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Abstract: Cancer is a multifactorial disease that continues to increase. Lignans are known to be
important anticancer agents. However, due to the structural diversity of lignans, it is difficult to
associate anticancer activity with a particular subclass. Therefore, the present study sought to evaluate
the association of lignan subclasses with antitumor activity, considering the genetic profile of the
variants of the selected targets. To do so, predictive models were built against the targets tyrosine-
protein kinase ABL (ABL), epidermal growth factor receptor erbB1 (EGFR), histone deacetylase
(HDAC), serine/threonine-protein kinase mTOR (mTOR) and poly [ADP-ribose] polymerase-1
(PARP1). Then, single nucleotide polymorphisms were mapped, target mutations were designed,
and molecular docking was performed with the lignans with the best predicted biological activity.
The results showed more anticancer activity in the dibenzocyclooctadiene, furofuran and aryltetralin
subclasses. The lignans with the best predictive values of biological activity showed varying binding
energy results in the presence of certain genetic variants.

Keywords: lignans; cancer; single nucleotide polymorphisms; virtual screening

1. Introduction

The incidence of many types of cancer continues to rise in the global population, de-
spite many successes in screening, prevention and treatment [1]. Several factors contribute
to the development and progression of cancer, such as resistance to various drugs and
mutations in important genes [2]. The sum of changes in oncogenes, tumor suppressor
genes, repair mechanisms and epigenetic changes has led to cancer development [3]. It is
impossible to infer how many independent events are required to produce all the changes
that result in most human cancers [4]. Therefore, continuous discovery of new therapeutic
alternatives is necessary.
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In addition, 40% of the interindividual differences are responsible for the varying
response to treatment of patients with the same type of cancer. Genetic factors such as
single nucleotide polymorphisms (SNPs) are reported as important variants that may
affect treatment [5,6]. Furthermore, natural human genetic variation can cause individuals
to respond differently to the same drug [7]. Thus, it is also necessary to identify new
therapeutic alternatives based on the genetic profile of the patient.

Several studies have focused on enzymes as important therapeutic targets for various
types of tumors. Tyrosine kinases belonging to the ABL family act in coordinating and
remodeling actin in response to stimuli mediated by tyrosine phosphorylation of actin
cytoskeletal remodeling proteins and by the adhesion and aggregation domain of carboxy-
terminal filamentous actin ABL [8]. The ABL family performs a variety of activities which
are vital to cell maintenance, such as division, adhesion to membranes, cellular skeletal
remodeling and DNA damage repair [9]. However, mutations or abnormalities in tyrosine
kinase activity can result in an uninterrupted disruption of the highly active state that can
lead to cancer development and progression [10].

The epidermal growth factor receptor (EGFR) acts as a transcription factor that plays a
regulatory role in the expression of many genes important for inflammation [11]. EGFR
belongs to the ErbR family, which can irregularly activate epithelial tumors [11]. Histone
deacetylases (HDACs) are key enzymes that have a regulatory function of gene expression
related to controlling cell cycle advancement and apoptosis, boosting tumorigenesis and
favoring the evolution of cancer [12–14]. mTOR threonine-protein kinase (mTOR) is an
enzyme formed by two structural complexes, namely, mammalian rapamycin complex 1
(mammalian target of rapamycin complex 1) (mTORC1) and mammalian target of ra-
pamycin complex 2 (mammalian target of rapamycin complex 2) (mTORC2). mTORC1
performs the function of regulating cell growth and metabolism, while mTORC2 controls
cell proliferation and survival [15–17]. mTOR plays a functional role in tumor formation
and is widely used in targeted therapy research for tumors and other diseases [18].

The polyadenosine diphosphate ribose polymerase (PARP) superfamily is made up
of proteins and enzymes that are responsible for regulating the identification and repair
process of deoxyribonucleic acid molecules through the BER pathway [19]. PARP1 is
the best known and acts as a catalyst for ADP-ribose units of the NAD+ substrate in
nuclear proteins. This process is performed as a post-translational modification necessary
for activating the response to DNA damage generated by ionizing radiation, alkylating
agents and/or free radicals [20]. PARP inhibitors destabilize replication forks through
entrapment of PARP DNA and induce cell death through replication stress-induced mitotic
catastrophe [21].

Targeted therapy is usually the initial treatment for a cancer patient. More than 60% of
antitumor drugs are closely related to natural products [10]. Lignans are natural products
made up of phenylpropanoid dimers and have a wide variety of biological activities. Many
studies have reported lignans as potent anticancer agents [22–24]. However, as there are
10 extremely diverse subclasses of lignans, it is difficult to correlate anticancer activity with
chemical structure. In addition, genetic variations cause different responses to treatment,
requiring personalized treatment per patient. Therefore, the present study aims to select
and evaluate the association of lignan subclasses with antitumor activity, considering the
genetic profile of important variants.

