, it might be expected that the anion from either site could initiate the se-
quence. These pKa’s were estimated from experimentally derived values for PhCH2CO2Et
(22.6), PhCONH2 (23.3), CH3CONH2 (25.5) and PhCH2CONH2 (unclearly listed as 24.7)
in DMSO [24]. Computer-estimated pKa’s were similar but trended slightly more acidic
than the experimental values [25]. Mechanism 1 requires an initial aldolization between the
arylacetamide methylene anion and the benzaldehyde to yield aldol conformers A (possibly
H-bond stabilized) and B. SNAr ring closure from conformation B would then give the
fused-ring β-hydroxyamide, which upon loss of water would afford the quinolin-2(1H)-
one. Interestingly, the ring closure in this sequence could occur from either the enolate
oxygen or the amide nitrogen. However, as one might expect, cyclization by nitrogen
prevails since the quinolin-2(1H)-one product has greater stability than the alternative
2H-chromen-2-imine. For quinolin-2(1H)-ones, it is well known that the amide structure
predominates over the quinolinol tautomer [26,27], and with its 10 π electron complement
and planarity (all atoms are sp2 hybridized) retains its aromaticity [28]. A similar prefer-
ence likely applies in the 1,8-naphthyridin-2(1H)-one series. Mechanism 2, involving the
addition of the amide nitrogen anion to the aromatic ring, offers an alternative route to
the final products. We have shown in the past that primary amides give high yields of
SNAr products in DMF [29], but usually require heat for efficient reaction. In this scenario,
the less hindered amide rotamer D would be expected to predominate, necessitating a
conversion to the more sterically challenged rotamer E before ring formation could occur.
To gain insight into the initiating reaction of the sequence, two reactions were run on
substrates bearing similar functionality to those used to prepare quinolin-2(1H)-ones. The
first, between phenylacetamide and 2-nitrobenzaldehyde in DMF with K2CO3 at room
temperature (23 ◦C), formed two inseparable polar products (by TLC) with loss of the
aldehyde carbonyl (IR). The second, employing phenylacetamide with methyl 2-fluoro-5-
nitrobenzoate under the same conditions, did not show significant conversion until heat
(>50 ◦C) was applied. While these observations do not have direct relevance in the current
application, they strongly suggest that the aldehyde is the most reactive functional group.
Since the reaction is stirred at 23 ◦C for 15–30 min prior to the application of heat, the
sequence of events likely begins with aldol formation as in mechanism 1.
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3. Materials and Methods
3.1. General Methods

Unless otherwise indicated, all reactions were performed under dry N2 in oven-dried
glassware. All reagents and solvents were used as received. All wash solutions in work-
up procedures were aqueous. Reactions were monitored by thin layer chromatography
on Analtech No 21521 silica gel GF plates (Newark, DE, USA). Preparative separations
were performed by flash chromatography on Davisil®, grade 62, 60–200 mesh silica gel
containing 0.5% of UV-05 phosphor (both from Sorbent Technologies, Norcross, GA, USA)
slurry packed into quartz columns. Band elution for all chromatographic separations was
monitored using a hand-held UV lamp (Fisher Scientific, Pittsburgh, PA, USA). Melting
points were obtained using a MEL-TEMP apparatus (Cambridge, MA, USA) and are
uncorrected. FT-IR spectra were run as thin films on NaCl disks using a Nicolet iS50
spectrophotometer (Madison WI, USA). 1H- and 13C-NMR spectra were measured using
a Bruker Avance 400 system (Billerica, MA, USA) at 400 MHz and 101 MHz, respectively,
in the indicated solvents containing 0.05% (CH3)4Si as the internal standard; coupling
constants (J) are given in Hz. Low-resolution mass spectra were obtained using a Hewlett-
Packard Model 1800A GCD GC-MS system (Palo Alto, CA, USA). Elemental analyses
(±0.4%) on all new compounds were determined by Atlantic Microlabs (Norcross, GA,
USA). Copies of 1H-NMR and 13C-NMR spectra for all new compounds are given in the
Supplementary Materials.

