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Abstract: The emergence and fast development of carbon dots (CDs) provide an unprecedented
opportunity for applications in the field of photoelectricity, but their practicability still suffers from
complicated synthesis procedures and the substrate dependence of solid-state fluorescence. In this
study, we design a unique microwave-assisted solid-phase synthesis route for preparing tunable
fluorescent CD powders with yellow, orange, and red fluorescence (Y-CDs, O-CDs, R-CDs) by simply
adjusting the mass ratio of reactants, a method which is suitable for the large-scale synthesis of CDs.
The Y-/O-/R-CDs were systematically characterized using physics and spectroscopy techniques.
Based on the perfect solid-state fluorescence performance of the proposed fluorescent CD powders,
the Y-/O-/R-CDs were successfully applied for the construction of multi-color and white light-
emitting diode devices at low cost. Furthermore, the Y-CDs displayed much higher yield and
luminous efficiency than the O-CDs and R-CDs and were further used for fingerprint identification
on the surfaces of glass sheets and tinfoil. In addition, the R-CD aqueous solution fluorescence is
sensitive to pH, suggesting its use as a pH indicator for monitoring intracellular pH fluctuations. The
proposed series of fluorescent powders composed of CDs may herald a new era in the application of
optical components and criminal investigation fields.

Keywords: tunable carbon dots; large-scale synthesis; solid-phase synthesis; light-emitting diodes;
fingerprint identification

1. Introduction

The rapid development of fluorescent nanomaterials, including semiconductor quan-
tum dots [1], metal nanoclusters [2], rare earth nanoparticles [3], and perovskite quantum
dots [4], not only provides an unprecedented opportunity for analytical chemistry and
bioimaging, but it also establishes a robust foundation for the production of optical el-
ements and trace inspection [5–7]. However, the further practical applications of the
above-mentioned fluorescent nanomaterials are still limited by their costly precursors, com-
plicated synthesis procedures, or high toxicity, which could lead to high environmental and
biological risks [8–10]. Therefore, it is imperative to develop inexpensive and harmless new
fluorescent nanomaterials. Carbon dots (CDs), a new type of fluorescent carbon-based nano-
material proposed first in 2004, have attracted significant attention due to their advantages
of being environmental-friendly and having good biocompatibility, unique optical proper-
ties, stability, and tunability, and low cost, resulting in them being considered as an effective
alternative to heavy metal-based semiconductor quantum dots [11–13]. In recent years, CDs
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have been widely applied in various fields, such as chemical sensing [14], biosensing [15],
biomedical applications [16], and photocatalysis [17]. They have also shown great potential
in the light-emitting devices and fingerprint identification fields [18–20]. The synthesis of
CDs usually includes top-down and bottom-up methods, whereby top-down approaches
obtain CDs by cracking large carbon nanomaterials, such as graphene [21]. Conversely, the
bottom-up processes provide broad opportunities to obtain CDs of various sizes, shapes,
and properties through pyrolyzing or carbonizing small organic or aromatic molecules. As
typical representatives of bottom-up methods, solvothermal and microwave methods have
been widely applied for the synthesis, performance improvement, and fluorescent emission
adjustment of CDs in recent years, and these methods have significantly promoted the
development of CDs for practical application [22,23].The fluorescence efficiency of CD
solutions has been improved after more than ten years of research, which is reflected in
