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Abstract: Amyloid-β (Aβ) peptide deposition, hyperphosphorylated tau proteins, reactive astrocytes,
high levels of metal ions, and upregulated monoamine oxidases are considered to be the primary
pathological markers of Alzheimer’s disease (AD). Among them, Aβ peptide deposition or Aβ

plaques, is regarded as the initial factor in the pathogenesis of AD and a critical pathological hallmark
in AD. This review highlights recently Aβ-specific fluorescent probes for two-photon imaging of
Aβ plaques in vivo. It includes the synthesis and detection mechanism of probes, as well as their
application to two-photon imaging of Aβ plaques in vivo.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia that affects more than
35 million people worldwide [1], is characterized by extracellular amyloid plaques in the
brain [2,3]. The major components of these plaques are aggregated forms of the amyloid-β
peptide (Aβ), derived from the proteolytic cleavage of the amyloid precursor protein (APP)
by β-secretase followed by γ-secretase [4]. Aβ contains two predominant isoforms: Aβ 40
and Aβ 42. Aβ 40 accounts for more than 90% of total Aβ, while Aβ 42 is more aggregation-
prone than Aβ 40 and is the main composition in the plaques [5]. It is widely accepted that
Aβ aggregation from monomers to oligomers, protofibrils, and eventually fibrils plays a
pivotal role in the pathogenesis of AD [6,7]; therefore, Aβ plaques have been considered as
main biomarkers for AD diagnosis [8,9]. The accurate detection and imaging of Aβ plaques
can provide important information for early treatment of AD since Aβ plaques appear as
early as ~10 years before the clinical symptoms of AD and go throughout the whole disease
process [10,11]. Currently, the available approaches for detection of Aβ plaques in the
brain through neuroimaging include positron emission tomography (PET) [12–15], single
photon emission computed tomography (SPECT) [16–18], magnetic resonance imaging
(MRI) [19–21], and optical imaging [22–26].

Recently, fluorescent detection and imaging of Aβ plaques has become a burgeoning
technology since it provides high sensitivity, fast data analysis, real-time detection, and
high-resolution imaging [27–33], which are necessary characteristics to achieve the early
detection of AD. Fluorescent probe, in particular, near-infrared (NIR) fluorescent probe is
favorable for Aβ plaque imaging in vivo due to its deep tissue penetration, low autofluo-
rescence, and minimal photodamage. Up to now, numerous NIR fluorescent probes have
been developed to detect and/or visualize Aβ plaques in vitro and in vivo [34–42] and
many are cited in some excellent reviews [43–48]. This review focuses on recent progress
in NIR fluorescent probes for two-photon brain imaging of Aβ plaques based on organic
small molecules. Probes based on complex and nanoparticles are not involved in the review.
Two-photon microscopy (TPM) has emerged as an important tool for imaging of biological
tissues due to the following merits. (1) Avoids light scattering which is a serious issue with
one-photon confocal microscopy, (2) two-photon excitation only occurs on the focal point;
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therefore, it can provide a high-resolution imaging, and (3) excitation at NIR wavelengths
allows for deeper penetration and minimal photodamage and photobleaching to tissues.
These promising features have motivated the search for two-photon fluorescent probes for
the detection and imaging of biological analytes in vivo [49–53].

2. Design of Aβ Plaque-Specific Fluorescent Probes

To better understand specific biomarkers that reliably correlate with AD, researchers
have made great efforts in fluorescence imaging of Aβ plaques. Currently, the general struc-
ture of a classical NIR fluorescent probe for imaging Aβ species is a highly environment-
sensitive fluorophore with D-π-A or D-π-A-π-D structure (D: electron-donor group; A:
electron-acceptor group). The type of structure can significantly affect the optical and
biological properties of probes, such as emission wavelength, two-photon absorption
cross-sections, quantum yield, and blood−brain barrier permeability [54–56]. To date, a
great deal of NIR fluorescent probes have been developed for the detection and imag-
ing of Aβ plaques and other biomarkers of AD, including dicyanomethylene acceptor
derivatives [57–59], difluoroboronate incorporated curcumin scaffold [60–62], and BODIPY
derivatives [63–65]. Many reviews [66–73] have successively reported them.