2-Fluoro-5-nitrobenzaldehyde (5) [22] and 5-carbomethoxy-2-fluorobenzaldehyde
(8) [5] were prepared as previously described. 5-Cyano-2-fluorobenzaldehyde (6), 2-fluoro-
5-(trifluoromethyl)benzaldehyde (7), 2-fluoronicotinaldehyde (9), phenylacetamide (10),
2-(phenylsulfonyl)acetamide (11), ethyl malonate monoamide (12), 2-(4-methoxyphenyl)-
acetamide (13), 2-(2-fluorophenyl)acetyl chloride, 2-(4-chlorophenyl)acetyl chloride, and
2-(2,5-dimethylphenyl)acetyl chloride were purchased from Combi Blocks, Inc. (San Diego,
CA, USA).

3.2. General Procedure for the Preparation of 2-Arylacetamides

The procedure of Finan and Fothergill was adapted [23]. To a solution of ammonium
acetate [ground to a powder and dried under high vacuum (ca. 0.5 mmHg) for 2 h at 23 ◦C,
1.82 equiv.] in dry acetone (25 mL) was added 1 equiv. of the 2-arylacetyl chloride. The
mixture was stirred for 3 h and filtered through Celite® with acetone (50–100 mL). The
acetone solution was concentrated, and the resulting solid was triturated with ether in
hexane (5:1 v/v). The solid was collected by filtration, recrystallized from water for 14 and
15 (or 19:1 v/v water-ethanol for 16) and dried at 23 ◦C under a high vacuum to give the
yields reported.

3.2.1. 2-(2-Fluorophenyl)acetamide (14)

From 2-(2-fluorophenyl)acetyl chloride, yield 0.89 g (65%) as a white solid, m.p.
156–157 ◦C (lit. [30] m.p. 157.2–159.2 ◦C); IR: 3389, 3202, 1645, 1626, 1227 cm−1; 1H NMR
(400 MHz, CDCl3): δH 7.34–7.27 (complex, 2H), 7.14 (td, J = 7.6, 1.2 Hz, 1H), 7.09 (ddd,
J = 9.6, 8.1, 1.2 Hz, 1H), 5.59 (br s, 1H), 5.51 (br s, 1H), 3.61 (d, J = 1.4 Hz, 2H); 13C NMR
(101 MHz, CDCl3): δC 172.2, 160.9 (d, J = 245.8 Hz), 131.6 (d, J = 3.9 Hz), 129.4 (d, J = 8.2 Hz),
124.6 (d, J = 3.6 Hz), 122.0 (d, J = 15.9 Hz), 115.7 (d, J = 21.7 Hz), 36.4 (d, J = 3.0 Hz); MS
(m/z) 153 (M+·).

3.2.2. 2-(4-Chlorophenyl)acetamide (15)

From 2-(4-chlorophenyl)acetyl chloride, yield 0.89 g (66%) as a white solid, m.p.
175–176 ◦C (lit. [31] m.p. 175 ◦C); IR: 3405, 3204, 1650, 1620 cm−1; 1H NMR (400 MHz,
DMSO-d6): δH 7.48 (br s, 1H), 7.36 (d, J = 9.0 Hz, 2H), 7.28 (d, J = 9.0 Hz, 2H), 6.91 (br s, 1H),
3.37 (s, 2H); 13C NMR (101 MHz, DMSO-d6): δC 172.3, 136.0, 131.5, 131.4, 128.5, 41.8; MS
(m/z) 168, 170 (M+·, ca 3:1).
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3.2.3. 2-(2,5-Dimethylphenyl)acetamide (16)