improvements in the quantum yield and tunability of emission wavelengths. Most CDs
can emit apparent fluorescence and keep their photoluminescence properties in various
organic solvents with different polarities, such as ethanol, dimethyl sulfoxide, acetone,
etc. Notably, although most reported CD-based fluorescent materials possess excellent
optical properties in solvents, the solid-state fluorescence is hard to maintain due to marked
aggregation-induced quenching effects [24–26]. In the light-emitting devices field, it com-
monly necessary to introduce different substrates, such as BaSO4, starch, and SiO2, to retain
the solid-state fluorescence of CDs, which is inconvenient for practical application [27–29].
Zhang et al. developed three-emission color CDs with good water dispersibility and strong
emission using the green hydrothermal method. However, the self-quenching effect in the
solid state was difficult to avoid unless a polyvinyl alcohol matrix was introduced to yield
solid-state films [30]. Therefore, developing high-efficiency CD-based solid fluorescent
material without any dispersive medium is urgent. Up to now, some researchers have
focused on synthesizing and applying light-emitting diodes and fingerprint imaging of
CD-based solid fluorescent material [31–33]. For example, Wang et al. reported a series
of solid-state fluorescent CDs using phloroglucinol and urea as sources via the one-step
microwave method by regulating the reactant ratio and microwave power [34]. These CDs
showed a good self-quenching resistance effect and were successfully applied for fabricat-
ing light-emitting diodes, but the synthesis route still suffers from solvent dependence. In
contrast, Xiong et al. obtained well-fluorescing CD powder via a simple solid-state reaction
within 3 h, which was further applied for fingerprint identification. However, the proposed
CDs preparation process was still time-consuming [35]. In addition, the large-scale synthe-
sis of CD-based solid fluorescent material commonly requires high temperature/pressure
and high energy consumption, which limit this method’s development into an industrial
process. Hence, the solvent-free, rapid, low-cost, large-scale synthesis of fluorescent CD
powders is still challenging. Inspired by the great application potential of CD-based solid-
state fluorescent material in light-emitting devices combined with the bottleneck problems
of its synthesis methodology, in this work, we propose an effective microwave-assisted
solid-phase reaction strategy for synthesizing high-performance fluorescent CD powder
(Scheme 1). CDs with perfect solid-state fluorescence can be obtained by simply pyrolyzing
a phloroglucinol and succinic acid mixture within 2 min with no extra solvent participation.
Yellow, orange, and red fluorescent CD powders (Y-CDs, O-CDs, R-CDs) can be synthesized
easily by adjusting the ratio of reactants, producing high yields of 61%, 43%, and 32%,
respectively, which are suitable for large-scale preparation and low-cost application. Based
on their excellent solid-state fluorescence properties, the prepared fluorescent CDs powders
were successfully used for the construction of multi-color light-emitting diodes (LEDs)
with good color rendering index. Furthermore, the proposed CDs also exhibit excellent
application potential in fingerprint identification. Additionally, the fluorescence signal of
R-CDs in aqueous solution is sensitive to pH change, which can be used as a pH indicator
for monitoring intracellular pH fluctuations. This study may provide a valuable reference
for the simple synthesis and practical commercial application of CD-based solid-state
fluorescent materials.
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Scheme 1. The synthesis of fluorescent CD powder and its application in light-emitting diodes and
fingerprint identification.