2. Results
2.1. Quantitative Modeling of the Structure–Activity Relationship (QSAR)

The external performances of the selected models were analyzed for sensitivity (true
positive rate or active rate), specificity (true negative rate or inactive rate) and accuracy
(overall predictability). These parameters are the most used to ensure high predictability
of the model. Other parameters such as ROC curve results and MCC analyzes revealed
excellent results. The models obtained ROC curves greater than 0.89 during cross-validation,
and MCC values were also greater than 0.63 during cross-validation, revealing a model
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with excellent classification, performance and robustness (Table 1, Figure S1). Thus, the
lignan bank was screened using the created models with excellent performance to select
potentially active compounds against the selected proteins.

Table 1. Performance summary corresponding to the results obtained for all random forest models.

Enzyme Validation Accuracy Sensitivity Specificity PPV * NPV * MCC ROC

ABL Test 0.99 1 0.99 0.99 1 0.76 0.95
Cross 0.88 0.86 0.90 0.89 0.86 0.82 0.94

EFGR Test 0.82 0.84 0.80 0.82 0.82 0.65 0.90
Cross 0.83 0.86 0.81 0.83 0.84 0.67 0.91

HDAC Test 0.82 0.80 0.84 0.83 0.80 0.64 0.91
Cross 0.81 0.84 0.79 0.80 0.83 0.63 0.89

mTOR Test 0.85 0.89 0.80 0.85 0.85 0.70 0.93
Cross 0.84 0.88 0.79 0.84 0.84 0.68 0.92

PARP Test 0.86 0.82 0.84 0.85 0.87 0.72 0.92
Cross 0.83 0.85 0.81 0.81 0.84 0.66 0.90

* PPV—positive predicted value. * NPV—negative predicted value.

The RF model was able to select a lignan with potential activity against the EFGR
receptor with a probability of activity of 54%. Next, 86 lignans were considered active for
the HDAC enzyme, with activity probabilities ranging from 50 to 63%. Then, 155 active
compounds with activity ranging from 50 to 58% were selected for the mTOR protein.
The model selected 156 compounds for the PARP enzyme with activity ranging from
50 to 56%. No lignans were active for the ABL enzyme. We noticed that the only active
compound against the EFGR enzyme was colocasinol A (390). Table 2 shows details of these
results by subclasses. The structure, subclass and compounds with the highest predicted
biological activity values in the QSAR modeling for each enzyme can be seen in Figure 1.
We observed that although the HDAC model selected fewer active compounds when
compared to the mTOR and PARP models, the HDAC model was able to select compounds
with greater potential for biological activity. Moreover, active compounds were seen for all
subclasses for the mTOR protein. The subclass with the most active compounds for PARP
was dibenzocyclooctadiene. Furthermore, we also noticed that the subclasses with more
active compounds were dibenzocyclooctadiene, furofuran and aryltetralin for all proteins.
Figure 2 represents the distribution of active and inactive compounds for each analyzed
protein, except for ABL, which did not present an active compound, and for EFGR, which
only obtained one active compound.

Table 2. Number of active lignans divided by subclass and the respective probability of biological
activity for each enzyme.

Protein Subclass Active Compounds pActivity

EFGR Furofuran 1 0.54

HDAC

Dibenzilbutirolactone 12 0.50–0.55
Dibenzociclooctadiene 22 0.50–0.63

Aryltetralin 16 0.50–0.63
Arylhydronafthalene 4 0.50

Arylnaftalene 2 0.50–0.52
Furofuran 22 0.50–0.57

2-aryl-4-benzyltetrahidrofuran 8 0.51–0.56
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Table 2. Cont.

Protein Subclass Active Compounds pActivity

mTOR

Dibenzylbutane 3 0.50–0.53
Dibenziltetrafuran 2 0.50–0.56

Dibenzilbutirolactone 14 0.50–0.56
Dibenzociclooctadiene 40 0.50–0.55

Aryltetralin 28 0.50–0.56
Arylhydronafthalene 6 0.50–0.54

Arylnaftalene 8 0.50–0.56
Furofuran 37 0.50–0.58

2,5-diarlytetrahydrofuran 3 0.50–0.58
2-aryl-4-benzyltetrahidrofuran 14 0.50–0.58

PARP

Dibenzylbutane 1 0.50
Dibenzilbutirolactone 2 0.52–0.54
Dibenzociclooctadiene 89 0.50–0.61

Aryltetralin 18 0.50–0.54
Arylhydronafthalene 4 0.50–0.51

Arylnaftalene 8 0.53–0.56
Furofuran 30 0.50–0.56

2-aryl-4-benzyltetrahidrofuran 4 0.52–0.55
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Figure 1. Structures of the lignans with the highest pActivity values for each protein. Figure 1. Structures of the lignans with the highest pActivity values for each protein.