From 2-(2,5-dimethylphenyl)acetyl chloride, yield 0.91 g (68%) as a white solid, m.p.
152–154 ◦C (lit. [32] m.p. 154 ◦C); IR: 3390, 3188, 1645, 1621 cm−1; 1H NMR (400 MHz,
DMSO-d6): δH 7.34 (br s, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.99 (d, J = 1.9 Hz, 1H), 6.92
(dd, J = 7.6, 1.9 Hz, 1H), 6.86 (br s, 1H), 3.35 (s, 2H), 2.23 (s, 3H), 2.19 (s, 3H); 13C NMR
(101 MHz, DMSO-d6): δC 172.6, 135.3, 134.8, 133.8, 131.2, 130.1, 127.4, 40.4, 21.0, 19.3; MS
(m/z) 163 (M+·).

3.3. Representative Procedure for the Preparation of Quinolin-2(1H)-ones and
1,8-Naphthyridin-2(1H)-ones

A. For amides with a phenyl, phenylsulfonyl, or ester at C2 (substrates 10–12): To
a solution of the aldehyde (2.0 mmol, 2.0 equiv.) in DMF (2 mL) was added the amide
(1.0 mmol, 1.0 equiv.) and K2CO3 (2.0 equiv.) at 23 ◦C and the mixture was stirred for
15–30 min. The reaction was then heated for 3–5 h at 90 ◦C. B. For amides with a substituted
aromatic group at C2 (substrates 13–16): To a solution of the aldehyde (1.0 mmol, 1.0 equiv.)
in DMF (2 mL) was added the amide (2.0 mmol, 2.0 equiv.) and K2CO3 (2.0 equiv.) using
the same time and temperature regime. After TLC (10–20% v/v EtOAc/hexane) indicated
the reaction was complete, the crude mixture was cooled to 23 ◦C, poured into water
(30 mL) and the aqueous layer was extracted with EtOAc (3 × 25 mL). The organic layer
was washed with 1.0 M HCl (2 × 25 mL) and saturated NaHCO3 (30 mL). The combined
organic layers were washed with saturated NaCl (30 mL) and dried (Na2SO4). Removal of
the solvent under vacuum gave a crude product, which was further purified by column
chromatography and crystallization from ether.

3.3.1. 6-Nitro-3-phenylquinolin-2(1H)-one (17)

Yield: 0.41 g (91%) as a white solid, m.p. 299–300 ◦C (lit. [33] m.p. 299–302 ◦C); IR:
1672, 1540, 1336 cm−1; 1H NMR (400 MHz, CDCl3): δH 12.51 (br s, 1H), 8.77 (d, J = 2.2 Hz,
1H), 8.36 (s, 1H), 8.35 (dd, J = 9.1, 2.2 Hz, 1H), 7.76 (d, J = 9.1 Hz, 2H), 7.49–7.39 (complex,
4H); 13C NMR (101 MHz, CDCl3): δC 161.7, 143.1, 142.1, 137.8, 135.8, 133.9, 129.2, 128.9,
128.6, 125.3, 125.0, 119.5, 116.2; MS (m/z): 266 (M+·).

3.3.2. 6-Nitro-3-(phenylsulfonyl)quinolin-2(1H)-one (18)

Yield: 0.35 g (89%) as a white solid, m.p. 329–330 ◦C; IR: 3160, 1662, 1625, 1338,
1159 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 12.77 (s, 1H), 9.24 (s, 1H), 9.09 (d, J = 2.2 Hz,
1H), 8.47 (d, J = 9.1 Hz, 1H), 8.02 (d, J = 7.7 Hz, 2H), 7.74 (t, J = 7.4 Hz, 1H), 7.64 (t, J = 7.7 Hz,
2H), 7.49 (d, J = 9.1 Hz, 1H); 13C NMR (101 MHz, DMSO-d6): δC 157.0, 145.42, 145.37, 142.6,
139.6, 134.5, 133.1, 129.5, 129.0, 128.4, 127.7, 117.23, 117.16; MS (m/z): 330 (M+·). Anal. Calcd
for C15H10N2O5S: C, 54.54; H, 3.05; N, 8.48. Found: C, 54.43; H, 3.01; N, 8.40.