2. Results and Discussion
2.1. Synthesis of Y-CDs, O-CDs and R-CDs

To obtain a series of high-efficiency CD-based fluorescent powders with different
emission wavelengths, we propose a particular solid-phase synthesis strategy for preparing
tunable fluorescent CD powders. This synthesis strategy utilizes phloroglucinol and
butanedioic acid as raw materials and simple adjustments to their mass ratio. The solid-
state fluorescence of the proposed CDs should be unique to the large conjugate structure
formed from the reaction of phloroglucinol and butanedioic acid. The fluorescence emission
wavelength of the CDs is associated with the reactants’ ratio, and the emission wavelength
of the CDs red-shift is due to the formation of larger conjugate structures with increasing
ratios of phloroglucinol and butanedioic acid. As shown in Figure 1A, the Y-CDs with a
light center at about 550 nm can be obtained easily with the mass ratio of phloroglucinol
and butanedioic acid of 1:8. When adjusting the mass ratio to 1:2, we can prepare O-CDs
with prominent orange fluorescence at an emission wavelength of 580 nm. Furthermore,
the R-CDs with an emission wavelength of 600 nm can also be synthesized successfully
under the mass ratio of 1:1. Similarly, the band-gaps of Y-CDs, O-CDs and R-CDs are
2.34 eV, 2.16 eV, and 2.02 eV, respectively, which were calculated from UV–Vis spectra. In
addition, the yields of Y-CDs, O-CDs, and R-CDs can reach 61%, 43%, and 32%, respectively,
while their lifetimes are 5.2 ns, 7.8 ns, and 7.3 ns, respectively. From Figures S1 and S2, we
can conclude that phloroglucinol or butanedioic acid alone cannot be used for synthesizing
fluorescent CD powder directly. The solid-state fluorescence of the proposed CDs is
dependent on the synergistic reaction of phloroglucinol and butanedioic acid. Furthermore,
the proposed strategy still possesses the advantages of being solvent-free and having a
short reaction time, which are characteristics suitable for the large-scale, emerging synthesis
of tunable CD-based fluorescent powders. From the excitation spectra, we can see that the
fluorescence of the as-prepared fluorescent powders has a broad wave band characteristic
(Figure 1B). In addition, as shown in Figure 1C–E, the emission centers of Y-/O-/R-CDs
were independent of excitation wavelengths, which suggests that the developed CD-
based fluorescent powders have uniform luminescence centers [36]. Hence, the simple
synthesis route, high yield, and consistent luminescence properties of the proposed CDs
lay a solid foundation for further optical applications. The fluorescence spectra of the
Y-/O-/R-CDs water solutions also were studied. As shown in Figure S3, the Y-CDs and
O-CDs could not emit evident fluorescence in the aqueous phase, whereas the R-CDs
aqueous solution emitted bright green fluorescence with an emission center at 535 nm. The
excellent solid-state fluorescence of Y-CDs may originate from an aggregation-induced
fluorescence enhancement effect, and the relatively weak solid-state fluorescence of R-
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CDs could be attributed to their aggregation-induced fluorescence quenching effect. The
good fluorescence performance of the R-CDs aqueous solution inspired us to research it
systemically. Figure S4 shows that the R-CDs aqueous solution displayed a broad excitation
band with an optimal excitation wavelength at 470 nm. Furthermore, the fluorescence
emission wavelengths of R-CDs aqueous solution depended on changes in the excitation
wavelength. With the excitation wavelength changing from 300 nm to 500 nm at an interval
of 20 nm, the emission peaks red-shift gradually, as shown in Figure S5. The UV–Visible
absorption spectrum of the CDs aqueous solution is shown in Figure S6. Three prominent
absorption peaks at 275 nm, 315 nm, and 474 nm can be observed easily. The 275 nm
and 315 nm peaks can be assigned to the n-π* transition. The broad absorption band at
about 474 nm could be assigned to the coupling of the π-state, which also matches the
optimal excitation wavelength. All the above results indicate that R-CDs have similar
optical properties to typical CDs. The R-CDs were synthesized using phloroglucinol and
butanedioic acid as raw materials, so we speculate that the fluorescence signal of the R-CD
aqueous solution may be sensitive to pH change due to the protonation and deprotonation
effect of hydroxyl and carboxyl functional groups from the surface of the R-CDs. As shown
in Figure S7, the R-CDs aqueous solution can emit weak fluorescence at pH < 5.20, and the
fluorescence intensities increase sharply when the pH increases from 5.60 to 7.62. When the
pH further increases to 8.52, the fluorescence change in the R-CDs aqueous solution can be
ignored. Figure S8 shows that the fluorescence intensity changes linearly with pH, with a
correlation coefficient of 0.9988 in the range of 5.60 to 7.62. The fluorescence intensity of
the R-CD aqueous solution at pH 7.62 was almost seven-fold higher than that at pH 5.60,
which proves the high sensitivity of the fluorescence signal of the R-CD aqueous solution
to pH change. Owing to the high sensitivity of the R-CD water-phase fluorescence to pH
change, the R-CDs can be used as an effective pH indicator for monitoring intracellular pH
fluctuations. As shown in Figure S9, no obvious fluorescence signal could be captured from
the unstained cells, but the fluorescence signal of the cells showed a noticeable difference
with pH at 6.0 and 7.4 after staining by R-CDs, which indicates that the R-CDs can enter
the living cells and distinguish the pH fluctuations in cells.
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2.2. Characterization of Y-CDs, O-CDs and R-CDs

