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Abstract: New hydroxy-methylenebisphosphonic derivatives were prepared with different P-functions.
The outcome of the reaction of α-oxophosphonates (YC(O)P(O)(OR)2) and dialkyl phosphites or di-
arylphosphine oxides depended on the Y substituent of the oxo-compound, the nature of the P-reagent
and the amount of the diethylamine catalyst. Starting from dimethyl α-oxoethylphosphonate, in the
presence of 5% of diethylamine, the corresponding Pudovik adduct was the single product. While
using 40% of the catalyst, the rearranged species with the >P(O)–O–CH–P(O)< skeleton was the
exclusive component. A similar reaction of α-oxobenzylphosphonate followed the rearrangement
protocol. X-ray crystallography revealed not only the spatial structures of the three products, but
also an intricate pattern evolving from the interplay of slight chemical differences, solvent inclusion
and disorder as well as H-bridge patterns, which invite further investigation. In vitro activity of
the compounds was assessed on different tumor cell cultures using end-point-type cell tetrazolium-
based measurements. These structure–activity studies revealed a cytostatic effect for four rearranged
derivatives containing aromatic units. One of them had a pronounced effect on MDA-MB 231 and
Ebc-1 cells, showing IC50 = 37.8 and 25.9 µM, respectively.

Keywords: hydroxy-methylenebisphosphonic derivatives; α-oxophosphonates; dialkyl phosphites;
secondary phosphine oxides; Pudovik reaction; rearrangement; X-ray structures; cytotoxic effect

1. Introduction

Tetraalkyl methylenebisphosphonates and related derivatives are important inter-
mediates, e.g., they may be modified by substitution on the central carbon atom. A
number of methods were elaborated for alkylation [1–8] and acylation [9]. On the other
hand, substituted hydroxy-methylenebisphosphonic derivatives form a prominent group
called dronates that are used for bone diseases such as osteoporosis and cancer [10–12].
Dronic acid derivatives may be synthesized by the reaction of substituted acetic acids with
phosphorus trichloride or phosphorous acid in solvents like methanesulfonic acid or sul-
folane [13–15]. The senior author of this paper with colleagues was the one who elaborated
the optimized synthesis of alendronate [16,17], ibandronate [16,17], risedronate [16,18] and
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zoledronate [16,18]. According to this, if methanesulfonic acid is the solvent, 3.2 equiva-
lents of phosphorus trichloride should be used as the reagent; if sulfolane serves as the
medium, phosphorus trichloride and phosphorous acid should be applied in a ratio of
2:2. It was a noteworthy observation that ionic liquid additives promoted the efficiency of
the reactions [19–22]. The other possibility for the preparation of dronic acid derivatives
involved the addition of dialkyl phosphites to α-oxophosphonates [23–29], which is called
the Pudovik reaction. In this article, we aimed at the synthesis of methylenebisphosphonic
derivatives with mixed P-functions involving a phosphine oxide moiety. We also explored
the rearrangement side-reaction, which afforded products with a >P(O)–O–CH–P(O)< moiety.

2. Results and Discussion
2.1. Synthesis

In the first series of experiments, dimethyl α-oxoethylphosphonate (1) was reacted
with dimethyl phosphite at 0 ◦C in diethyl ether for 8 h. The outcome depended on
the quantity of the diethylamine (DEA) catalyst applied: using 5%, the Pudovik reaction
took place selectively to afford α-hydroxy-methylenebisphosphonate 2a (Table 1/Entry 1);
however, in the presence of 40% of the catalyst, tetramethyl phosphonate-phosphate 3a,
formed by a rearrangement of the primary hydroxy-methylenebisphosphonate 2a, was
the exclusive product (Table 1/Entry 2). The addition of diethyl phosphite and dibutyl
phosphite to oxophosphonate 1 applying 5% DEA also selectively provided the adducts 2b
and 2c, respectively (Table 1/Entries 3 and 6). At the same time, after stirring the mixture
in the presence of 40% of the catalyst at 0 ◦C for 8 h, the reaction mixtures comprised
comparable portions of the adduct (2) and the rearranged product 3 (Table 1/Entries 4
and 7). In these cases, stirring at 26 ◦C for 3 days was necessary to achieve complete
rearrangement (Table 1/Entries 5 and 8). It is noteworthy that the rearrangement of the
phosphonate–phosphate compounds led to both possible isomers 3b-1/3b-2 and 3c-1/3c-2.

Table 1. The reaction of dimethyl α-oxoethylphosphonate (1) with dialkyl phosphites or secondary
phosphine oxides under different conditions.
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Entry Y Catalyst
(%)

T (◦C) t
Product Composition (%) [a][b]

Yield (%)
2 3-1 3-2

1 MeO 5 0 8 h 100 – 68 (2a)
2 MeO 40 0 8 h – 100 75 (3a)
3 EtO 5 0 8 h 100 – 80 (2b)
4 EtO 40 0 8 h 60 32 8 –
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6 BuO 5 0 8 h 100 – 66 (2c)
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[a] On the basis of relative 31P NMR intensities. [b] The data set shaded in yellow refer to the best experiments.

In the next round, the secondary phosphine oxides diphenylphosphine oxide,
bis(4-methylphenyl)phosphine oxide and bis(3,5-dimethylphenyl)phosphine oxide were
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added to the carbonyl group of dimethyl α-oxoethylphosphonate (1). After adding 40% of
the catalyst, the reactions were completed after stirring at 0 ◦C for 8 h. In these cases, no
rearranged products were formed (Table 1/Entries 9–11).