3.3.3. 3-Carbethoxy-6-nitroquinolin-2(1H)-one (19)

Yield: 0.28 g (90%) as a white solid, m.p. 187–188 ◦C; IR: 3112, 1689, 1619, 1526,
1348 cm−1; 1H NMR (400 MHz, CDCl3): δH 8.58 (s, 1H), 8.57 (d, J = 2.6 Hz, 1H), 8.50 (dd,
J = 9.1, 2.6 Hz, 1H), 7.51 (d, J = 9.1 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H);
13C NMR (101 MHz, CDCl3): δC 162.1, 158.4, 154.9, 146.9, 144.3, 128.6, 125.2, 120.6, 118.1,
117.8, 62.6, 14.2; MS (m/z): 262 (M+·). Anal. Calcd for C12H10N2O5: C, 54.97; H, 3.84; N,
10.68. Found: C, 55.01; H, 3.85; N, 10.62.

3.3.4. 3-(4-Methoxyphenyl)-6-nitroquinolin-2(1H)-one (20)

Yield: 0.49 g (90%) as a white solid, m.p. 219–220 ◦C; IR: 3116, 2846, 1668, 1625, 1525,
1353 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 8.75 (d, J = 2.7 Hz, 1H), 8.40 (dd, J = 9.1,
2.7 Hz, 1H), 8.39 (s, 1H), 7.73 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 9.1 Hz, 1H), 7.07 (d, J = 8.8 Hz,
2H), 3.82 (s, 3H), (NH exchanged); 13C NMR (101 MHz, DMSO-d6): δC 160.5, 159.4, 156.8,
144.1, 138.3, 130.4, 128.6, 126.6, 126.3, 124.6, 120.5, 117.8, 114.3, 55.7; MS (m/z): 296 (M+·).
Anal. Calcd for C16H12N2O4: C, 64.86; H, 4.08; N, 9.46. Found: C, 64.79; H, 4.04; N, 9.39.
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3.3.5. 3-(2-Fluorophenyl)-6-nitroquinolin-2(1H)-one (21)

Yield: 0.30 g (89%) as a white solid, m.p. 324–325 ◦C; IR: 3153, 1671, 1929, 1543, 1244,
1344 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 12.56 (s, 1H), 8.77 (d, J = 2.6 Hz, 1H), 8.38
(dd, J = 9.0, 2.6 Hz, 1H), 8.28 (s, 1H), 7.50 (overlapping t, J = 7.8 Hz, 1H) and d, J = 9.0 Hz,
2H), 7.30 (m, 2H); 13C NMR (101 MHz, DMSO-d6): δC 160.9, 160.1 (d, J = 246.9 Hz), 143.5,
142.2, 140.0, 132.1 (d, J = 3.3 Hz), 131.0 (d, J = 8.4 Hz), 130.2, 125.8, 125.1, 124.7 (d, J = 3.5 Hz),
123.9 (d, J = 14.9 Hz), 119.0, 116.4, 116.1 (d, J = 21.6 Hz); MS (m/z): 284 (M+·). Anal. Calcd
for C15H9FN2O3: C, 63.38; H, 3.19; N, 9.86. Found: C, 63.35; H, 3.17; N, 9.81.