To ensure their suitability for application, the morphology and size of the synthesized
Y-/O-/R-CDs were studied by TEM. As shown in Figure 2A–C, all the developed CD-
based fluorescent powders show good monodispersity, with nearly spherical nanoparticles
and a size range from 2 to 4 nm (Figure S10). The XRD patterns indicate the synthesized
fluorescent CD powders are amorphous (Figure 2D). Furthermore, the surface property
of the proposed CDs were characterized by the FTIR spectrum. Figure 2E shows that
the as-prepared Y-/O-/R-CDs powders are similar in composition, and the characteristic
absorption peak of -OH in phloroglucinol can be observed at 3293.2 cm−1. Furthermore,
we can observe the stretching vibration of C=O and C-O at 1714.4 cm−1 and 1147.6 cm−1,
respectively, on the surface of the CD-based fluorescent powders [37]. The out-of-plane
bending vibration peaks of C-H and O-H can be found at 820.3 cm−1 and 680.1 cm−1,
respectively. Especially with an increasing mass ratio of phloroglucinol and butanedioic
acid, the content of the carbonyl functional group decreased gradually from Y-CDs to
R-CDs. These results indicate that the surfaces of the prepared Y-/O-/R-CDs were rich in
oxygen-containing functional groups. Further information on the chemical composition
and structure of Y-/O-/R-CDs was obtained from the XPS. As shown in the full XPS
spectra of Y-/O-/R-CDs (Figure 2F), two typical peaks at 284.5 eV and 532.5 eV can be
observed quickly, corresponding to C 1s and O 1s, respectively. The proposed series of
CDs contains only the elements carbon and oxygen, resulting in lower environmental risks
due to elimination of the overly dependent nitrogen element in the synthesis of CDs [38].
In Figure 3A–C, the C=C (284.1 eV), C-O (285.8 eV), and C=O (288.8 eV) bands in the
Y-/O-/R-CDs were observed clearly from the high-resolution C 1s spectrum [39]. The O 1s
displays two typical peaks at 531.0 eV and 532.6 eV, which can be attributed to the C=O and
C-O bands, respectively, of the Y-/O-/R-CDs [40]. From Table S1, we can further confirm
that the percentage of the carbonyl functional group decreased along the gradient from
Y-CDs to O-CDs to R-CDs. These results are all consistent with the FITR data analysis.
The results of XPS indicate that the proposed Y-/O-/R-CDs without nitrogen possess low
environmental risk, and consequently, potential eutrophication effects can be avoided in
practical applications.
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2.3. The Biocompatibility of Y-CDs, O-CDs, R-CDs

To assess their suitability for application, MTT assays were carried out to evaluate the
cytotoxicity of Y-/O-/R-CDs on Hela cells. As shown in Figure 4, the as-prepared Y-/O-/R-
CDs fluorescent powders exhibited good biocompatibility, and the cell viability results were
all higher than 85% when the concentration of Y-/O-/R-CDs was set as 500 µg·mL−1. In
addition, the synthesized Y-/O-/R-CDs also possess good solid-state fluorescence stability,
as shown in Figure S11. The fluorescence performance of Y-/O-/R-CDs was retained at
90% after storing for 60 days, further demonstrating the utility of Y-/O-/R-CDs in practical
applications.
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2.4. Application of Y-CDs, O-CDs, and R-CDs in Multi-Color/White LEDs

LEDs have become popular lighting devices because of several advantages, including
their adjustable spectrum, long life, and high efficiency [41,42]. Based on the excellent
solid-state fluorescence properties of the prepared series of CDs, a variety of LEDs can be
fabricated using CDs as the luminescence conversion layer, including multi-color LEDs
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and white LEDs. Firstly, the CDs with three fluorescent colors were used as phosphors and
combined with UV chips to produce multi-color LEDs. Figure 5 shows that the Commission
Internationale de L’Eclairage (CIE) coordinates of the yellow, orange, and red LEDs are
located at (0.40, 0.47), (0.46, 0.46) and (0.50, 0.43), respectively, and can emit bright yellow,
orange and red light. Furthermore, a cold-white LED (Figure 6A inset) with a correlated
color temperature (CCT) of 8020 K and CIE coordinates of (0.29, 0.32) (Figure 6B) was
prepared by using a yellow solid-state fluorescent powder as the phosphor and combining
it with a 450 nm blue chip. The cold-white LED had a high color reduction degree, which
is more suitable for exhibition halls and other environments [43]. Therefore, the designed
tunable CDs may have appropriate photoelectric element field applications.
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2.5. Fingerprint Identification Application