This review focuses on the recent development of two-photon fluorescent probes and
their application to TPM imaging of Aβ plaques in vivo. A successful candidate should
have some merits of specific response to Aβ plaques, excellent two-photon cross-sections
(δTPA or φδTPA), NIR fluorescence, and large fluorescence signal-to-background ratios (SBR).
To meet the last requirement, fluorescent probes should be designed to have no fluorescence
before the interaction with Aβ plaques; upon the interaction with Aβ plaques, a strong
NIR fluorescence could be detected (Figure 1).
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Figure 1. Design strategy of fluorescent probes for Aβ plaques.

3. Fluorescent Detection and Imaging of Aβ Plaques

Kim and co-workers [74] developed a π-extended acedan derivative for Aβ plaques
detection and two-photon imaging. Acedan, 6-acetyl-2-(dimethylamino)naphthalene, and
its derivatives are environmentally sensitive fluorophores and have nonsymmetric D-
π-A structures with large two-photon absorption properties, which benefit bioimaging
applications [75–77]. Probe DN (Figure 2) was synthesized from a common intermidiate, 6-
(dimethylamino)-3-hydroxy-2-naphthaldehyde. By employing a Baylis−Hillman reaction,
introduction of the enone moiety enclosed in the new ring was performed.
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Figure 2. Structure of probe DN.

Probe DN exhibited the maximum absorption and fluorescence at 512 nm (λabs) and
679 nm (λem), respectively. In organic solution, a small fluorescence quantum yield (5% in
EtOH, 9% in CH3CN, 14% in CH2Cl2) was obtained. The fluorescence was almost quenched
when DN was in PBS solution (pH 7.4) or in artificial cerebrospinal fluid (aCSF). Upon
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addition of Aβ42 aggregates into the solution of DN in PBS or aCSF, a large fluorescence
enhancement (41- to 60-fold) was obtained (Figure 3). A control experiment demonstrated
that bovine serum albumin (BSA) showed negligible interference. The dissociation constant
of DN with Aβ42 aggregates was determined to be Kd = 44.6 ± 4.2 nM. The lipophilicity of
DN was calculated to be log p = 3.5, which is close to the optimal value range considered
for the blood–brain barrier (BBB) permeation (2.0–3.5) [78].
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Figure 3. Fluorescence changes of probe DN (10 µM) in the presence or absence of Aβ42 aggre-
gates (20 µM) and BSA (20 µg mL−1) in PBS buffer (10 mM, pH 7.4, containing 1% DMSO) or in
artificial cerebrospinal fluid (aCSF, containing 1% DMSO), measured at 25 ◦C after mixing for 1 h
under excitation at 500 nm. Reproduced with permission from Ref. [74]. Copyright 2015 American
Chemical Society.

In vivo two-photon microscopy (TPM) imaging of Aβ plaques with probe DN was
carried out in a live AD mouse model. DN was intraperitoneally injected into the 5XFAD
mouse (10 mg kg−1, one time injection), and fluorescence imaging of the brain was con-
ducted under two-photon excitation at 1000 nm. Clear and bright red fluorescence images
of Aβ plaques were obtained (Figure 4), which also confirmed that DN readily penetrated
BBB. In addition, the 3D images obtained down to 300 µm depth showed that Aβ plaques
were spreading out to the cortex region [79] (Figure 4c side view). Furthermore, co-staining
experiments showed well-merged fluorescence images by using MeO-X04, a known Aβ

plaque-staining fluorescent probe [80], confirming that DN efficiently images Aβ plaques.
Mook-Jung and co-workers [81] designed a quadrupolar fluorescent probe for detec-