3.3.6. 3-(4-Chlorophenyl)-6-nitroquinolin-2(1H)-one (22)

Yield: 0.47 g (88%) as a white solid, m.p. 210–211 ◦C; IR: 3116, 1662, 1625, 1530,
1340 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 8.76 (d, J = 2.7 Hz, 1H), 8.48 (s, 1H), 8.44
(dd, J = 9.1, 2.7 Hz, 1H), 7.78 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 9.1 Hz, 1H), 7.59 (d, J = 8.6 Hz,
2H), (NH exchanged); 13C NMR (101 MHz, DMSO-d6): δC 159.2, 157.1, 144.1, 140.1, 134.4,
133.3, 130.8, 128.9, 128.0, 126.8, 124.9, 120.2, 118.0; MS (m/z): 299, 301 (M+·, ca 3:1). Anal.
Calcd for C15H9ClN2O3: C, 59.92; H, 3.02; N, 9.32. Found: C, 59.88; H, 2.98; N, 9.30.

3.3.7. 3-(2,5-Dimethylphenyl)-6-nitroquinolin-2(1H)-one (23)

Yield: 0.47 g (86%) as a white solid, m.p. 217–218 ◦C; IR: 3112, 1661, 1623, 1524,
1349 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 8.76 (d, J = 2.8 Hz, 1H), 8.45 (dd, J = 9.1,
2.8 Hz, 1H), 8.20 (s, 1H), 7.69 (d, J = 9.1 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 7.17 (dd, J = 7.8,
1.8 Hz, 1H), 7.12 (d, J = 1.8 Hz, 1H), 2.31 (s, 3H), 2.19 (s, 3H), (NH exchanged); 13C NMR
(101 MHz, DMSO-d6): δC 159.1, 157.4, 144.1, 141.7, 135.2, 134.5, 133.7, 130.8, 130.7, 130.5,
129.9, 126.7, 124.8, 120.1, 118.9, 20.9, 19.5; MS (m/z): 294 (M+·). Anal. Calcd for C17H14N2O3:
C, 68.91; H, 5.44; N, 9.45. Found: C, 68.86; H, 5.44; N, 9.42.

3.3.8. 6-Cyano-3-phenylquinolin-2(1H)-one (24)

Yield: 0.28 g (85%) as a white solid, m.p. 316–317 ◦C; IR: 3141, 2227, 1652 cm−1; 1H
NMR (400 MHz, DMSO-d6): δH 12.35 (s, 1H), 8.28 (d, J = 1.9 Hz, 1H), 8.15 (s, 1H), 7.88 dd,
J = 8.6, 1.9 Hz, 1H), 7.74 (d, J = 7.1 Hz, 2H), 7.49–7.38 (complex, 4H); 13C NMR (101 MHz,
DMSO-d6): δC 161.5, 141.5, 137.1, 136.0, 133.72, 133.66, 133.1, 129.2, 128.8, 128.5, 120.1, 119.4,
116.4, 104.4; MS (m/z): 246 (M+·). Anal. Calcd for C16H10N2O: C, 78.03; H, 4.09; N, 11.38.
Found: C, 77.95; H, 4.06; N, 11.25.

3.3.9. 6-Cyano-3-(phenylsulfonyl)quinolin-2(1H)-one (25)

Yield: 0.38 g (91%) as a white solid, m.p. 357–358 ◦C; IR: 3149, 2230, 1656, 1622, 1322,
1158 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 12.63 (s, 1H), 9.04 (s, 1H), 8.61 (s, 1H),
8.05–7.95 (complex, 3H), 7.73 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.6 Hz, 2H), 7.45 (d, J = 8.7 Hz,
1H); 13C NMR (101 MHz, DMSO-d6): δC 156.9, 144.5, 144.0, 139.6, 136.5, 136.1, 134.4, 132.8,
129.5, 129.0, 118.8, 117.7, 117.2, 105.4; MS (m/z): 310 (M+·); Anal. Calcd for C16H10N2O3S: C,
61.93; H, 3.25; N, 9.08. Found: C, 61.90; H, 3.27; N, 9.05.