Moreover, the CDs with excellent properties are promising for fingerprint identifica-
tion. Firstly, CDs are almost non-toxic, which is very beneficial for the operator; secondly,
the strong fluorescence signal of CDs can significantly enhance contrast, improve resolution
and reduce background interference. Compared with O-CDs and R-CDs, the synthesized
Y-CDs exhibited stronger solid-state fluorescence and higher yield, which was effectively
employed as a phosphor powder utilizing the dusting method for imaging fingerprints
on glass sheets and tinfoil [42]. As shown in Figure 7, the fingerprint images with bright
yellow fluorescence on glass sheets and tin foil could be distinguished clearly under UV
light irradiation (365 nm). All details of the fingerprint image on the surface of the tinfoil
can be identified, including the core, islands, scar, crossover, bifurcation, and termination
(Figure 7B). The details of these fingerprint images were consistent on different substrates,
confirming that the dusting method with the proposed Y-CDs is reproducible and reliable.
Therefore, the developed Y-CDs may have potential applications in criminal investigation.
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3. Materials and Methods
3.1. Materials

Phloroglucinol and butanedioic acid were purchased from Aladdin Biological Technol-
ogy Co., Ltd., (Shanghai, China). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide (MTT) agent was obtained from Shanghai Macklin Biochemical Co., Ltd., (Shang-
hai, China). Shenzhen Looking Long Technology Co., Ltd., (Shenzhen, China) supplied
the organic silicone and epoxy resins. All other reagents were of analytical grade and used
without further purification. Ultrapure water with a resistivity of 18.25 MΩ·cm was used
throughout the experiment (UPR-II-10T, Sichuan Youpu Ultra Pure Technology Co., Ltd.,
Sichuan, China).

3.2. Characterization

The photoluminescence (PL) spectra of the synthesized Y-CDs, O-CDs, and R-CDs
were obtained using an F97Pro fluorescent spectrophotometer (Shanghai Lengguang Tech-
nology Co., Ltd., Shanghai, China). A NEXUS 670 Fourier was used to measure the
elemental composition, and the molecular structure of Y-CDs, O-CDs, and R-CDs was
examined using transform infrared spectroscopy (FTIR, Nicolet, Thermo Fisher Scientific,
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Columbia, MD, USA), and an EscaLab Xi+ X-ray photoelectron spectroscopy (XPS, Thermo
Fisher Scientific, Columbia, MD, USA). The morphology and size of the prepared Y-CDs,
O-CDs, and R-CDs were characterized by transmission electron microscopy (TEM, FEI
Tecnai G2 F30, Thermo Fisher Scientific, Columbia, MD, USA) with a 200 kV accelerating
voltage and dynamic light scattering (BI-200SM, Brookhaven, Bruker Corporation, Karl-
sruhe, Germany). The MTT test was performed on an RT-6100 enzyme-mark analyzer
(Rayto, Shenzhen, China) to assess the biological risk of the obtained CDs.

3.3. Preparation of Y-CDs Fluorescent Powder

In a typical process, 0.05 g of phloroglucinol and 0.4 g of butanedioic acid were placed
in an agate mortar and ground into a uniform powder. Then, the mixture was transferred
into a 50 mL beaker. After heating for 5 min using a domestic microwave oven (700 W), the
powder changed from white to yellow, indicating Y-CDs formation.

3.4. Preparation of O-CDs Fluorescent Powder

Similarly, 0.15 g of phloroglucinol and 0.30 g of butanedioic acid were placed in an
agate mortar and ground into a uniform powder. Then, the mixture was transferred into
a 50 mL beaker. After heating for 5 min using a domestic microwave oven (700 W), the
powder changed from white to orange, indicating the production of O-CDs.