2.2. Mapping Single Nucleotide Polymorphisms (SNPs)

Genomic analysis mapped nonsynonymous SNPs to regions of catalytic domains and
the active site. Table 3 shows the clinically relevant SNPs that were selected for molecular
docking studies. Figure 3 shows the regions of each protein that were analyzed. We
identified 16 SNPs for the EGFR receptor, 28 SNPs for the HDAC8 protein, 40 SNPs for
mTOR1 and 113 SNPs for the PARP1 protein. The choice of SNPs to design polymorphic
mutations and undergo molecular docking was based on clinical relevance. Therefore, we
considered the SNPS that presented some study related to an altered phenotype or disease.
In addition, we selected SNPs with allele frequencies of the polymorphic allele greater than
expected for certain populations. Therefore, we could select 4 SNPs for the EGFR receptor,
11 for the HDAC8 protein, 11 for mTOR1 and 2 for PARP1 for these analyses. Although
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the results show few SNPs with clinical relevance, most show a high probability that the
polymorphic variant will affect protein function if the mutation occurs. This result was
provided by Polyphen, a tool that predicts variants likely to affect protein function based
on physical and comparative considerations.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 22 
 

 

 

 

 

Figure 2. Number of lignans considered active and inactive for antitumor activity. In purple, we 
highlight the amount of active lignans. 

35
12 18

125

56
13 23

44 37 4612

22

16

4 2

22 8

0
20
40
60
80

100
120
140
160

HDAC

32
10 16

107

44
11 17 29 34 40

3
2

14

40

28

6 8

37
3

14

0
20
40
60
80
100
120
140
160

MTOR

34
12 28

58 54
13 17 36 37 501 2

89

18

4 8

30 4

0
20
40
60
80

100
120
140
160

PARP

Figure 2. Number of lignans considered active and inactive for antitumor activity. In purple, we
highlight the amount of active lignans.



Molecules 2023, 28, 6011 7 of 21

Table 3. Clinically relevant SNPs located in the catalytic domain selected for molecular docking analyses.

Enzyme Aminoacid SNP Alleles Ancestral
Amino Acid

Polymorphic
Amino Acid

Ancestor
Allele

Frequency

Allelic
Frequency of

the
Polymorphism

Polyphen

EGFR

833 rs397517126 T/G L V - - 0.829
835 rs397517128 A/T H L - - 0.999
842 rs1003269794 A/C/G N H/D - - 1
845 rs1787407031 G/C V L - - 0.428

HDAC8

101 rs2051867176 T/C D G - - 1
139 rs878853048 C/G G A - - 0.999
140 rs1569412360 C/T G R - - 1
140 rs1057518047 C/A G V - - 1
145 rs2051860492 T/C K E - - 0.727
155 rs2048985556 G/A L F - - 0.017
176 rs1057518727 T/C D G - - 1
186 rs797045612 C/T E K - - 0.923
188 rs1603069440 C/T A T - - 0.997
195 rs1556009247 A/C/T V G/D - - 1
199 rs1057518126 A/T S T - - 0.979

mTOR1

2326 rs1642201364 C/A V F - -
2327 rs878855328 C/T M I - -
2367 rs1642080627 T/C T A - -
2406 rs1557739557 C/A/T V L/M - -
2413 rs1553171141 C/A S I - -
2416 rs1173643064 G/A A V - -
2419 rs587777900 C/T E K - -
2427 rs1085307113 A/G/T L P/Q - -
2431 rs1057524044 A/G L P - -
2457 rs1060501911 A/G I T - -
2458 rs1641759287 C/A L F - -

PARP1
864 rs993561075 A/C S A 0.5 0.5 0.993
940 rs3219145 T/C/G K R/T 0.998329 0.001671 0.79

2.3. Molecular Docking

The lignans with the highest values of predicted biological activity for EFGR, HDAC8,
mTOR and PARP1 proteins were subjected to molecular docking. Docking was per-
formed with the ancestral protein and the mutated proteins. Only one lignan (colo-
casinol A) was coupled to the EGFR receptor. The remaining lignans were renamed
to better express the docking results in Table 4. For HDAC8, the lignans longipedlig-
nan H, longipedlignan I and sinolignan A were renamed as lignan 1, lignan 2 and lig-
nan 3, respectively. For mTOR, the lignans (1R,2R)-2-{4-[(1R,3aS,4R,6aS)-4-(4-hydroxy-
3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c] furan-1-yl]-2,6-dimethoxyphenoxy, bizanth-
planispine B and bigraminol A were renamed as lignan 1, lignan 2 and lignan 3, respec-
tively. Similar renaming was carried out with the lignans active against the PARP1 protein
(longipedlignan H, longipedlignan I and longipedlignan J). The results were generated
using the Moldockscore function. More negative values indicated better predictions. In
this study, we only sought to analyze the difference in binding affinity according to the
polymorphic variant. Thus, it is possible to verify the binding affinity contribution of a
compound according to the genetic profile.
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Table 4. Binding energy values obtained from molecular docking for lignans with higher biological
activity prediction values. Results with higher binding energy values are highlighted in bold.