In summary, adducts 2a-c, 2d-f, along with rearranged products 3a, 3b and 3c were ob-
tained in 62–87% yields after column chromatography or recrystallization. All compounds
were characterized by 31P, 13C and 1H NMR, as well as HRMS. Tetramethyl bisphosphonate
2a and the rearranged version 3a were described earlier [24,30].

Finally, diethyl α-oxobenzylphosphonate (4) was reacted with the three diarylphos-
phine oxides also used above. The results are summarized in Table 2. It was not possible
to stop at the adduct stage as there was an increased inclination for the rearrangement.
Carrying out the reaction in diethyl ether in the presence of 40% DEA at 0 ◦C for 8 h,
only isomers 5-1 and 5-2 of the rearranged products 5(d-f)-1 and 5(d-f)-2 were formed.
Compound 5d, comprising isomers 5d-1 and 5d-2 in a comparable 6:4 proportion, was
obtained as a mixture of isomers. However, the major isomers 5-1 of products 5e and 5f
were prepared in a pure form by column chromatography. Compounds 5e-f were fully
characterized new species. Previously, it was also found that the adducts derived from α-
oxobenzylphosphonates are less stable than those obtained fromα-oxoethylphosphonates [29].

Table 2. The reaction of diethyl α-oxobenzylphosphonate (4) with secondary phosphine oxides.
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Entry Y
Product Composition (%) [a][b]

Yield (%)
5-1 5-2

1 Ph 60 40 70 (5d-1 + 5d-2)
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3 3,5-diMePh 77 23 72 (5f-1)
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2.2. X-ray Structure of the Three Adducts

Two Pudovik adducts, dimethyl phosphonate–phosphine oxide derivatives 2d and 2e
together the earlier described diethyl phosphonate–phosphine oxide 6 [29], were subjected
to single crystal X-ray analysis. The results are presented in Figures 1–6. The stereostruc-
tures of 2d, 2e and 6 are shown in Figures 1, 3 and 5, respectively, while selected geometries
were included in Table 3. Connection of the molecules in the crystal structure can be seen
in Figures 2, 4 and 6. It is clear, that 2d is present as an H-bonded chain, while 2e and 6 are
H-bonded dimers.
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Bond distances in the P1 atom vicinity show nearly identical dimensions (Table 3). At
first glance, this statement does not seem to apply to the P2 atom environment, inclining one
to suppose that an eventual charge imbalance may be visible through slightly alternating
bond lengths of phosphonates 2d, 2e and 6. Such an assumption may eventually lead
to the disparity of the H-bonding pattern difference between 2d (continuous chain) and
2e (discrete dimers). Nevertheless, this supposition may not really be supportable as the
disorder in the methoxy groups of species 2e obviates interpretations of bond differences
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in the immediate region of the P2 atom. One can only speculate that the disorder is a
reason or a consequence of the dimer formation in the case of compound 2e. It seems
probable that a dimer-type of H-bridge buildup may be the consequence of the effect of
the p-methyl substitution in the benzene ring, the solvent inclusion, and the disorder of
the methoxy groups at P2. Hydroxy-methylenebisphosphonate 6 also forms H-bonded
dimers in its crystal. As a very simple tool of assessing packing tightness in respect of
2d, 2e.0.5 C3H6O and 6, it is instructive to compare their calculated densities in their
crystals (See Experimental). The chain-forming 2d had the highest value in this series,
while 2e.0.5 C3H6O had the lowest, even with the aid of a solvent molecule. It is also
worth noting that the real assembly in the crystal had a perfect twofold symmetry rotor
image with acetone solvent sitting on the symmetry axis. Thus, the real 2:1 stoichiometry is
2 × 2e.C3H6O. The density of derivative 6 took on an intermediate value between the two
others, thus suggesting that dimer formation tends to yield to looser packing.
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Figure 2. View of the hydrogen-bonded chain of molecules of 2d in the crystal. DIAMOND [31]
representation; thermal ellipsoids are drawn at 50% probability level. Symmetry code for the
unlabeled molecules: x, 0.5 − y, 0.5 + z (left) and x, 0.5 − y, −0.5 + z (right).
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Figure 3. Molecular structure of phosphonate-phosphine oxide 2e.0.5C3H6O in the crystal. The
methoxy groups at P2 are disordered each over two positions. Only the major position is shown. The
crystal structure contains one acetone molecule for every two molecules of 2e (in a special position).
The solvent molecule was omitted for clarity. DIAMOND [31] representation; thermal ellipsoids are
drawn at 50% probability level.
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labeled molecule: 1.5 − x, 0.5 − y, −z.
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Table 3. Selected bond lengths (Å) of compound 2d, 2e.0.5C3H6O and 6.

2d 2e 6

P1–O1 P1–O1 1.485 (1) 1.493 (1) P1–O1 1.488 (1)
P1–C7 P1–C8 1.809 (2) 1.801 (2) P1–C7 1.807 (1)
P1–C1 P1–C1 1.809 (2) 1.811 (2) P1–C1 1.809 (1)

P1–C13 P1–C15 1.862 (2) 1.863 (2) P1–C13 1.860 (1)
P2–O5 P2–O3 1.466 (1) 1.463 (1) P2–O5 1.476 (1)
P2–O3 P2–O4A 1.524 (2) 1.572 (1) P2–O3 1.568 (1)
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Table 3. Cont.

