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Abstract: The importance of conductive polymers has significantly increased over the decade due to
their various applications, such as in electronic devices, sensors, and photovoltaics. Poly(3,4-ethylene
dioxythiophene) polystyrene sulfonate (PEDOT:PSS) is one of the most successfully and widely used
polymers in practical applications. Spin coating is extensively used to fabricate these conductive
films; however, it has disadvantages. It is inherently a batch process with relatively low output
and high solution wastage. To address these issues, we developed a novel printing process called
electrical-field-assisted direct ink deposition (EF-DID), which yields a continuous, homogenous film
with high electrical conductivity. In this process, we studied the formation of nanodroplets under an
electrical field and their effects on film characteristics. Furthermore, dimethyl sulfoxide (DMSO) was
considered as an additive solvent to increase the conductivity and wettability of the films. We then
compared EF-DID-printed PEDOT:PSS films with spin-coated films to better understand the film
properties. Finally, inverted perovskite solar cell devices were fabricated and compared, where the
PEDOT:PSS layers were prepared by EF-DID printing and spin coating. Based on the experimental
results, a solution of 20% PEDOT:PSS in DMSO (vol/vol) printed by EF-DID for 15 s provided
optimal morphology.

Keywords: PEDOT:PSS; conductive nanofilm; electrical field; direct ink deposition; spin coating

1. Introduction

Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is considered
one of the most successful conductive polymers, having great significance in commercial
and fundamental research [1,2]. The excellent properties of PEDOT:PSS make it an ex-
ceptionally useful material, with wide applications, such as in transparent conductors,
anti-static coatings, thermoelectric materials, etc. [3–5]. Compared to other conductive
polymers, PEDOT:PSS has several advantages, such as high optical transparency, low
material cost, high and tunable electrical conductivity, excellent thermal stability, and easy
processing [6,7]. PEDOT:PSS has been employed extensively in light-emitting diodes, pho-
tovoltaics, and thin-film transistors as transparent electrodes [8–11]. Research shows that
the different film processing, deposition, and post-processing steps impact the morphology
and arrangement of the PEDOT:PSS nanostructures in the prepared thin films. Electronic
and optical properties are also affected by the PEDOT:PSS nanostructures in the as-prepared
thin films [12–17].
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Various fabrication techniques, such as dip coating, spin coating, doctor blading,
slot-die coating, ink-jet printing, gravure printing, screen printing, and spray coating,
have been employed to deposit thin films and obtain different film characteristics [15–17].
The spin-coating method has been one of the most widely used techniques; however,
it is inherently a non-scalable process that can only be used for fabrication in batches.
Additionally, spin coating is characterized by high levels of material wastage of the liquid
precursor. Thus, the large-scale production of thin films is not possible using spin coating.
This paper reports a novel printing process for fabricating large-area nanofilms within
minutes. We named the process electrical-field-assisted direct ink deposition (EF-DID). The
EF-DID fabrication technique is a coating technique consisting of a grounded plate with a
heated substrate targeted by electric-field-accelerated jets of liquid droplets transporting
the reactants. The solution droplets move from the nozzle to the substrate. As the droplets
leave the nozzle head, an electric charge is added. Inter-droplet repulsion causes them
to deform into a conical shape called the Taylor cone, from the tip of which a fluid jet
emerges. As the fluid jet travels and the solvent continuously evaporates, the droplet
size decreases, and surface charge density increases. Electrostatic forces then override the
surface tension, dispersing the droplets into a wide plume of smaller, more crystalline
droplets. Finally, a solid thin film is formed when the solutes are deposited and solidify on
the heated substrate. Integrating x-y-z movements and depositing patternable nanofilms
with a material extrusion module combines direct ink printing into the electrical field
production module. The conductive PEDOT:PSS thin films were quickly produced with
EF-DID. The highest film quality could be achieved by optimizing printing parameters,
such as applied voltage, solution concentration, deposition height, and ink flow rate. The
voltage was maintained at about 12 kV to ensure smooth printing of thin films; higher
voltage can lead to the instability of the Taylor cone.

Similarly, at low velocity, the proper formation of the cone can be ensured. Around
40 cm of distance is preserved for better film deposition. To achieve optimum film depo-
sition, an ink flow rate of 2 µL/s is used, since a steady and evenly distributed deposit
is essential for the fabrication of nanofilms. To achieve optimal film thickness, 20% PE-
DOT:PSS in DMSO (v/v) was printed for 15 s. Later, the films were annealed for 15 min at
130 ◦C to evaporate the remaining solvent and enhance the crystal growth.