3.5. Preparation of R-CDs Fluorescent Powder

In a typical process, 0.23 g of phloroglucinol and 0.23 g of butanedioic acid were placed
in an agate mortar and ground into a uniform powder. Then, the mixture was transferred
into a 50 mL beaker. After heating for 5 min using a domestic microwave oven (700 W), the
powder changed from white to brownish black, indicating the formation of R-CDs.

3.6. MTT Assay

A standard MTT assay was carried out to evaluate the cell cytotoxicity of the developed
CDs. Hela cells were seeded in a 96-well plate and allowed to adhere overnight. The culture
medium was removed after incubation for 24 h at 37 ◦C, and DMEM medium containing
the CDs was used to treat the Hela cells at different concentrations (0, 100, 200, 300, 400, and
500 µg·mL−1) for another 24 h. Then, the incubation solution was removed and a 10% MTT
agent culture medium was added. After incubation for another 4 h, the supernatant was
discarded, and 150 µL of dimethyl sulfoxide was added to dissolve the formazan crystals.
The absorbance values at 490 nm were measured using a microplate reader (Multiskan FC
Type 357).

3.7. The Fabrication of LEDs Devices

LED chips with central emission values of 365 nm and 450 nm were purchased from
Yuanyue photoelectric technology Co., Ltd., (Shenzhen, China) Using the solid fluorescent
powder of Y-CDs, O-CDs, and R-CDs as phosphors, the working voltage was set at 3 V, and
the 365 nm UV chip was used as a base. The fluorescent CD powder was dissolved in an
epoxy hardener. The obtained solution was mixed with a hardener at a 4:1 volume ratio.
After curing the mixture for 1 h at 100 ◦C, yellow, orange, and red LEDs were successfully
fabricated. A white LED device was fabricated using the solid fluorescent powder of Y-CDs
as phosphors. The working voltage was set at 3 V, and the 450 nm blue light chip was used
as a base. The other steps are similar to those described above.

4. Conclusions

This study proposes an ultra-fast microwave-assisted solid-phase synthesis method for
preparing tunable fluorescent CD powders without involving extra solvent. The adjustment
of the fluorescence of the CD powder from yellow to orange and then to red was realized
by simply controlling the mass ratio of reactants. With their high-yield, excellent optical
properties, and low cytotoxicity, the developed Y-/O-/R-CDs were successfully applied
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in fabricating low-cost multi-color LEDs. Furthermore, the Y-CDs with higher luminous
efficiency and yield were further used for the construction of cold-white LEDs and for
multi-matrix fingerprint identification with adequate sensitivity. Therefore, Y-CDs may
be an effective candidate material for lighting and criminal investigation applications. In
addition, the R-CDs aqueous solution fluorescence was sensitive to pH change, which can
be used as an effective pH sensor for monitoring intracellular pH fluctuations. This study
opens new horizons for simple and large-scale synthesis of CDs and promotes the practical
development from the laboratory to commercialization of CD-based fluorescent materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28155917/s1. Figure S1: The emission spec-
trum of obtained product using only phloroglucinol as a reactant; Figure S2: The emission spectrum
of obtained product using only butanedioic acid as a reactant; Figure S3: The emission spectra of
Y-/O-/R-CDs aqueous solutions; Figure S4: The excitation spectrum of R-CDs aqueous solution;
Figure S5: The emission spectra of R-CDs aqueous solution under various excitation wavelengths;
Figure S6: The UV–Visible spectrum of R-CDs aqueous solution; Figure S7: The emission spectra of
R-CDs aqueous solutions at different pH levels; Figure S8: The linear relation between the fluores-
cence intensity of R-CDs aqueous solutions and pH change; Figure S9: The fluorescent microscopy
images of unstained Hela cells and staining by R-CDs under pH 6.0 and 7.0; Figure S10: The fluo-
rescence intensities of Y-/O-/R-CDs fluorescent powder after storing for different numbers of days;
Figure S11: The fluorescence intensities of Y-/O-/R-CDs fluorescent powder after storing different
days; Table S1: Values (%) of each peak fitted in O1s.
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