2d 2e 6

P2–O4 P2–O5A 1.642 (3) 1.574 (1) P2–O4 1.570 (1)
P2–C13 P2–C15 1.834 (2) 1.831 (2) P2–C13 1.841 (1)
O3–C15 O4A–C17A 1.425 (5) 1.440 (2) O3–C15 1.457 (1)
O4–C16 O5A–C18A 1.415 (7) 1.438 (2) O4–C17 1.464 (1)
C7–C8 C1–C2 1.393 (2) 1.398 (2) C1–C2 1.394 (1)

C7–C12 C1–C6 1.396 (2) 1.400 (2) C1–C6 1.398 (1)
O2–C13 O2–C15 1.424 (2) 1.424 (2) O2–C13 1.427 (1)

2.3. Bioactivity of the Compounds Prepared

Hydroxy-methylenebisphosphonic derivatives 2a–f and 6 as well as related rear-
ranged species 3a–c, 5d, 5e-1, 5f-1 and 7 were subjected to bioactivity study. Phosphonate–
phosphate 7 was described by us earlier [29]. From among the compounds investigated,
the ones listed in Figure 7 (2b, 3b, 5d, 5e-1, 5f-1 and 7) showed significant activity.
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Figure 7. Members of the compound library showing significant cytotoxic activity.

In vitro cytostatic activity of the compounds was determined after an overnight treat-
ment using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. (For
the details see Experimental.) Cytostasis (%) and 50% inhibitory concentration (IC50) were
determined for each compound on MDA-MB 231 human breast adenocarcinoma, A431
human epidermoid carcinoma, PC-3 human prostate adenocarcinoma, and Ebc-1 human
lung squamous cell carcinoma cell lines.

Results indicated that several compounds elicited a cytostatic effect on the human
tumor cell lines. Considering the percentage of cytostasis values at c = 50 µM, we concluded
that compounds 3b, 5f-1 and 7 had a moderate cytostatic effect on the cells. However, three
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compounds were more effective. Adduct 2b was efficient on A431 human epidermoid
carcinoma cells and showed a cytostasis = 49.9%. Phosphine oxide–phosphate 5d induced
a higher cytostasis on MDA-MB 231 human breast adenocarcinoma and Ebc-1 human lung
carcinoma cells, showing a cytostasis of 48.9 and 45.3%, respectively, whereas 5e-1 elicited
an outstanding effect on these cell lines: cytostasis = 69.9 and 72.4%, respectively). Overall,
the MDA-MB 231 human breast adenocarcinoma cell line proved to be the most sensitive
for all effective compounds. Cytostasis values at c = 50 µM are shown in Table 4.

Table 4. The cytostatic effect of the P-compounds studied on human tumor cell cultures.

Compound

Cytostasis [%] at c = 50 µM

Cell Line

MDA-MB 231 PC-3 Ebc-1 A431

2b
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The above tendency was also confirmed when the effect was determined on the basis
of the calculated IC50 values. While the effect of compounds 2a–f and 3a–c were not
very efficient, a higher cytostatic effect was observed for compounds 5d, 5e-1, 5f-1, and 7.
Compounds 5f-1 and 7 had a lower cytostatic effect (IC50 = 99.5–115.8 µM), whereas 5e-1
induced a more pronounced cytostasis on A431 cells (IC50 = 40.4 µM). The most effective
on MDA–MB 231 and Ebc-1 cells (IC50 = 37.8 and 25.9 µM, respectively) proved to be 5e-1.
The IC50 values of the compounds are summarized in Table 5. Daunomycin, an often-used
reference compound, was also tested on the cell lines we applied. Its efficiency was much
better [32,33] than that of our compounds. For details, see footnote “a” in Table 5.

Table 5. 50% inhibitory concentration (IC50) values of the P-compounds studied on human tumor
cell cultures.

Compound

IC50 (µM) a,c

Cell Line

MDA_MB-231 PC-3 Ebc-1 A431

2a >250 >250 >250 >250
2b >250 >250 >250 >250
2c >250 >250 >250 >250
2d >250 >250 >250 >250
2e >250 >250 >250 >250
2f >250 >250 >250 >250
3a >250 >250 >250 >250
3b >250 >250 >250 >250
3c >250 >250 >250 >250
5d 76.7 >250 99.5 40.4

5e-1 37.8 149.5 25.9 >250
5f-1 100.7 115.8 94.1 110.7
6 b n.d.
7 115.0 >250 >250 >250

a For comparison purposes for the above cell lines, reference compound Daunomycin had an IC50 value of 0.20,
4.0, 1.2, and 0.7 µM, respectively [32,33]. b Compound 6 precipitated in aqueous media. c The data shaded in
yellow refer to the most efficient compounds.
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3. Experimental
3.1. General

The 31P, 13C, 1H-NMR spectra were taken on a Bruker DRX-500 or Bruker Avance-
300 spectrometer operating at 202.4, 125.7, and 500 MHz or 121.5, 75.4 and 300 MHz
respectively. The couplings were given in Hz. LC–MS measurements were performed with
an Agilent 1200 liquid chromatography system, coupled with a 6130 quadrupole mass
spectrometer equipped with an ESI ion source (Agilent Technologies, Palo Alto, CA, USA).
High-resolution mass spectrometric measurements were performed using a Thermo Velos
Pro Orbitrap Elite hybrid mass spectrometer in positive electrospray mode.