The EF-DID-printed films were compared to the spin-coated PEDOT:PSS films in
terms of morphology and distribution of the PEDOT:PSS nanostructures. We believe that
the presented EF-DID technique will lower the production cost and be a highly efficient
nanofilm printing technique for the fabrication of next-generation solar cells.

In this study, we intend to establish a reproducible and reliable technique for fabri-
cating large-area thin films for perovskite solar cells. The EF-DID technique discussed in
this manuscript will allow layer-by-layer film growth, resulting in a dense and uniform
microstructure, compared to that of films fabricated by sputtering [18]. The reported deposi-
tion process could also be used to fabricate perovskite solar cells using 2D materials [19,20].

2. Results and Discussion
2.1. Film Morphology

The surface properties of the EF-DID-printed film were evaluated using scanning
electron microscopy (SEM). The nanofilms were prepared on indium tin oxide (ITO) and
annealed at 130 ◦C for 15 min. As can be seen in Figure 1, all the annealed PEDOT:PSS
films had similar characteristics. Films printed with a solution of 10% PEDOT:PSS in
DMSO (vol/vol) (Figure 1a–c), deposited for different times (8, 10, and 15 s, had an uneven
surface coverage compared to the films with the other concentrations. The films printed
with 20% PEDOT:PSS in DMSO (vol/vol) (Figure 1d–f) had the best film coverage with
nanostructures. The 20% PEDOT:PSS in DMSO (vol/vol) (Figure 1f) film with a deposition
time of 15 shad a very homogenous nanostructure with uniform coverage and equal grain
sizes. Compared to the others, the films printed using 30% PEDOT:PSS in DMSO (vol/vol)
(Figure 1g–i) were inhomogeneous and had many pinholes and cracks, even after annealing.
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Higher concentrations of PEDOT:PSS caused larger droplets and instability of the spray.
This caused inhomogeneous film formation, leading to pinholes and cracks.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 12 
 

 

sizes. Compared to the others, the films printed using 30% PEDOT:PSS in DMSO (vol/vol) 
(Figure 1g–i) were inhomogeneous and had many pinholes and cracks, even after anneal-
ing. Higher concentrations of PEDOT:PSS caused larger droplets and instability of the 
spray. This caused inhomogeneous film formation, leading to pinholes and cracks. 

Thus, uniform crack-free homogenous films were achieved by adjusting the concen-
tration of PEDOT:PSS ink. Our results showed that the film printed using 20% PEDOT:PSS 
in DMSO (vol/vol) for 15 swas the optimum film. 

The as-deposited PEDOT:PSS films must be annealed every time after deposition. 
Annealing time and temperature are two critical aspects of PEDOT:PSS thin film for-
mation. The annealing of the films is necessary to remove the excess solvent. In addition, 
annealing favors the formation of specific structural phases, improving the surface rough-
ness of the films. Based on our previous studies, we employed 130 °C for 15 min in this 
manuscript [21]. Annealing the as-deposited EF-DID-fabricated films at this temperature 
and for this duration gave us an optimum thickness of around 60 nm. 

Furthermore, the EF-DID-fabricated annealed films also showed an improved effec-
tive resistivity of 4.15 × 104 ± 0.26 Ω-m. This study uses DMSO as an additional PEDOT:PSS 
solution solvent. Since DMSO has a high boiling point, it requires a higher annealing tem-
perature for a longer time to evaporate the complete solvent from the thin films. Thus, 
annealing the EF-DID-fabricated PEDOT:PSS films at 130 °C for 15 min proved optimal 
for our films. 

 
Figure 1. EF-DID-printed films of 10% PEDOT:PSS in DMSO (vol/vol): (a) 8 s; (b) 10 s; (c) 15 s. EF-
DID-printed films of 20% PEDOT:PSS in DMSO (vol/vol): (d) 8 s; (e) 10 s; and (f) 15 s. EF-DID-
printed films of 30% PEDOT:PSS in DMSO (vol/vol): (g) 8 s; (h) 10 s; and (i) 15 s. 

Furthermore, we investigated the EF-DID process for large-scale production of PE-
DOT:PSS nanofilm in our previous work [21]. The thicknesses of the deposited 
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films of 30% PEDOT:PSS in DMSO (vol/vol): (g) 8 s; (h) 10 s; and (i) 15 s.