Enzyme Ancestor/Mutation
Binding Energy Values

Lignan 1 Lignan 2 Lignan 3

EGFR

Ancestor −24.04
L833V −20.91
H835L −18.77
N842H −23.86
V845L −34.46

HDAC8

Ancestor - −91.43 −72.66
D101G - −76.40 −103.84
G139A - −84.29 −75.52
G140R - −85.82 −95.60
G140V - −80.36 −77.22
K145E - −83.07 −76.75
L155F - −84.68 −104.49
D176G - −76.04 −109.54
E186K - −77.42 −74.81
A188T - −87.21 −92.01
V195G - −75.94 −90.33
S199T - −97.80 −102.33

mTOR

Ancestor −84.51 −57.71 −85.76
V2326F −56.35 −92.26 −45.96
M2327I −34.21 −96.85 −49.40
T2367A −49.53 −78.14 −56.66
V2406L −69.68 −78.05 −51.91
S2413I −44.52 −90.24 −48.06
E2419K −69.90 −100.11 −47.54
L2427P −63.85 −63.74 −39.79
L2431P −64.20 −85.28 −43.77

PARP1
Ancestor - −136.95 −172.23

S864A - −134.17 −157.52
K940R - −137.38 −154.40

The docking results can be seen in Table 4. According to the results, the colocasinol A
lignan presented similar values, except for the V845L variant, which obtained a binding
energy value of −34.46 kcal/mol. For the HDAC8 protein, we observed that lignan 1
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(longipedlignan H) failed to interact with the enzyme, despite the QSAR modeling results.
The other lignans presented varied results, with more negative values for the ancestor and
some variants, such as S199T. More negative values may indicate better binding affinity
probability, suggesting stronger protein inhibition. We were unable to design the mutation
in two variants for mTOR due to the incomplete ancestral protein available in databases.
The results for mTOR revealed quite varied energy values when compared with the results
for the ancestral protein. Only bizanthplanispine B obtained higher binding energy values
than the ancestor. The lowest binding energy value for this protein was −34.21 kcal/mol
for the M2327I variant. However, the bizanthplanispine B lignan obtained a high binding
energy value (−96.85 kcal/mol) for this variant. These results show that not only the type
of mutation interferes with binding affinity, but also the structural variety of compounds.
Lastly, the PARP1 protein showed similar values, except for longipedlignan H, which did
not interact with the protein.

We took the opportunity to analyze the observed interactions between the selected
lignans and the proteins with the ancestral allele (Figures 4–7). We observed that the EGFR
receptor formed several hydrogen bonds, stabilizing the bonds with the Glu762, Glu796
and Asp855 amino acids, in addition to several hydrophobic interactions, including Leu718,
Val726, Ala743, Met766 and Leu844. There was no interaction with the longipedlignan H
lignan for the HDAC8 protein. However, interactions with the other lignans were observed,
and we identified four common links/interactions between these compounds and the
active site. The interactions were observed with Lys33, Tyr100, Phe152 and His180 residues.
Moreover, three common interactions between lignans and the active site were observed
for the mTOR protein.
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Figure 5. 3D and 2D interactions of HDAC8 (1T67) with selected lignans. Hydrogen bonds are
highlighted in dark green, van der Waals interactions are highlighted in light green, hydrophobic
interactions are highlighted in pink and steric interactions are highlighted in red.
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highlighted in dark green, van der Waals interactions are highlighted in light green, hydrophobic
interactions are highlighted in pink and steric interactions are highlighted in red.
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Figure 7. 3D and 2D interactions of PARP1 (5A00) with selected lignans. Hydrogen bonds are
highlighted in dark green, van der Waals interactions are highlighted in light green, hydrophobic
interactions are highlighted in pink and steric interactions are highlighted in red.
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The hydrophobic interactions formed were with the His2180, Glu2181 and Val2183
residues. The longipedlignan H lignan also did not interact with the active site for the
PARP1 protein. Nevertheless, we analyzed the interactions with longipedlignan I and
longipedlignan J lignans and observed interactions between them and the active site,
forming interactions with the His862, Tyr896, Ala898 and Tyr907 amino acids.

2.4. Prediction of Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Properties

Many drugs used to treat cancer are toxic and have a variety of side effects. Therefore,
in this study, we sought to verify the ADMET properties of lignans, with an emphasis on
toxicity. The pharmacokinetic mechanisms that involve the steps of absorption, distribution,
metabolism, excretion and toxicity (ADMET) when failures are found are considered the
main causes of failure in developing drugs derived from natural or synthetic products.
Therefore, virtual platforms such as pkCSM can be used to identify these possible problems
through an in silico approach involving predictive models [25]. Thus, ADMET analyzes
for the studied lignans were performed with the parameters shown in the tables below
(Table 5). The colocasinol A, longipedlignan H, longipedlignan I, longipedlignan J, sinolig-
nan A, (1R,2R)-2-{4-[(1R,3aS,4R,6aS)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-
c]furan-1-yl]-2,6-dimethoxyphenoxy, bizanthplanispine B and ligraminol lignans were re-
named in these analyzes as L1, L2, L3, L4, L5 and L6, respectively.