tion and imaging of Aβ42 plaques. Quadrupoles with D–π-A–π-D structure have been
regarded as a promising motif for large δTPA values [82]. Probe QAD (Figure 5) was syn-
thesized by coupling reaction of 4-dialkylamino-2-nitrobenzaldehyde and bisphosphonate-
substituted tetra-fluorobenzene first, followed by reduction-induced cyclization. QAD
exhibited almost no fluorescence in PBS buffer (pH 7.4) in the absence of Aβ42 aggre-
gates. Upon addition of Aβ42 aggregates into the solution of QAD in PBS (pH 7.4), the
fluorescence of QAD at 546 nm increased dramatically. The dissociation constant (Kd)
of probe QAD with Aβ42 aggregates was found to be 16.2 nM. A control experiment
demonstrated that BSA and human serum albumin (HSA) showed negligible interference.
The lipophilicity value (log P) of QAD was calculated to be 3.42 by partitioning between
n-octanol and PBS buffer. A large two-photon action cross section (δTPA = 420 GM) was
obtained at 750 nm.
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Figure 4. (a) In vivo TPM images of Aβ plaques in the frontal cortex of a 5XFAD mouse after ip
injection of DN (10 mg kg−1), 20× magnified at the depth of 50 µm (scale bar: 20 µm). (b) Magnified
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with permission from Ref. [74]. Copyright 2015 American Chemical Society.
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Figure 5. Structure of probe QAD.

The feasibility of QAD for the detection of Aβ plaques in brain tissues was confirmed
by TPM images in cortical slices which were taken from a transgenic 5XFAD mouse, an
AD model mouse forming Aβ plaques in the brain [83]. Bright spots in TPM imaging were
observed in the QAD-labeled slice with good S/N ratio (Figure 6).
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Figure 6. (a) TPM images of a cortical slice of brain from transgenic 5XFAD mice stained with
20 mM of probe QAD for 90 min and (b) Signal-to-noise (S/N) ratio values measured by TPEF
intensity of bright cluster and background regions along the white dotted lines in (a). The two-photon
fluorescence intensities were collected at 450–520 nm upon excitation at 750 nm with fs pulse. Scale
bars: 48 mm. Reproduced with permission from Ref. [81]. Copyright 2016 Royal Society Chemistry.

Specific location of QAD in Aβ plaques was confirmed by a co-localization experiment
between QAD and Congo red, a known fluorescent marker for histology of Aβ plaques [84].
The bright fluorescence regions of QAD merged well with signals from Congo red with a
Pearson’s co-localization coefficient of 0.85 (Figure 7).
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Figure 7. TPM images of cortical slices of brain from transgenic 5XFAD mice co-labeled with (a) probe
QAD and (b) Congo red for 90 min, and (c) merged image by 20× magnification. Scale bars: 72 µm.
Reproduced with permission from Ref. [81]. Copyright 2016 Royal Society Chemistry.

The utility of probe QAD in vivo imaging was evaluated in transgenic 5XFAD mice.
As shown in Figure 8, the initial images showed bright fluorescence through the blood
vessels in the cortex region (Figure 8a) upon excitation with 780 nm; the bright fluorescence
at the vessels decreased with a concomitant increase at the plaques (white arrows in
Figure 8b–d) until it reached a peak. Kinetic studies revealed that the circulating half-life
(t1/2) at the vessels was 35.7 min. Both time constants for BBB penetration and for plaque
binding were t0 = 23.4 min and ∆τ = 46.9 min, respectively. The 3D images were constructed
from approximately 270 sections in which a known blood marker, dextran 40 kDa-Texas
red, was injected. Aβ plaques with different sizes at the specific positions were clearly
visualized along with blood vessels (Figure 8f,g). In addition, cerebral amyloid angiopathy
(CAA), other deposited Aβ aggregates surrounding the wall of blood vessels of the central
nervous system [85], were also directly observed.
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Figure 8. In vivo TPM imaging of the frontal cortex of transgenic 5XFAD mice at (a) 0, (b) 30,
(c) 60 and (d) 150 min after i.v. injection of probe QAD (10 mg kg−1). (e) 230 sections of images
along the z-direction at the depth of ~300 µm from the surface of the cortex were accumulated to
visualize Aβ plaque distribution. (f,g) 3D-reconstructed two-photon image of the frontal cortex of
transgenic 5XFAD mice after i.v. injection of probe QAD (10 mg kg−1) and dextran 40 kDa-Texas red.
Approximately 270 sections of images were acquired along the z-direction at a depth of ~300 µm
from the surface of the cortex. Scale bars: (a) 50 and (e) 30 µm. Reproduced with permission from
Ref. [81]. Copyright 2016 Royal Society Chemistry.