Thus, uniform crack-free homogenous films were achieved by adjusting the concentra-
tion of PEDOT:PSS ink. Our results showed that the film printed using 20% PEDOT:PSS in
DMSO (vol/vol) for 15 swas the optimum film.

The as-deposited PEDOT:PSS films must be annealed every time after deposition.
Annealing time and temperature are two critical aspects of PEDOT:PSS thin film forma-
tion. The annealing of the films is necessary to remove the excess solvent. In addition,
annealing favors the formation of specific structural phases, improving the surface rough-
ness of the films. Based on our previous studies, we employed 130 ◦C for 15 min in this
manuscript [21]. Annealing the as-deposited EF-DID-fabricated films at this temperature
and for this duration gave us an optimum thickness of around 60 nm.

Furthermore, the EF-DID-fabricated annealed films also showed an improved effective
resistivity of 4.15 × 104 ± 0.26 Ω-m. This study uses DMSO as an additional PEDOT:PSS solu-
tion solvent. Since DMSO has a high boiling point, it requires a higher annealing temperature
for a longer time to evaporate the complete solvent from the thin films. Thus, annealing the
EF-DID-fabricated PEDOT:PSS films at 130 ◦C for 15 min proved optimal for our films.

Furthermore, we investigated the EF-DID process for large-scale production of PE-
DOT:PSS nanofilm in our previous work [21]. The thicknesses of the deposited PEDOT:PSS
nanofilm were evaluated using a stylus profilometer. The nanofilm thicknesses were
assessed as a function of the concentration of PEDOT:PSS in DMSO (vol/vol) and the depo-
sition time (Figure 2a,b). It can be seen that nanofilm thickness increased with increasing
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PEDOT:PSS concentration in DMSO (vol/vol). As seen in Figure 2b, the nanofilms were
EFA-DID printed using different deposition times. Film thickness increased with deposition
time. EFA-DID printing for 15 sgave the thickest films, at 60 nm. Both annealed (130 ◦C) and
air-dried films were tested to identify the optimal postprocessing. The nanofilm thickness
increased with increasing PEDOT:PSS concentration in DMSO (vol/vol), as well as with
deposition time. Moreover, we also observed a decrease in thickness with the annealing of
the nanofilm, presumably due to water loss and the intraparticle interactions between the
molecules at higher temperatures. The deposition rate can also be seen to decrease with
overall deposition time in Figure 2b. This can be attributed to a surface charge buildup
on the substrate that is inherent to the EF-DID process. Liquid droplets that impact the
substrate rather than the grounding electrode do not have a conductive path for neutraliz-
ing charge accumulation. The resultant electrostatic field repels some incoming droplets,
effectively lowering the deposition rate.
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2.2. Film Wettability

An effective resistivity of 4.15 × 104 ± 0.26 Ω-m was calculated for all of the different
concentrations of annealed films (10%, 20%, 30% PEDOT:PSS in DMSO (vol/vol)) [18].

EF-DID-printed PEDOT:PSS films have been used as the hole transport layer (HTL) in
perovskite solar cells. The hydrophobicity of the HTL determined the morphology of the
active perovskite layer [22]. Consequently, the wettability of the EF-DID-printed film was
calculated. A water droplet was added to the films, and the contact angle was determined.
Figure 3a shows that the EF-DID-printed PEDOT:PSS nanofilm had a contact angle of
27.23◦. This seems to be an ideal angle for spraying the Perovskite layer to prepare solar
cells. By comparison, the spin-coated film (shown in Figure 3b) had a higher contact angle
of 42.82◦. These results indicate that the wettability of EF-DID-printed PEDOT:PSS films
is improved compared to samples prepared by spin coating. Furthermore, this difference
may be attributable to the difference in film surface roughness between the deposition
techniques. The hydrophobic nature of PEDOT:PSS is believed to be decreased when using
DMSO, a hydrophilic solvent [23]. Figure 4 supports this claim, showing that the contact
angle of PEDOT:PSS on ITO decreases when DMSO is present. Thus, the EF-DID-printed
PEDOT:PSS hydrophobicity can be lowered by including DMSO in the nano-ink used
during film deposition.
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2.3. EF-DID-Sprayed vs. Spin-Coated Nanofilms