Next, virtual models were used to evaluate the absorption parameters against Caco-2
cellular models, intestinal absorption and skin permeability. Caco-2 cell lines are composed
of human epithelial colorectal adenocarcinoma cells widely used to predict oral drug
absorption. In this predictive model, values above 0.90 are considered to demonstrate that
the compounds have high permeation in these cells. Therefore, the lignans (L1, L2, L3
and L8) present satisfactory values. All lignans showed adequate values regarding the
complementary result of intestinal absorption (the main drug absorption site), ranging
from 89–100% absorption. Finally, all lignans showed (log Kp > −2.5) permeation values,
suggesting low potential for transdermal administration [26].

It can be seen that lignans (L4, L5 and L6) are potential substrates with regard to
possible interactions with P-glycoproteins (an important efflux pump that can compromise
the bioavailability of xenobiotics). The modulation of P-glycoprotein-mediated transport
has significant pharmacokinetic implications for the PgP substrate, which can be exploited
for therapeutic advantages or result in contraindications in case there are interactions
between drugs used concurrently with lignans [27].

Among the distribution parameters, it was possible to evaluate the theoretical volume
of distribution (VDss)—the total dose of the drug distributed in a way that guarantees the
same plasma concentration, permeability in the blood-brain barrier and permeation in the
CNS. In view of this, the results obtained suggest that lignans (L3, L4 and L7) have a high
volume of distribution with values (logL/kg > 0.45); however, all compounds have a low
permeation potential in the brain with regard to bioavailability in the CNS (logBB < −1 and
logPS < −3). Therefore, these results demonstrate that lignans have low pharmacological
potential against neurological disorders and little influence on neurotoxic processes [28].
The in silico tool also made it possible to identify whether the structures are substrates
or inhibitors of the mitochondrial enzymatic metabolism system—CYP450. This system
constitutes an important family of monooxygenase capable of biotransforming 90% of
xenobiotics, for which CYPA4, CYPB6, CYP3C19 and CYP2D6 stand out as being the main
ones involved in the metabolic process [29]. In the table, it was possible to identify which
isoforms are substrates and/or inhibitors of the lignans used in the study, emphasizing the
importance of possible pharmacokinetic interactions of possible drugs which may act as
enzyme inducers or inhibitors. Finally, the behavior of lignans with regard to excretion
vis-à-vis organic cation transporters 2—an important renal uptake protein in the clearance
process, and a point subject to pharmacokinetic interactions between drugs—was also
predicted. As observed, lignans are not substrates for the transporter, in addition to
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presenting satisfactory renal clearance (proportionality constant (clot by the combination of
hepatic and renal clearance)), which demonstrates good elimination capacity [30].

Table 5. ADMET properties of lignans selected by QSAR and molecular modeling studies.

Absorption L1 L2 L3 L4 L5 L6 L7 L8

Caco2 permeability
(log Papp in 10−8 cm/s) 1.325 1.214 1.272 0.337 0.597 0.496 0.555 1.249

Intestinal absorption
(% absorbed) 89.098 100 100 100 53.666 67.479 100 97.43

Skin permeability
(log Kp) −2.747 −2.736 −2.735 −2.735 −2.735 −2.735 −2.735 −2.82

P-glycoprotein substrate No No No Yes Yes Yes No No

Distribution L1 L2 L3 L4 L5 L6 L7 L8

VDss
(log L/kg) 0.064 −0.285 −0.714 −0.484 0.138 −0.101 −0.496 −0.052

BBB permeability
(log BB) −0.55 −1.189 −1.19 −1.899 −1.941 −1.848 −2.389 −0.026

CNS permeability
(log PS) −2.966 −2.846 −2.904 −4.136 −3.799 −3.674 −3.219 −2.613

Metabolism L1 L2 L3 L4 L5 L6 L7 L8

CYP2D6 (substrate) No No No No No No No No
CYP3A4 (substrate) No Yes Yes Yes Yes Yes Yes Yes
CYP1A2 (inhibitor) No No No No No No No No

CYP2C19
(inhibitor) No No No No No No No Yes

CYP2C9
(inhibitor) No No No No No Yes No Yes

CYP2D6 (inhibitor) No No No No No No No No
CYP3A4 (inhibitor) No No Yes No No Yes No Yes