3.2. General Procedure for the Synthesis of Tetraalkyl α-Hydroxy-ethylidenebisphosphonates

2.2 mmol (0.33 g) of dimethyl α-oxoethylphosphonate was added dropwise to a
mixture of 2.2 mmol dialkyl phosphite (dimethyl phosphite: 0.20 mL, diethyl phosphite:
0.30 mL, dibutyl phosphite: 0.43 mL) and 0.11 mmol (0.010 mL) of diethylamine in diethyl
ether (13 mL) at 0 ◦C on stirring. After an 8 h reaction time, the solvent was evaporated, and
the crude product obtained was purified by column chromatography (using DCM–MeOH
97:3 as the eluent on silica gel).

3.2.1. Tetramethyl α-Hydroxy-ethylidenebisphosphonates (2a)

Yield: 0.40 g (68%), 31P NMR (CDCl3) δ 22.3 Ref [24] δP 22.0; 13C NMR (CDCl3) δ 20.0
(t, J = 2.2 Hz, CCH3), 54.2 and 54.3 (t, J = 3.5 Hz, 4 OCH3), 71.7 (t, J = 156.8 Hz, CCH3); 1H
NMR (CDCl3) δ 1.70 (t, J = 16.2 Hz, 3H, CCH3), 3.88–3.93 (m, 12H, OCH3); [M + H]+ = 263;
[M + Na]+

found = 285.0272; C6H16O7P2Na required 285.0269.

3.2.2. Diethyl–Dimethyl α-Hydroxy-ethylidenebisphosphonate (2b)

Yield: 0.51 g (80%), 31P NMR (CDCl3) δP1 19.9 and δP2 22.7 (d, 2JPP = 40.1 Hz), Ref [25]
δP1 20.6 and δP2 23.4 (2JPP = 39.3 Hz); 13C NMR (CDCl3) δ 16.4 (d, J = 5.6 Hz, 2 CH2CH3),
20.4 (s, CCH3), 54.2 and 54.3 (d, J = 7.1 Hz, 2 OCH3), 63.7 and 63.8 (d, J = 4.9 Hz, 2 OCH2),
71.6 (t, J = 156.4 Hz, CCH3); 1H NMR (CDCl3) δ 1.37 (t, J = 7.0 Hz, 6H, CH2CH3), 1.68
(t, J = 16.1 Hz, 3H, CCH3), 3.88 (d, J = 10.5 Hz, 6H, OCH3), 4.21–4.32 (m, 4H, OCH2);
[M + H]+ = 291; [M + Na]+

found = 313.0573; C8H20O7P2Na required 313.0582.

3.2.3. Dibutyl-Dimethyl α-Hydroxy-ethylidenebisphosphonate (2c)

Yield: 0.50 g (66%) 31P NMR (CDCl3) δP1 19.8 and δP2 22.8 (d, 2JPP = 39.3 Hz), Ref [30]
δP1 20.4 and δP2 23.3 (2JPP = 40.1 Hz); 13C NMR (CDCl3) δ 13.6 (s, 2 CH2CH3), 18.6 (s, 2
CH2CH3), 20.1 (s, CCH3), 32.5 (d, J = 5.5 Hz, 2 OCH2CH2), 54.0–54.1 and 54.2–54.3 (m, 2
OCH3), 67.4 (m, 2 OCH2), 71.7 (t, J = 156.1 Hz, CCH3); 1H NMR (CDCl3) δ 0.96 (t, J = 7.4 Hz,
6H, 2 CH2CH3), 1.38–1.50 (m, 4H, CH2CH3), 1.63–1.78 (m, 3 + 4H, CCH3 + OCH2CH2),
3.89 (dd, J1 = 10.5 Hz, J2 = 1.6 Hz, 6H, OCH3), 4.16–4.23 (m, 4H, OCH2); [M + H]+ = 347;
[M + Na]+

found = 369.1209; C12H28O7P2Na required 369.1208.

3.3. General Procedure for the Synthesis of Dimethyl
1-Diarylphosphinoyl-1-hydroxy-ethylphosphonate

2.2 mmol (0.33 g) of dimethyl α-oxoethylphosphonate was added dropwise to a
mixture of 2.2 mmol diarylphosphine oxide (diphenylphosphine oxide: 0.44 g, bis(4-
methylphenyl)phosphine oxide: 0.50 g, bis(3,5-dimethylphenyl)phosphine oxide: 0.56 g)
and 0.88 mmol (0.090 mL) of diethylamine in diethyl ether (13 mL) at 0 ◦C on stirring.
After an 8 h reaction time, the precipitated material was removed by filtration, washed
with diethyl ether, and the residue recrystallized from acetone. The products were white
crystalline compounds.