This work aims to achieve a high-quality PEDOT:PSS film for future optoelectronic use.
Since spin coating is one of the most commonly used fabrication methods, the following
section compares EF-DID-sprayed and spin-coated nanofilms. SEM was performed on
spin-coated and EF-DID-printed PEDOT:PSS nanofilms (Figure 5). As seen in Figure 5a,
the EF-DID-printed nanofilm (20% PEDOT:PSS in DMSO (vol/vol) for 15 s) was a more
compact film than the spin-coated film. Additionally, much fewer pinholes and cracks
were observed for the EF-DID-printed nanofilm; this suggested a more homogenous
film formation.
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Further atomic force microscopy (AFM) analysis was performed on both the spin-
coated and EF-DID-printed films. Figure 6 shows the differences in surface profile and
topography for both the EF-DID-printed and spin-coated PEDOT:PSS nanofilms. According
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to one study, the spinning speed in the spin-coating method has a smoothening effect on
the film’s morphology and structure [24]. The RMS was 2.03 nm for the spin-coated and
1.91 nm for the EF-DID-printed PEDOT:PSS nanofilms. Although spin coating had the
advantage with respect to its smoothing effect, the surface roughness of our EF-DID-printed
nanofilm (Figure 6a) was almost the same as that of the spin-coated film. However, spin
coating had a disadvantage compared to EF-DID-printed nanofilms: the centrifugal forces
applied to the PEDOT:PSS solution during spinning caused phase separation. As a result,
the PEDOT layer formed the film’s bottom layer, and the PSS layer formed the film’s
surface [24].
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As indicated in Figure 6b, a self-assembled PSS-rich layer results in a smooth spin-
coated PEDOT:PSS film [25]. The PSS chain of PEDOT:PSS is acidic and contains a sulfonic
group causing degradation of the film’s morphology and stability [26,27]. The slight
difference in RMS roughness between the spin-coated and EF-DID-printed nanofilms is the
result of the different solvents used in preparing the PEDOT:PSS solution. In our case, the
EF-DID-printed nanofilms contained 20% PEDOT:PSS in DMSO (vol/vol). The roughness
increased slightly with increasing concentrations of DMSO due to the formation of tiny
grains of PEDOT:PSS [27]. An effective resistivity of 4.15 × 104 ± 0.26 Ω-m was calculated
for all of the different concentrations of annealed films (10%, 20%, 30% PEDOT:PSS in
DMSO (vol/vol)) [21]. An Ossila four-point probe was used to measure the sheet resistance
of the EF-DID-printed nanofilms. Compared to EF-DID-coated PEDOT:PSS films, the
spin-coated layer had a higher effective resistivity of 5.96 × 104 ± 0.20 Ω-m (Figure 7). This
can be attributed to the highly dense nature of the EF-DID-printed film compared to the
spin-coated film.

Both EF-DID-printed and spin-coated PEDOT:PSS nanofilms were evaluated as HTLs
in perovskite solar cells. To test the bonding between the HTL and the perovskite layer,
we further spin coated 1 M CH3NH3PbI3 (in a molar ratio of CH3NH3I:PbI2 = 1:0.8)
on top of the EF-DID-printed and spin-coated PEDOT:PSS nanofilms (Figure 8). SEM
characterization was performed to compare the morphology of the perovskite films. As
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shown in Figure 8, the perovskite film on top of the EF-DID-printed PEDOT:PSS layer
looked more homogenous and compact than the other.
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The current–voltage characteristics of the prepared inverted PSC devices were mea-
sured. Prior to the measurement, the light source was calibrated with a standard Si photo-
diode reference cell. By analyzing the J-V data, various parameters such as short-circuit
current (Isc), open-circuit voltage (Voc), fill factor (FF), and efficiency can be determined.
These parameters can provide valuable insights into the device’s performance and help
assess its suitability for solar energy conversion applications.

Figure 9a and Table 1 show the data for the inverted PSC devices fabricated using
the spin-coating and EF-DID techniques. The PSC produced by spin coating exhibited
a PCE of 6.0% with a Voc of 0.98 V, a Jsc of 8.7 mA/cm2, and an FF of 70%. The PSCs
fabricated using the EF-DID technique significantly improved the PCE by ~30% to 7.8%
(Voc = 0.85 V, Jsc = 14 mA/cm2, and FF = 65%). The spin-coated CH3NH3PbI3 film has a
thickness measuring around 200 nm, as seen in the cross-section image in Figure 9b.

Table 1. Device parameters of inverted PSC devices with the spin-coated and EF-DID-printed
PEDOT:PSS layer.