Excretion L1 L2 L3 L4 L5 L6 L7 L8

Total clearance
(log ml/min/Kg) 0.171 0.293 0.225 0.156 0.192 0.259 −0.498 0.132

Renal OCT2
(substrate) No No No No No No No No

Toxicity L1 L2 L3 L4 L5 L6 L7 L8

AMES toxicity No No No No No No No No
hERG 1 inhibitor No No No No No No No No
hERG 2 inhibitor No No No No Yes Yes Yes No
Hepatotoxicity No Yes No No No No No No

Skin sensitization No No No No No No No No

The preclinical safety profile is one of the main concerns in the development of new
drugs that should present preserved efficacy and good topical and systemic tolerability.
In assessing toxicity through virtual approaches, the toxicological profile of lignans was
evaluated against the mutagenic potential in bacteria (AMES), potassium channels encoded
by hERG, hepatotoxicity and skin sensitization. Based on the results obtained, it was seen
that lignans do not present toxicity according to the AME model, do not inhibit hERG I
channels and do not promote skin sensitization. However, L5, L6 and L7 can inhibit hERG
II. This condition may be related to echocardiographic changes called acquired long QT
syndrome, which promotes ventricular arrhythmias [27]. Therefore, it is important to point
out that the pharmacokinetic determination may substantially contribute to the preclinical
research of these derivatives and early recognition of possible ADMET failures.
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3. Discussion

We found no structural correlation between subclasses of lignans and anticancer
activity in the literature. This is the first work that correlates the structure of lignan
subclasses with anticancer activity. Among the ten subclasses of lignans, three were
considered the most promising for anticancer activity: furofurans, dibenzocyclooctadiens
and aryltretalins. This result was based on the amount of lignans active against antitumor
activity for each subclass. The pActivity values were approximated between lignans but
are significant when greater than 0.50. These values refer to the prediction of inhibition
based on the data of biological activities obtained for the construction of the models.

Furofuran lignans contain the backbone of 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane
and represent one of the major subclasses of the lignan family. Furofuran lignans have
a wide variety of structures due to different substituents on the aryl groups and diverse
configurations on the furofuran ring. Antioxidant, anti-inflammatory, cytotoxic and antimi-
crobial activities are among the main activities reported for furofuran lignans [23]. Our
study contributes to further explore furofuran lignans as anticancer agents.

One example is a study by Cheng et al. [31], who isolated five new furofuran lignans,
brasesquilignan A-E (1–5), from Selaginella braunii Baker. All of these compounds were
evaluated for antiproliferative activities against various human cancer cells in vitro but
showed weak inhibition. In addition, Vitória et al. [32] isolated two new tetrahydrofuran
lignans, taungtangyiols A and B, and eight known furofuran lignans from Premna inte-
grifolia wood. Taungtangyiols A and B were observed to inhibit melanin deposition in
B16F10 mouse melanoma cells, with IC50 values of 50.7 and 40.9 µM, respectively, without
notable cytotoxicity.

Another study isolated seven dibenzocyclooctadiene lignans from the fruits of Schisan-
dra chinensis. Cell viability assays verified the cytotoxicity of isolated dibenzocyclooctadiene
lignans against AGS, HeLa and HT-29 human cancer cells [33].

Podophyllotoxin (PTOX, 1) is an aryltetralin-type lignan, first discovered in the plant
Podophyllum peltatum. It has been used in biosynthesis and total synthesis as a prospective
alternative due to its potent anticancer activities [34,35]. Another lignan structurally and
closely related to podophyllotoxin is deoxypodophyllotoxin. This aryltetralin is a potent
antitumor and anti-inflammatory agent and is especially used as a precursor for the semi-
synthesis of etoposide phosphate and teniposide cytostatic drugs. These analogues are also
used in cancer therapy [36].

Another study by Zilla et al. [37] extracted six aryltetralin-type lignans from the root of
Podophyllum hexandrum as a potential source of bioactive lead metabolites with anticancer ac-
tivity. Aryltetralins are designated as 4′-demethyl-deoxypodophyllotoxin, podophyllotoxin,
4′-demethyl-podophyllotoxin, podophyllotoxin-4-O-β-d-glucopyranoside, 4′-demethyl-
deoxypodophyllotoxin-4-O-β-d-glycopyranoside and 4′-demethyl-podophyllotoxin-4-O-β-
d-glucopyranoside. All aryltetralins exhibited remarkable cytotoxic potential in several
cancer cell lines. The latter was observed to increase apoptotic cascades in MCF-7 breast
cancer cells (i.e., nuclear condensation, membrane blebbing), probably by destabilizing the
microtubular protein tubulin. It additionally binds and modulates checkpoint kinase-2, a
key cell cycle regulatory protein in normal and cancer cells.