3.3.10. 6-Carbomethoxy-3-phenylquinolin-2(1H)-one (26)

Yield: 0.29 g (93%) as a white solid, m.p. 254–255 ◦C; IR: 3155, 1726, 1654, 1621 cm−1;
1H NMR (400 MHz, DMSO-d6): δH 12.27 (s, 1H), 8.42 (d, J = 2.0 Hz, 1H), 8.27 (s, 1H), 8.05
(dd, J = 8.6, 2.0 Hz, 1H), 7.76 (d, J = 7.7 Hz, 2H), 7.45 (t, J = 7.7 Hz, 2H), 7.40 (d, J = 8.6 Hz,
2H), 3.88 (s, 3H); 13C NMR (101 MHz, DMSO-d6): δC 166.2, 161.7, 142.0, 138.2, 136.3, 132.9,
130.9, 130.7, 129.2, 128.6, 128.5, 123.5, 119.6, 115.5, 52.6; MS (m/z): 279 (M+·); Anal. Calcd for
C17H13NO3: C, 73.11; H, 4.69; N, 5.02. Found: C, 73.04; H, 4.65; N, 4.96.

3.3.11. 6-Carbomethoxy-3-(phenylsulfonyl)quinolin-2(1H)-one (27)

Yield: 0.34 g (90%) as a white solid, m.p. 318–319 ◦C; IR: 3151, 1721, 1662, 1625 cm−1;
1H NMR (400 MHz, DMSO-d6): δH 12.55 (s, 1H), 9.14 (s, 1H), 8.71 (d, J = 2.0 Hz, 1H),
8.18 (dd, J = 8.7, 2.0 Hz, 1H), 8.00 (d, J = 7.5 Hz, 2H), 7.71 (tt, J = 7.5, 1.2 Hz, 1H), 7.63 (t,
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J = 8.0 Hz, 2H), 7.42 (d, J = 8.7 Hz, 1H), 3.89 (s, 3H); 13C NMR (101 MHz, DMSO-d6): δC
165.8, 157.0, 145.6, 144.4, 139.9, 134.3, 134.2, 133.3, 132.1, 129.5, 128.9, 124.4, 117.3, 116.4,
52.8; MS (m/z): 343 (M+·); Anal. Calcd for C17H13NO5S: C, 59.47; H, 3.82; N, 4.08. Found: C,
59.49; H, 3.83; N, 4.04.

3.3.12. 3-Phenyl-6-(trifluoromethyl)quinolin-2(1H)-one (28)

Yield: 0.27 g (91%) as a white solid, m.p. 234–235 ◦C; IR: 3152, 1654, 1637, 1331, 1156,
1103 cm−1; 1H NMR (400 MHz, CDCl3): δH 12.20 (s, 1H), 7.96 (s, 1H), 7.90 (t, J = 1.2 Hz,
1H), 7.80 (dt, J = 6.8, 1.7 Hz, 2H), 7.69 (dd, J = 8.7, 2.0 Hz, 1H), 7.54–7.43 (complex, 4H); 13C
NMR (101 MHz, DMSO-d6): δC 166.4, 145.9, 142.4, 140.9, 138.2, 133.9, 133.4, 133.3, 131.5 (q,
J = 3.5 Hz), 130.9 (q, J = 4.3 Hz), 127.5 (q, J = 32.3 Hz), 124.4, 124.2 (q, J = 272.5 Hz), 120.9;
MS (m/z): 289 (M+·). Anal. Calcd for C16H10FNO: C, 66.44; H, 3.48; N, 4.84. Found: C, 66.38;
H, 3.45; N, 4.81.

3.3.13. 3-(Phenylsulfonyl)-6-(trifluoromethyl)quinolin-2(1H)-one (29)

Yield: 0.35 g (95%) as a white solid, m.p. 319–320 ◦C; IR: 3160, 1659, 1634, 1333,
1168, 1133 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 12.57 (s, 1H), 9.14 (s, 1H), 8.55 (d,
J = 2.2 Hz, 1H), 8.05–7.95 (complex, 3H), 7.74 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H),
7.51 (d, J = 8.7 Hz, 1H); 13C NMR (101 MHz, DMSO-d6): δC 157.0, 145.1, 143.7, 139.7, 134.4,
132.6, 130.2 (q, J = 3.8 Hz), 129.5, 129.0, 124.5 (q, J = 271.9 Hz), 123.7, 123.3, 117.3, 117.1; MS
(m/z): 353 (M+·). Anal. Calcd for C16H10F3NO3S: C, 54.39; H, 2.85; N, 3.96. Found: C, 54.33;
H, 2.87; N, 3.95.