Deposition Type Efficiency (%) Fill Factor Voc (V) Jsc (mA/cm2) Rsh (Ωcm2) Rs (Ωcm2)

Spin Coated
PEDOT:PSS 6.0 0.709 0.983 8.67 2857 15

EF-DID PEDOT:PSS 7.8 0.647 0.853 14.2 1003 5.5
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The shunt resistance (Rsh) and series resistance (Rs) are two important parameters for
explaining the device characteristics of solar cells. Rs represents the resistance of the current
flow within the series circuit of the solar cell. It includes the resistance of the conductive
materials, such as metal contacts and interconnects, and the resistance of the semiconductor
material itself. Rs should be as low as possible in order to minimize power losses within
the solar cell. The Rsh represents the resistance path parallel to the solar cell’s main current
flow, which indicates the relative amount of leakage current. In an ideal case, Rsh should
be as high as possible. Inspection of Table 1 shows that the EF-DID-coated sample has a
better Rs; however, it has a higher amount of leakage current. This may be associated with
the porosity of the prepared sample.

As shown in Figure 9a, a large reverse/leakage current can be observed for the
spin-coated devices. In Figure 5b, the spin-coated PEDOT:PSS sample has more pin
holes and cracks compared to the EF-DID-fabricated PEDOT:PSS. These defects result
in recombination and, subsequently, a large leakage current. The modification of the
fabrication and spin-coating parameters is one of the ways to avoid this leakage of current.

3. Materials and Methods
3.1. Electrical-Field-Assisted Direct Ink Deposition of PEDOT:PSS

The nanoscale printing technique, EF-DID, uses a prototype printer, which includes a
heated x-y-z printing stage, a control module, an electrical field generator, and a material
feed (Figure 10). The EF-DID approach consists of a material extrusion module, where the
nano ink is fed into the plunger, pushed by the linear actuator. The extrusion flow rate
of the nano ink is controlled by adjusting the speed of the linear actuator. A high-voltage
power supply (0 to 30 kV) connected to the nozzle and grounded printing stage produces
the electric field around the printing nozzle, and thus the Taylor cone necessary for EF-DID.
Adjusting the distance and the voltage between the printing stage and the nozzle changes
the electric field strength. However, care must be taken to ensure that the Taylor cone and
ink plume remain stable during printing. In order to do so, a microscope was mounted
to the printer to monitor the morphology of the printed liquid drops and the Taylor cone
formed under the nozzle. This setup enables the large-scale fabrication of nanofilms with
2D patterns.

We studied the relation between the electrical field and the deposition parameters
(e.g., the speed setting) to understand the EF-DID technique’s printing diameter. A semi-
spherical shape was developed at the tip of the nozzle when applying a high voltage V, and
an electrical field was induced [28]:

E =
2V

α ln
(

4H
α

) , (1)

where E is the electrical field strength, α is the liquid radius of the curvature, and H is the
distance between the nozzle and the printing substrate. As the voltage is raised, the liquid
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deforms from the semi-spherical shape into a conical shape with a fluid jet at the tip. This
is recognized as the Taylor cone. Due to the charges of the droplets, they repel each other
in the fluid jet and form a plume. The strength of the repulsive force and travel distance to
the substrate then determine the printing diameter.
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The print size was evaluated according to the deposition diameter D, and was adjusted
by controlling the distance between the printing substrate and the nozzle. The diameter
was directly proportional to the increase in distance, and inversely proportional to the
deposition thickness. Therefore, the relationship between the diameter and the distance
between the printing substrate and the nozzle was as follows:

D = τH, (2)

where τ is a constant 0.1794 for an applied voltage of 10 kV. The equation below determines
the thickness of deposition, Td:

Td =
4γt
πD2 , (3)

where γ is the flow rate and t is the time.

3.2. Ink Preparation

PEDOT:PSS dispersed in water was purchased from Ossila Al 4083, Sheffield, UK.
DMSO was used to dilute the ink and was purchased from Sigma Aldrich, Darmstadt,
Germany. PEDOT:PSS in DMSO (vol/vol) solutions with different concentrations (10%,
20%, and 30%) were prepared. The diluted solutions were then sonicated for about 10 min
for better dispersion. Finally, the solution prepared as described above was filtered using a
0.45 µm filter to remove undispersed nanoparticles before printing.