Correlation studies between the chemical structure and anticancer activities are im-
portant to reduce costs in identifying new drugs and to develop more potent drugs. An
example of this is the study carried out by Scotti et al. [38], who tabulated the most impor-
tant examples of determined virtual screening for anticancer flavonoids and highlighted
the structural determinants. Like lignans, flavanoids have a structural variety and different
described biological activities. The aforementioned study identified the action mode, the
most potent anticancer flavonoids and tips for the structural design of anticancer flavonoids
in a review.

According to Silva and Alcorn (2019), the complexities in tumor heterogeneity and
interconnections between various pathways led researchers to use the multidirected ap-
proach of broad spectrum. The authors cite various targets of the lignans, including
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Cyclin-dependent Kinase 2 (CDK2), Proliferating Cell Nuclear Antigen (PCNA), Platelet-
Derived Growth Factor (PDGF), Akt Serine/Threonine Kinase 1 (AKT1), insulin-bike
Growth Growth Factor 1 receptor (IGFR), EGFR, Cyclogenase 1/2 (COX1/2), Breast Cancer
1 (BRCA1), Vascular Endothelial Growth Factor (VEGF), P53, Caspase 3 and B-Cell Lym-
phoma 2 (BCL-2), among others. Therefore, our study also contributes to the reporting of
new targets for the development of antitumor drugs.

4. Materials and Methods
4.1. Data Collection and Curation

This study selected and investigated five proteins involved in the pathogenesis of
cancer with sufficient and available biological activity and involved in the development of
different types of cancer in different pathways. Compounds with known biological activity
for ABL, EGFR, HDAC, mTOR and PARP were obtained (https://www.ebi.ac.uk/chembl/
(accessed on 14 February 2023)) [39,40]. Details of the pools can be found in Table 6. Com-
pounds were ranked based on pIC50 [−log IC50 (mol/L)]. The IC50 value represents the
concentration required for 50% inhibition. The compounds and these data were used to
build predictive models with biological activity for the indicated proteins. In addition,
495 lignan subclasses were evaluated by ligand-based virtual screening to identify molecules
with potential activity against the selected proteins. The lignan subclasses are formed by (35)
Dibenzylbutanes, (12) 3,4-Dibenzyltetrafurans, (30) Dibenzylbutyrolactones, (147) Diben-
zocyclooctadienes, (72) Aryltetralins, (17) Arylhydronaphthalene, (25) Arylnaphthalenes,
(66) Furofuran, (37) 2,5-diarlytetrahydrofuran and (54) 2-aryl-4-benzyltetrahydrofuran.
The three-dimensional structures were generated by Chemaxon Standardiser v.18.17.0,
(www.chemaxon.org (accessed on 20 February 2023)).

Table 6. Set of molecules from the ChEMBL databases for each enzyme selected in the study.

Database ID ChEMBL Active Molecules Inactive Molecules Total

ABL CHEMBL1862 793 (pIC50 ≥ 7.0) 802 (pIC50 < 7.0) 1595
EGFR CHEMBL203 3756 (pIC50 ≥ 6.0) 3464 (pIC50 < 6.0) 7220
HDAC CHEMBL2093865 968 (pIC50 ≥ 6.3) 941 (pIC50 ≥ 6.3) 1909
mTOR CHEMBL2842 2235 (pIC50 ≥ 7.0) 1753 (pIC50 ≥ 7.0) 3988
PARP CHEMBL3105 977 (pIC50 ≥ 7.0) 982 (pIC50 ≥ 7.0) 1959

4.2. QSAR Modelling

Compounds with known biological activity towards the proteins ABL, EGFR, HDAC,
mTOR and PARP were saved in special data file format (SDF) and imported into the Dragon
7.0 program [41] to generate descriptors. A predictive model was built for each protein bank.
The descriptors referring to each bank and biological activity information were imported
into the Knime 3.5.3 program (KNIME 3.5.3, Konstanz Information Miner Copyright, 2018,
www.knime.org (accessed on 22 February 2023)) to generate the predictive models. The
data were divided in a “Partitioning” tool using the “Stratified sample” option in the
program, which separated the data into training and test sets representing 80% and 20% of
all compounds, respectively. The sets were randomly selected, but the proportions of active
and inactive substances were maintained in both databases. We used the random forest
(RF) algorithm to build predictive models. Cross-validation was performed to estimate the
predictive power of the developed models.

The external performances of the selected models were analyzed for sensitivity, speci-
ficity and accuracy. In addition, receiver operating character (ROC) curve sensitivity and
specificity were used because they describe actual performance more clearly than accuracy.
The Matthews correlation coefficient (MCC) was used to evaluate the model overall based on
the results obtained in the confusion matrix [42]. The applicability domain (APD) was used
to analyze the compounds in the test sets, if the predictions are reliable [43,44]. The lignans
considered active against the selected proteins were submitted to the other methodologies.

https://www.ebi.ac.uk/chembl/
www.chemaxon.org
www.knime.org
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4.3. Mapping SNPs

Identifying single nucleotide polymorphisms (SNPs) in important regions of proteins
involved in the progression of different types of tumors can help rational drug design.
In addition, it contributes to developing new therapies based on the genetic profile. Genetic
variations in target proteins were identified by searching two databases. The National
Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/ (accessed on 8
March 2023)) and Ensembl (https://www.ensembl.org/index.html (accessed on 8 March
2023)) databases [45] were consulted to obtain essential information about genes, phe-
notype and SNPs in the investigated proteins. SNPs with varied allele frequencies in
catalytic domain and active site regions were considered in the study. Mutations with the
polymorphic variants were designed using the UCSF Chimera program (Visualization and
Informatics—RBVI, San Francisco, CA, USA) [46].