3.3.1. Dimethyl 1-Diphenylphosphinoyl-1-hydroxy-ethylphosphonate (2d)

Yield: 0.50 g (64%), mp: 131–132 ◦C; 31P NMR (CDCl3) δP1 23.9 and δP2 29.0 (d, 2JPP
= 25.4 Hz); 13C NMR (CDCl3) δ 20.3 (s, CCH3), 53.9 and 54.0 (d, J = 7.4 Hz, 2 OCH3),
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74.8 (dd, J1 = 154.6 Hz, J2 = 79.0 Hz, CCH3), 127.8 and 128.2 (d, J = 11.7 Hz, 2 Cγ), 130.4 (dd,
J1 = 96.9 Hz, J2 = 5.5 Hz, Cα), 130.8 (d, J = 98.1 Hz, Cα), 131.6 and 131.8 (d, J = 2.8 Hz, 2 Cδ),
132.4 and 132.7 (d, J = 8.6 Hz, 2 Cβ); 1H NMR (CDCl3) δ 1.65 (t, J = 15.6 Hz, 3H, CCH3), 3.44
and 3.70 (d, J = 10.6 Hz, 6H, OCH3), 7.40–7.61 (m, 6H, ArH), 8.09 and 8.18 (dd, J1 = 11.1 Hz,
J2 = 6.9 Hz, 4H, ArHβ); [M + H]+ = 355; [M + Na]+

found = 377.0681; C16H20O5P2Na required
377.0684.

3.3.2. Dimethyl 1-Bis(4-methylphenyl)phosphinoyl-1-hydroxy-ethylphosphonate (2e)

Yield: 0.52 g (62%), mp: 153–154 ◦C; 31P NMR (CDCl3) δP1 24.0 and δP2 30.2 (d,
2JPP = 29.0 Hz); 13C NMR (CDCl3) δ 20.6 (s, CCH3), 21.5 (s, 2 ArCH3), 53.9 and 54.0 (d,
J = 7.4 Hz, 2 OCH3), 74.6 (dd, J1 = 153.7 Hz, J2 = 76.3 Hz, CCH3), 127.1 (dd, J1 = 99.4 Hz,
J2 = 4.9 Hz, Cα), 127.2 (d, J = 100.9 Hz, Cα), 128.7 and 128.9 (d, J = 12.1 Hz, 2 Cγ), 132.4
and 132.7 (d, J = 9.1 Hz, 2 Cβ), 142.1 and 142.3 (d, J = 2.9 Hz, 2 Cδ); 1H NMR (CDCl3)
δ 1.61 (t, J = 15.4 Hz, 3H, CCH3), 2.39 (s, 6H, ArCH3), 3.55 and 3.67 (d, J = 10.6 Hz, 6H,
OCH3), 7.27–7.29 (m, 4H, ArH), 7.92 and 8.03 (dd, J1 = 11.0 Hz, J2 = 8.0 Hz, 4H, ArHβ);
[M + H]+ = 383; [M + Na]+

found = 405.1003; C18H24O5P2Na required 405.0997.

3.3.3. Dimethyl 1-Bis(3,5-dimethylphenyl)phosphinoyl-1-hydroxy-ethylphosphonate (2f)

Yield: 0.62 g (69%), mp: 161–162 ◦C; 31P NMR (CDCl3) δP1 24.3 and δP2 30.0 (d,
2JPP = 29.0 Hz); 13C NMR (CDCl3) δ 20.7 (s, CCH3), 21.3 (s, 4 ArCH3), 53.8 and 54.0 (d,
J = 7.4 Hz, 2 OCH3), 74.7 (dd, J1 = 153.6 Hz, J2 = 76.3 Hz, CCH3), 129.9 and 130.1 (d,
J = 8.7 Hz, 2 Cβ) 130.2 (dd, J1 = 95.7 Hz, J2 = 5.1 Hz, Cα), 130.5 (d, J = 96.0 Hz, Cα), 133.4
and 133.5 (d, J = 3.0 Hz, 2 Cδ), 137.4 and 137.7 (d, J = 12.4 Hz, 2 Cγ); 1H NMR (CDCl3) δ 1.65
(t, J = 14.7 Hz, 3H, CCH3), 2.36 (d, J = 5.5 Hz, 12H, ArCH3), 3.52 and 3.70 (d, J = 10.6 Hz,
6H, OCH3), 7.14 (s, 2H, ArHδ), 7.67 and 7.77 (d, J = 11.3 Hz, 4H, ArHβ); [M + H]+ = 411;
[M + Na]+

found = 433.1312; C20H28O5P2Na required 433.1310.

3.4. General Procedure for the Synthesis of Dialkyl 1-(Dialkylphosphonoylethyl)phosphate

2.2 mmol (0.33 g) of dimethyl α-oxoethylphosphonate was added dropwise to a
mixture of 2.2 mmol dialkyl phosphite (dimethyl phosphite: 0.20 mL, diethyl phosphite:
0.30 mL, dibutyl phosphite: 0.43 mL) and 0.88 mmol (0.090 mL) of diethylamine in diethyl
ether (13 mL) at 0 ◦C on stirring. After 8–72 h reaction time, the solvent was evaporated and
the crude product obtained was purified by column chromatography (using DCM–MeOH
97:3 as the eluent on silica gel).

3.4.1. Dimethyl 1-(Dimethylphosphonoylethyl)phosphate (3a)

Yield: 0.43 g (75%), 31P NMR (CDCl3) δP1 1.1 and δP2 22.5 (d, 3JPP = 30.1 Hz), Ref [34]
δP1 0.4 and δP2 21.9 (d, 3JPP = 29.3 Hz); 13C NMR (CDCl3) δ 16.6 (s, CCH3), 53.4 and
53.6 (dd, J1 = 6.8 Hz, J2 = 3.8 Hz, 2 OCH3); 54.4 and 54.6 (dd, J1 = 6.3 Hz, J2 = 3.6 Hz, 2
OCH3), 69.1 (dd, J1 = 174.1 Hz, J2 = 6.9 Hz, CH); 1H NMR (CDCl3) δ 1.61 (dd, J1 = 16.7 Hz,
J2 = 7.1 Hz, 3H, CCH3), 3.77–3.84 (m, 12H, OCH3), 4.63–4.91 (m, 1H, CH); [M + H]+ = 263;
[M + Na]+

found = 285.0268; C6H16O7P2Na required 285.0269.