3.3. Thin Film Fabrication

Initially, ITO substrates were sequentially cleaned using an ultrasonic treatment se-
quence of deionized water, acetone, and IPA, for 15 min each. Previous work has shown
that polar solvents with high dielectric constants and boiling points improve the electrical
conductivity of PEDOT:PSS [29]. Here, we used DMSO to further dilute the PEDOT:PSS
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solution. Three solutions of PEDOT:PSS in DMSO (vol/vol)—10%, 20%, and 30%—were
printed to evaluate the performance of the nanofilms. The diluted PEDOT:PSS ink was
loaded into a plastic syringe with a stainless-steel needle with a blunt tip (Bstean 32 G
13 mm, 0.09 mm inner diameter, and 0.25 mm outer diameter). The substrates were placed
onto an aluminum printing stage equipped with a linear actuator with a 150 mm range
(purchased from the Parker-Hannifin Corporation, Mayfield Heights, OH, USA). A silicon
heating pad with a thermistor (NTC 100 K thermistor) was attached to the printing stage
to heat the substrates during and after printing. All the EF-DID setup operations were
controlled using a Duet 2 control board. The RepRap Firmware configuration tool was used
to configure the control system for setup. An HV350REG high-powered voltage generator
was used to produce an electrical field to initiate film deposition. Based on experimental
considerations, the flow rate was set at 0.64 µL/s and the voltage was set at 10 kV. Different
deposition times were used. After printing, the PEDOT:PSS films were annealed at 130 ◦C
for 15 min (Figure 11a). The morphologies of the as-prepared films were studied to find the
best film with the most-improved performance.
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(c) chemical structures of PEDOT:PSS used in this work.

For spin coating, which is a common technique applied for fabricating thin films using
centripetal force and the surface tension of the solution, the PEDOT:PSS solution was mixed
with 5% DMSO and spin coated onto an ITO substrate at 4000 rpm for 60 s(Figure 11b).
Then, the film was annealed at 130 ◦C for 15 min.

3.4. Characterization

Both the EF-DID-printed and spin-coated samples were characterized using various
techniques to understand the properties of the thin films. The thicknesses of the prepared
nanofilms were evaluated using a stylus profilometer (DEKTAK XT, Bruker, Billerica, MA,
USA). An SEM XL-30 Environmental FEG scanning electron microscope (JEOL, Peabody,
MA, USA) was used to study the film morphology. The root-mean-square (RMS) roughness
of the films was characterized using an SPM Bruker Multimode (MM8, Billerica, MA, USA)
atomic force microscope (AFM). An Ossila four-point probe was used to measure the sheet
resistance. To test the hydrophobicity of the prepared films, contact angle measurements
were performed using a Minder Hightech SDC-350, Guangzhou, China. Current–voltage
measurements (J-V) of the prepared PVS devices were performed under simulated AM
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1.5 G (100 mW/cm2) radiation using a Xenon lamp (Spectra-Physics, Oriel Instruments,
Milpitas, CA, USA).

4. Conclusions

A homogenous PEDOT:PSS nanofilm was achieved using a high-speed printing pro-
cess named electrical-field-assisted direct ink deposition. DMSO solvent was used with
PEDOT:PSS to improve the conductivity of the nanofilms. Experiments were conducted
to relate the parameters of EF-DID to the nanofilm properties. As a result, the desired
thickness and the best morphology of the PEDOT:PSS nanofilms were achieved by printing
20% PEDOT:PSS in DMSO (vol/vol) for 15 s. Moreover, a comparison between the spin-
coated and EF-DID-printed nanofilms was performed, where the EF-DID-printed nanofilm
outperformed the spin-coated one in terms of homogeneity and morphology. Overall, the
EF-DID process shows prospects for the highly efficient fabrication of nanofilms.

The EF-DID fabrication technique offers the opportunity for large-scale fabrication of
perovskite solar cells under ambient conditions. The more commonly used spin-coating
fabrication techniques face significant challenges in terms of scaling them up for large-
volume fabrication. Broader research must focus on other strategies that enable stable
open-air perovskite solar cell fabrication. The proposed fabrication technique facilitates the
fabrication of different photovoltaic materials for the hole transport layer (HTL), electron
transport layer (ETL), and active perovskite layer in the open air. Furthermore, it could
increase the scientific community’s interest in making further advances in research and
development for the 3D printing of nanofilms. In addition, flexible electronics could also
be developed using the EF-DID technique for further research on novel energy devices.
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