4.4. Molecular Docking

Molecular docking was performed using Molegro Virtual Docker v6.0.1 (MVD) pro-
gram (Molexus IVS Rørth Ellevej 3, Odder, Denmark) [47] on the five targets selected for
anchoring studies (Table 7). The MolDock score algorithm was used as a scoring function to
predict the best interactions between ligand and receptor. The 3D structures of the proteins
used in this study were obtained from the Protein Data Bank (PDB) [48,49] (Table 7). All
water molecules were initially removed from the crystalline structure and the root-mean-
square deviation (RMSD) was calculated from the poses to indicate the degree of reliability
of the fit. RMSD values less than 2.0 Å were considered successful.

Table 7. Information (including RMSD) about the selected proteins, obtained from the PDB database
and used for docking.

PDB ID Protein Class RMSD PDB Ligand Resolution

4G5J EGFR Transferase 0.20 Afatinibe 2.80 Å
1T67 HDAC8 Hydrolase 7.46 B3N 2.31 Å

7OWG mTOR Signaling protein - - 4.70 Å
5A00 PARP1 Transferase 0.38 4.70 Å 2.75 Å

4.5. Prediction of ADMET Properties

ADMET parameters were calculated using the open access web tool SwissADME
(http://www.swissadme.ch (accessed on 18 February 2023)) [50] and ADMET profiles of
lignans were investigated using the pkCSM web platform (https://biosig.lab.uq.edu.au/
pkcsm/ (accessed on 18 February 2023)) [26], which offers a set of rapid predictive models
to evaluate physicochemical, pharmacokinetic, pharmacological and toxicity properties.

5. Conclusions

It is not easy to correlate anticancer activity with a particular subclass due to the struc-
tural diversity of lignans and the various pharmacological properties. Therefore, the present
study used a set of lignans distributed in the 10 known subclasses and submitted them to in
silico methodologies to verify the anticancer potential of these compounds. Five predictive
models were built against important targets in cancer development. The RF model was able
to select a potentially active lignan against the EFGR receptor, 86 lignans considered active
against HDAC, 155 lignans active against the mTOR protein and 156 lignans active against
the PARP protein. Overall, the predictions of biological activities showed inhibition values
ranging from 50–63%. No compound was active against the ABL protein. The results also
showed that the subclasses with the most active compounds were dibenzocyclooctadiene,
furofuran and aryltetralin for all proteins. These subclasses are interesting for anticancer
activity. The other subclasses are correlated with other pharmacological properties known
for lignans, such as anti-inflammatory, antioxidant and trypanocidal activity. The lig-
nans considered most active for each protein (colocasinol A for EGFR; longipedlignan H,

https://www.ncbi.nlm.nih.gov/
https://www.ensembl.org/index.html
http://www.swissadme.ch
https://biosig.lab.uq.edu.au/pkcsm/
https://biosig.lab.uq.edu.au/pkcsm/
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longipedlignan I and sinolignan A for HDAC8; (1R,2R)-2-{4-[(1R,3aS,4R,6aS)-4-(4-hydroxy-
3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy, bizanth-
planispine B and ligraminol A for mTOR and longipedlignan H, longipedlignan I and
longipedlignan J for PARP1) were subjected to molecular docking.

Genomic analysis selected 4 clinically relevant SNPs for the EGFR receptor, 11 for the
HDAC8 protein, 11 for mTOR1 and 2 for PARP1. The projected mutations and molecular
docking results showed differences in binding energy values between proteins and between
selected lignans. mTOR presented the most discrepant energy values. From these results,
we suggest that mutations in the catalytic domain of target proteins can generate strong or
low inhibition depending on the type of variant present in the individual.

We also suggest with this study exploit the use of lignans analogs in order to generate
preliminary data from the structure–activity relationship (SAR), which could provide more
information on the relationship between structural modifications and the anticancer activity
of lignans.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28166011/s1, Figure S1: ROC (Receiver Operat-
ing Characteristic) curve generated for the five selected protein models. (a) ABL test; (b) ABL cross;
(c) EFGR test; (d) EFGR cross; (e) HDAC test; (f) HDAC cross; (g) mTOR test; (h) mTOR cross;
(i) PARP test; and (j) PARP cross.
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