3.4.2. Dimethyl 1-(Diethylphosphonoylethyl)phosphate (3b-1) and Diethyl
1-(Dimethylphosphonoylethyl)phosphate (3b-2)

Yield: 0.56 g (87%), major (83%): 31P NMR (CDCl3) δP1 1.0 and δP2 20.0 (3JPP = 31.3 Hz);
13C NMR (CDCl3) δ 16.38 and 16.43 (d, J = 5.5 Hz, 2 CH2CH3), 16.6 (s, CCH3), 54.4 and
54.5 (d, J = 6.2 Hz, 2 OCH3), 63.0 and 63.1 (d, J = 6.5 Hz, 2 OCH2), 69.4 (dd, J1 = 174.5 Hz,
J2 = 6.8 Hz, CH); 1H NMR (CDCl3) δ 1.32 (t, J = 7.0 Hz, 6H, CH2CH3), 1.54 (dd, J1 = 16.7 Hz,
J2 = 7.0 Hz, 3H, CCH3), 3.75 and 3.77 (d, J = 11.5 Hz, 6H, OCH3), 4.13–4.20 (m, 4H,
CH2CH3); 4.62–4.72 (m, 1H, CH); minor (17%): δP1 −1.3 and δP2 22.6 (3JPP = 31.0 Hz); 13C
NMR (CDCl3) δ 16.0 (d, J = 6.8 Hz, 2 CH2CH3), 16.6 (s, CCH3), 53.4 and 53.6 (d, J = 6.5 Hz,
2 OCH3), 64.1 and 64.2 (d, J = 6.1 Hz, 2 OCH2), 68.8 (dd, J1 = 174.1 Hz, J2 = 7.0 Hz, CH); 1H
NMR (CDCl3) δ 3.80 and 3.81 (d, J = 10.7 Hz, 6H, OCH3). The other signals were common
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with those of the major isomer; [M + H]+ = 291; [M + Na]+
found = 313.0581; C8H20O7P2Na

required 313.0582.

3.4.3. Dimethyl 1-(Dibutylphosphonoylethyl)phosphate (3c-1) and Dibutyl
1-(Dimethylphosphonoylethyl)phosphate (3c-2)

Yield: 0.53 g (70%), major (81%) 31P NMR (CDCl3) δP1 1.1 and δP2 20.0 (3JPP = 31.6 Hz);
13C NMR (CDCl3) δ 13.5 (s, 2 CH2CH3), 16.7 (s, CCH3), 18.6 (s, 2 CH2CH3), 32.5 and 32.6 (d,
J = 3.2 Hz, 2 OCH2CH2), 54.3–54.4 and 54.5–54.6 (m, 2 OCH3), 66.4–66.9 (m, 2 OCH2), 69.5
(dd, J1 = 174.6 Hz, J2 = 6.9 Hz, CH); 1H NMR (CDCl3) δ 0.96 (t, J = 7.9 Hz, 6H, CH2CH3),
1.40–1.47 (m, 4H, CH2CH3), 1.60 (dd, J1 = 16.5 Hz, J2 = 7.1 Hz, 3H, CCH3), 1.67–1.72 (m, 4H,
OCH2CH2), 3.80 and 3.83 (d, J = 11.5 Hz, 6H, OCH3), 4.04–4.20 (m, 4H, OCH2), 4.66–4.78
(m, 1H, CH); minor (19%) 31P NMR (CDCl3) δP1 –0.9 and δP2 22.8 (3JPP = 31.4 Hz); 13C NMR
(CDCl3) δ 68.8 (dd, J1 = 174.1 Hz, J2 = 7.1 Hz, CH). The other signals are common with
those of the major isomer; 1H NMR (CDCl3) δ 3.85 and 3.86 (d, J = 10.5 Hz, 6H, OCH3). The
other signals are common with those of the major isomer; [M + H]+ = 347; [M + Na]+

found
= 369.1201; C12H28O7P2Na required 369.1208.

3.5. General Procedure for Diethyl (Diarylphosphinoyloxybenzyl)phosphonate and Diethyl
(Diarylphosphinoylbenzyl)phosphate

1.5 mmol (0.36 g) of diethyl α-oxobenzylphosphonate was added slowly to a mixture of
1.5 mmol (bis(4-methylphenyl)phosphine oxide: 0.35 g, bis(3,5-dimethylphenyl)phosphine
oxide: 0.40 g) and 0.60 mmol (0.060 mL) of diethylamine in diethyl ether (13 mL) at 0 ◦C
on stirring. After an 8 h reaction time, the solvent was evaporated, and the crude product
obtained was purified with column chromatography (using ethyl acetate as the eluent on
silica gel).