Ip and co-workers [86] employed a known fluorophore CRANAD-3 (Figure 9) as probe
for in vivo deep two-photon imaging of Aβ in an AD transgenic mice model. CRANAD-3
was reported early to be able to image insoluble Aβ aggregates and soluble Aβ monomers
and dimers in vitro [87]. The two-photon fluorescence properties of CRANAD-3 in living
brain tissue were characterized in the brain of live APP/PS1 mice with the injections of
CRANAD-3. It was found that the fluorescence excitation wavelength of CRANAD-3 is
about 900 nm, much longer than that of MeO-X04 (720–750 nm), and the emission peak
is about 630 nm, which suggested that CRANAD-3 is a potentially appropriate probe for
two-photon deep brain imaging.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 9. Structure of probe CRANAD-3. 

In vivo imaging of Aβ plaques with CRANAD-3 was evaluated in APP/PS1 mice by 
comparing with MeO-X04. CRANAD-3 and MeO-X04 were co-injected into the mice 
with dosages and delivery routes following individual protocols. Both CRANDA-3- and 
MeO-X04-labeled Aβ plaques of the cortex were imaged with excitation wavelengths of 
900 and 760 nm, respectively. The well-co-localized images (Figure 10b) confirmed that 
CRANDA-3 could specifically image Aβ plaques. Furthermore, CRANDA-3 showed 
better labeling efficiency than MeO-X04. The image contrast of CRANDA-3 surpassed 
MeO-X04 significantly at deep cortical layers especially in the depth beyond 500 µm 
(Figure 10c), and a large SBR (4.1) was obtained (Figure 10d). In addition, the authors 
also indicated that the maximum depth where Aβ plaques could be detected is 900 µm 
(SBR⁓1.0) with CRANAD-3. 

 
Figure 10. Imaging depth comparison of CRANAD-3 and MeO-X04. (a) Deep brain imaging of 
amyloid plaques in a 17-month-old APP/PS1 mouse coinjected with CRANAD-3 (4 mg/kg) and 
MeO-X04 (5 mg/kg). The z-step in the stack is 2 µm. The 3D image was reconstructed based on the 
z-stack TPEF images using the commercial Imaris software. (b) TPEF images at upper layer (96 µm 
depth) in (a), showing differences in plaque labeling of CRANAD-3 and MeO-X04, a dense-core 
plaque is indicted by the white arrow. (c) TPEF images at deeper region (500 µm depth) and (d) 
quantitative comparison of SBR of amyloid plaques in (c). Scale bar: 40 µm. Reproduced with 
permission from Ref. [86]. Copyright 2018 American Chemical Society. 

Kim and co-workers [88] described a new two-photon fluorescent probe for 
detection and imaging of Aβ42 plaques. Probe IRI-1 (Figure 11) was synthesized by 
Suzuki coupling reaction between 4-bromosalicylaldehyde and 4-(dimethylamino) 
phenylboronic acid, followed by condensation and cyclization reaction with 
malononitrile. 

Figure 9. Structure of probe CRANAD-3.

In vivo imaging of Aβ plaques with CRANAD-3 was evaluated in APP/PS1 mice
by comparing with MeO-X04. CRANAD-3 and MeO-X04 were co-injected into the mice
with dosages and delivery routes following individual protocols. Both CRANDA-3- and
MeO-X04-labeled Aβ plaques of the cortex were imaged with excitation wavelengths of
900 and 760 nm, respectively. The well-co-localized images (Figure 10b) confirmed that
CRANDA-3 could specifically image Aβ plaques. Furthermore, CRANDA-3 showed
better labeling efficiency than MeO-X04. The image contrast of CRANDA-3 surpassed
MeO-X04 significantly at deep cortical layers especially in the depth beyond 500 µm
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(Figure 10c), and a large SBR (4.1) was obtained (Figure 10d). In addition, the authors
also indicated that the maximum depth where Aβ plaques could be detected is 900 µm
(SBR~1.0) with CRANAD-3.
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Figure 10. Imaging depth comparison of CRANAD-3 and MeO-X04. (a) Deep brain imaging of
amyloid plaques in a 17-month-old APP/PS1 mouse coinjected with CRANAD-3 (4 mg/kg) and
MeO-X04 (5 mg/kg). The z-step in the stack is 2 µm. The 3D image was reconstructed based on
the z-stack TPEF images using the commercial Imaris software. (b) TPEF images at upper layer
(96 µm depth) in (a), showing differences in plaque labeling of CRANAD-3 and MeO-X04, a dense-
core plaque is indicted by the white arrow. (c) TPEF images at deeper region (500 µm depth) and
(d) quantitative comparison of SBR of amyloid plaques in (c). Scale bar: 40 µm. Reproduced with
permission from Ref. [86]. Copyright 2018 American Chemical Society.