3.3.14. 3-Phenyl-1,8-naphthyridin-2(1H)-one (30)

Yield: 0.32 g (89%) as a white solid, m.p. 242–243 ◦C; IR: 3164, 1658, 1609 cm−1; 1H
NMR (400 MHz, CDCl3): δH 11.99 (s, 1H), 8.77 (dd, J = 4.9, 1.7 Hz, 1H), 7.97 (dd, J = 7.7,
1.7 Hz, 1H), 7.84 (s, 1H), 7.76 (d, J = 7.5 Hz, 2H), 7.50–7.39 (complex, 3H), 7.24 (dd, J = 7.7,
4.9 Hz, 1H); 13C NMR (101 MHz, CDCl3): δC 162.4, 149.9, 149.3, 136.3, 136.0, 135.4, 134.6,
128.9, 128.6, 128.4, 118.7, 115.6; MS (m/z): 222 (M+·). Anal. Calcd for C14H10N2O: C, 75.66;
H, 4.54; N, 12.60. Found: C, 75.59; H, 4.51; N, 12.51.

3.3.15. 3-(Phenylsulfonyl)-1,8-naphthyridin-2(1H)-one (31)

Yield: 0.43 g (93%) as a white solid, m.p. 299–300 ◦C; IR: 3146, 1651, 1608, 1310,
1149 cm−1; 1H NMR (400 MHz, DMSO-d6): δH 12.71 (s, 1H), 9.03 (s, 1H), 8.68 (dd, J = 4.7,
1.8 Hz), 8.49 (dd, J = 7.9, 1.8 Hz, 1H), 8.02 (d, J = 7.5 Hz, 2H), 7.72 (tt, J = 7.5, 1.3 Hz, 1H),
7.62 (t, J = 7.5 Hz, 2H), 7.38 (dd, J = 7.9, 4.7 Hz, 1H); 13C NMR (101 MHz, DMSO-d6): δC
156.6, 153.5, 150.6, 143.6, 139.0, 138.7, 133.2, 131.2, 128.4, 127.9, 118.7, 112.0; MS (m/z): 286
(M+·). Anal. Calcd for C14H10N2O3.S: C, 58.73; H, 3.53; N, 9.78. Found: C, 58.68; H, 3.52;
N, 9.71.

4. Conclusions

We have successfully developed a domino aldol-SNAr-dehydration [3+3] annulation
for the synthesis of 3,6-disubstituted quinolin-2(1H)-ones and 3-substituted 1,8-naphthyridin-
2(1H)-ones. The transformation involves an aldol reaction of activated acetamides, sub-
stituted at C2 by an aryl, phenylsulfonyl, or ester group with 2-fluorobenzaldehydes
substituted with electron-withdrawing substituents at C5 to promote SNAr reaction. The
process was also found to be successful for 2-fluoronicotinaldehyde. Both target fused
heterocycles were produced in high yields by this process. Since the methylene and amido
protons of the amide reacting partner have similar pKa values, two different mechanisms,
differing in the initial attacking anion, were possible. Model reactions of phenylacetamide
with 2-nitrobenzaldehyde and methyl 2-fluoro-5-nitrobenzoate in DMF with K2CO3 at
23 ◦C suggested that aldol addition of the phenylacetamide methylene to the aldehyde
triggers the cascade of events. The current work represents the first use of a 2-arylacetamide
in a potentially valuable synthetic application.
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