3.5.1. Diethyl (Diphenylphosphinoylbenzyl)phosphate (5d-1) and Diethyl
(Diphenylphosphinoyloxybenzyl)phosphonate (5d-2)

Yield: 0.47 g (70%), major (60%): 31P NMR (CDCl3) δP1 –1.5 and δP2 28.6 (3JPP = 31.3 Hz);
13C NMR (CDCl3) δ 15.6 and 15.8 (d, J = 7.4 Hz, 2 CH2CH3), 63.8 and 63.9 (d, J = 6.0 Hz,
2 OCH2), 77.4 (dd, J1 = 85.7 Hz, J2 = 7.9 Hz, CH). The aromatic range was rather complex be-
tween δ 128.0–132.6; 1H NMR (CDCl3) δ 0.90 and 0.96 (t, J = 7.1 Hz, 6H, CH2CH3), 3.41–3.70
(m, 4H, OCH2), 6.06 (dd, J1 = 9.7 Hz, J2 = 4.4 Hz, 1H, CH), aromatic region: 7.15–7.98 (m,
15H, ArH); minor (40%): 31P NMR (CDCl3) δP1 17.2 and δP2 34.7 (3JPP = 26.7 Hz); 13C NMR
(CDCl3) δ 16.2 and 16.3 (d, J = 5.8 Hz, 2 CH2CH3), 63.3 and 63.5 (d, J = 6.9 Hz, 2 OCH2),
72.0 (dd, J1 = 172.6 Hz, J2 = 7.0 Hz, CH). The aromatic range was rather complex between δ

128.0–132.6; 1H NMR (CDCl3) δ 1.09 and 1.18 (t, J = 7.1 Hz, 6H, CH2CH3), 3.78–4.15 (m, 4H,
OCH2), 5.63 (dd, J1 = 13.5 Hz, J2 = 11.2 Hz, 1H, CH), aromatic region: 7.15–7.98 (m, 15H,
ArH); [M + H]+ = 445; [M + Na]+

found = 467.1154; C23H26O5P2Na required 467.1153.

3.5.2. Diethyl 1-Bis((4-methylphenyl)phosphinoylbenzyl)phosphate (5e-1)

Yield: 0.40 g (65%), 31P NMR (CDCl3) δP1 –1.3 and δP2 29.0 (3JPP = 31.4 Hz); 13C NMR
(CDCl3) δ 15.6 and 15.7 (d, J = 7.4 Hz, 2 CH2CH3), 21.6 (d, J = 9.8 Hz, 2 ArCH3), 63.8
and 63.9 (d, J = 5.9 Hz, 2 OCH2), 77.6 (dd, J1 = 85.3 Hz, J2 = 8.0 Hz, CH). The aromatic
range was rather complex between δ 124.6–142.9; 1H NMR (CDCl3) δ 0.94 and 1.00 (t,
J = 7.3 Hz, 6H, CH2CH3), 2.35 and 2.42 (s, 6H, ArCH3), 3.46–3.74 (m, OCH2), 6.03 (dd,
J1 = 9.8 Hz, J2 = 4.5 Hz, 1H, CH), aromatic region: 7.18–7.33 (m, 9H, ArH), 7.55 and 7.83
(dd, J1 = 11.1 Hz J2 = 8.1 Hz, 4H, ArHβ); [M + H]+ = 473; [M + Na]+

found = 495.1467;
C25H30O5P2Na required 495.1466.

3.5.3. Diethyl 1-Bis((3,5-dimethylphenyl)phosphinoylbenzyl)phosphate (5f-1)

Yield: 0.42 g (72%), 31P NMR (CDCl3) δP1 −1.2 and δP2 29.1 (3JPP = 30.9 Hz); 13C NMR
(CDCl3) δ 15.6 and 15.8 (d, J = 7.5 Hz, 2 CH2CH3), 21.2 (d, J = 13.3 Hz, 4 ArCH3), 63.6 and
63.8 (d, J = 5.9 Hz, 2 OCH2), 77.4 (dd, J1 = 84.8 Hz, J2 = 8.0 Hz, CH). The aromatic range was
rather complex between δ 128.0–138.2; 1H NMR (CDCl3) δ 0.95 and 1.04 (t, J = 7.4 Hz, 6H,
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CH2CH3), 2.27 and 2.40 (s, 12H, ArCH3), 3.48–3.76 (m, 4H, OCH2), 6.06 (dd, J1 = 9.7 Hz,
J2 = 3.1 Hz, 1H, CH), aromatic region: 7.22–7.34 (m, 9H, ArH), 7.61 (d, J = 11.7 Hz, 2H,
ArHβ); [M + H]+ = 501; [M + Na]+

found = 523.1771; C27H34O5P2Na required: 523.1779.
For the 31P, 13C and 1H NMR spectra of the compounds prepared see Supplementary

Materials.

3.6. Single Crystal X-ray Diffraction Studies

Single crystals of compound 2d, 2e.0.5 C3H6O and 6 suitable for X-ray diffraction
were obtained by slow evaporation of the respective acetone solution. The crystals were
introduced into perfluorinated oil and a suitable single crystal was carefully mounted on
the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3
diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD
detector, operating with Mo-Kα radiation (λ = 0.71071 Ǻ).

Data collection and reduction were performed using CrysAlisPro software [35]. Ab-
sorption correction using the multiscan method [35] was applied. The structures were
solved with SHELXS-97 [36], refined with SHELXL-97 [37] and finally checked using
PLATON [38]. Details of the data collection and structure refinement are summarized in
Table 6.

Table 6. Details for X-ray data collection and structure refinement for compounds 2d, 2e.0.5 C3H6O
and 6.