Kim and co-workers [88] described a new two-photon fluorescent probe for detection
and imaging of Aβ42 plaques. Probe IRI-1 (Figure 11) was synthesized by Suzuki coupling
reaction between 4-bromosalicylaldehyde and 4-(dimethylamino) phenylboronic acid,
followed by condensation and cyclization reaction with malononitrile.
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Figure 11. Structure of probe IRI-1.

Probe IRI-1 exhibited absorption maximum at ~419 nm (Figure 12A). In the absence
of Aβ aggregates, no emission was observed, while in the presence of Aβ aggregates
in PBS (pH 7.4), a distinct enhanced fluorescence maximum at ~566 nm was detected
(Figure 12B). The enhanced fluorescence resulted from two potential pathways: reduced
polarity and conformational restriction at the protein binding site. Docking studies showed
that there are two main locations for binding affinities of probe IRI-1 and Aβ aggregates.
One is a tunnel along the aggregate axis, and the other is located on a groove along
the aggregate axis; the tunnel-based interaction may be more kinetically stable [89]. In
addition, a control experiment demonstrated that metal ions, amino acids, and thiols
showed negligible interference (Figure 12C), only a weak fluorescence enhancement in the
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presence of BSA, HSA, or mouse brain homogenates. The binding affinity of probe IRI-1
toward Aβ aggregates is calculated to be Kd = 374 ± 115 nm (Figure 12D), and the δTPA
value of IRI-1 is 111 GM at 880 nm.
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Figure 12. Absorbance and fluorescence data of probe IRI-1 (10 µm). (A) Absorption spectra of IRI-1
in the presence of Aβ aggregates (20 µm). (B) Fluorescence spectra of IRI-1 in PBS and Aβ aggregates
(20 µm). (C) Fluorescence response assays (λem = 566 nm) for IRI-1 and various potential interferents:
a: Aβ aggregates (20 µm), b–k: metal ions (20 µm, from b to k: Al3+, Fe3+, Fe2+, Ca2+, Cu2+, Zn2+,
Ni2+, Mg2+, Na+, K+), l–s: amino acids (20 µm, from l to s: Lys, Arg, Asp, Glu, His, Trp, Tyr, Phe),
and t–w: thiols (20 µm, form t to w: DTT, Hcy, GSH, Cys), in PBS. (D) Saturation binding curve
of Aβ aggregates (10 µm) as a function of IRI-1 (0–50 µm) in PBS; error bars represent SD (n = 3).
Reproduced with permission from Ref. [88]. Copyright 2019 Wiley-VCH.

In vivo TPM imaging showed that a bright fluorescence in the frontal cortex of
10–12-month old 5XFAD-Tg mice was observed after IRI-1 was injected into the peri-
toneal cavity and excitation at 920 nm (Figure 13E). The bright fluorescence is the result
of combining lower tissue background emission and large two-photon cross-sections of
IRI-1. Co-staining experiments (Figure 13E–G) revealed well-merged fluorescence images
by using MeO-X04, confirming that IRI-1 efficiently images Aβ plaques. Moreover, a clear
visualization of Aβ deposits on cerebral blood vessels associated with CAA was also found
(Figure 13H–J). Finally, 3D TPM imaging showed that individual Aβ plaques could be
detected up to a depth of 172 µm (Figure 13K).