2d 2e.0.5C3H6O 6

Empirical formula C16H20O5P2 C18H24O5P2.0.5C3H6O C18H24O5P2
Formula mass 354.26 411.35 382.31

T [K] 123 (2) 123 (2) 123 (2)
Crystal size [mm] 0.20 × 0.02 × 0.02 0.35 × 0.20 × 0.10 0.25 × 0.20 × 0.15

Crystal description colorless rod colorless block colorless block
Crystal system monoclinic monoclinic triclinic

Space group P21/c C2/c P21/n
a [Å] 9.1252 (3) 13.8562 (3) 8.6609 (2)
b [Å] 18.1309 (6) 10.4172 (2) 9.8169 (2)
c [Å] 10.1680 (4) 28.5479 (7) 22.1229 (5)
α [◦] 90.0 90.0 90.0
β [◦] 94.892 (3) 96.649 (2) 96.193 (2)
γ [◦] 90.0 90.0 90.0

V [Å3] 1676.15 (10) 4092.97 (16) 1869.98 (7)
Z 4 8 4

ρcalcd. [g cm−3] 1.404 1.335 1.358
µ [mm−1] 0.281 0.242 0.258

F (000) 744 1744 808
Θ range [◦] 2.24–25.24 2.45–25.24 2.27–25.24

Index ranges −12 ≤ h ≤ 12 −17 ≤ h ≤ 17 −12 ≤ h ≤ 12

CCDC-2281416, CCDC-2281417 and CCDC-2281418 contain supplementary crystal-
lographic data for compounds 2d, 2e·0.5C3H6O and 6, respectively. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif (accessed on 13 July 2023).

3.7. In Vitro Cytotstasis Assays
Cell Lines and Culture Conditions

The in vitro cytostatic effect of the compounds was studied on MDA-MB 231 human
breast adenocarcinoma [39], A431 human epidermoid carcinoma [40], PC-3 human prostate
adenocarcinoma [41], and Ebc-1 human lung squamous cell carcinoma [42] cell lines. Cells
were cultured in a DMEM medium supplemented with 10% FBS, 2 mM L-glutamine,
penicillin–streptomycin antibiotic mixture (50 IU/mL and 50 µg/mL, respectively), 1 mM

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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sodium pyruvate and 1% non-essential amino acid mixture. The cell cultures were main-
tained at 37 ◦C in a humidified atmosphere with 5% CO2. The cells were grown to confluent
state and then they were harvested by trypsinization and divided into 96-well tissue culture
plates (initial cell number was of 5.0 × 103 cells/well). Cells were allowed to attach for
24 h at 37 ◦C when the culturing medium was removed and they were treated with the
compounds in 2, 10, 50, and 250 µM concentration in a serum-free medium. (The treating
solutions contained 1.0 v/v% DMSO). Control cells were treated only with serum-free
medium or with DMSO (c = 1.0 v/v%) under the same conditions. After overnight incuba-
tion, cells were washed twice with a serum-free medium, and then cultured for another
72 h in 10% serum-containing medium at 37 ◦C. An MTT-solution (at c = 0.37 mg/mL final
concentration) was added to each well and incubated for 3 h. The cells were centrifuged
for 5 min at 900 g, and then the supernatant was removed. The obtained formazan crys-
tals were dissolved in DMSO (100 µL) and the optical density (OD) of the samples was
measured with an ELISA Reader (iEMS Reader, Labsystems, Vantaa, Finland) at detecting
wavelength = 540 and reference wavelength = 620 nm. OD620 values were subtracted from
the OD540 values, and then cytostasis % was calculated from this corrected OD value by
the following equation:

Cytostatic effect (%) = [1 − (ODtreated/ODcontrol)] × 100

where ODtreated and ODcontrol correspond to the optical densities of the treated and control
wells, respectively. In each case, two independent experiments were carried out with
4 parallel measurements. Statistical data analysis was performed using Student’s t-test at
a 95% confidence level. A 50% inhibitory concentration (IC50, expressed in micromolar
units) was determined from the dose–response curves: cytostasis was plotted as a function
of concentration on which a sigmoidal curve was fitted using Microcal™ Origin 2018
software [43,44].

4. Conclusions

The outcome of the reaction of α-oxophosphonates (ZC(O)P(O)(OR)2) and Y2P(O)H
reagents depended on the nature of the Z substituent of the oxo-compound, the Y sub-
stituent of the P-reagent, and the amount of the diethylamine catalyst. In case of Z = Me,
new hydroxy-methylenebisphosphonic derivatives with different P-functions were syn-
thesized. Performing the reactions in the presence of an increased amount (40%) of the
catalyst, or starting from an α-oxobenzylphosphnate, rearranged species comprising the
>P(O)–O–CH–P(O)< motif were the products. The molecular dimensions mostly conformed
to those expected for this kind of P-compound. The intermolecular connection pattern
may be realized in centrosymmetric H-bridge dimers, but in one case a catameric chain
structure was experienced. Solvent inclusion as well as the presence of disorder were also
present in one of the crystals hampering deeper insight into the solid-state relations. Part
of the compounds we synthesized showed significant in vitro cytotoxic activity on human
tumor cell cultures of different tissue origin. The rearranged derivatives with aromatic
units possessed considerable antiproliferative activity characterized by low IC50 values.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28166037/s1, X-ray data for compounds 2d, 2e and 6;
31P, 13C and 1H NMR spectra of the compounds prepared.
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