Lee and co-workers [90] prepared a new NIR fluorescent probe for two-photon imag-
ing of Aβ42 plaques. Probe PyrPeg (Figure 14) was synthesized in total of five steps starting
from 3-methoxy-N-methylaniline. PyrPeg exhibited emission in organic solvents, but al-
most no emission in PBS solution. A broad two-photon emission in the range of 450–650 nm
with a maximum emission at 560 nm was detected when PyrPeg was excited with 740 nm
excitation in SH-SY5Y cells. Control experiments demonstrated that PyrPeg is specific for
detection of Aβ42 fibrils over other amyloidogenic proteins. The Kd values of PyrPeg for
the binding to the Aβ42 aggregates and monomer were 63.8 and 799 nM, respectively. Such
a large difference indicates that the affinity of PryPeg for Aβ42 aggregates is much stronger
than that for the Aβ42 monomer. Both δTPA value and logP value of PyrPeg are 230 GM (at
740 nm) and 3.51, respectively.
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Figure 13. In vivo TPM imaging of Aβ plaques in the frontal cortex of transgenic mice (5xFAD-
Tg, 10–12-monthold). Dyes were administered intraperitoneally (5 mg kg−1) and imaged with a
laser power of around 30 mW at the focal point. (E–J) Co-staining with IRI-1 and MeO-X04 of
Aβ plaques (E–G) and CAA near the blood vessel walls (H–J). Fluorescence images were acquired
under excitation at 920 nm (E,H) and 780 nm (F,I). Scale bars = 50 mm. (K) 3D in vivo imaging of
IRI-1-stained Aβ plaques. Reproduced with permission from Ref. [88]. Copyright 2019 Wiley-VCH.
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Figure 14. Structure of probe PyrPeg.

Co-staining experiments revealed well-merged fluorescence images. As shown in
Figure 15, the sectional images captured in Ch1 (detection windows at 400–500 nm for
MeO-X04) and Ch2 (detection windows at 530–640 nm for PyrPeg) at a depth of 220 µm
overlapped well, with the A value of 0.82, which confirmed that probe PyrPeg efficiently
images Aβ plaques. The 3D images were constructed from 200 sectional images. Both
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images from Ch1 and Ch2, respectively, overlapped well except for the green dots (MeOX04)
scattered around the overlap region (yellow dots) that can be attributed to the tangles and
cerebrovascular amyloids [91]. The result indicated that PyrPeg was localized in the dense
core region of the neuritic Aβ plaque.
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Figure 15. Detection of neuritic plaques in APP/PS1 mice. (A) TPM images of an APP/PS1 mouse
brain slice 1 day after ip injection with MeO-X04 (2 mg/kg) and iv injection with PyrPeg (2 mg/kg)
and a merged image (yellow). The images were captured at 400–500 nm (MeO-X04, green) and
530–640 nm (PyrPeg, red) upon TP excitation at 750 nm at a depth of 200 µm. (B) 3D images
constructed from 200 sectional images of the MeO-X04- and PyrPeg-injected tissues at a depth of
150–300 µm with 0.75 µm intervals along the z-direction and a merged image. The merged image
shows green dots around the overlapping regions. Representative images from replicate experiments
(n = 3) are presented. Scale bars: 30 and 50 µm. Reproduced with permission from Ref. [90]. Copyright
2020 American Chemical Society.

In vivo detection of Aβ plaques was carried out in the olfactory bulb of APP/PS1
mice by TPM imaging. The olfactory bulb is primarily affected in AD [92,93]. Both WT
(wide-type) and APP/PS1 mice were injected with PyrPeg, respectively, and examined by
TPM imaging. As shown in Figure 16, a bright fluorescence was observed in the APP/PS1
mice, but not in the WT mice, indicating that PyrPeg can selectively label Aβ plaques in
the AD brain, and could be useful for AD diagnosis.
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Figure 16. In vivo TPM images of the olfactory bulb in mice. (a) Schematic diagram of TPM imaging
of the olfactory bulbs of a tail-injected mouse. (b) TPM images of the olfactory bulbs of WT (left) and
APP/PS1 mice (right) 1 day after injection with PyrPeg (1 mg/kg). Scale bar: 50 µm. Reproduced
with permission from Ref. [90]. Copyright 2020 American Chemical Society.

4. Conclusions and Outlook

Fluorescence probes can directly detect and image Aβ plaques and other pathological
markers in the brain, providing a powerful tool for AD diagnostics in situ during AD
development. In this review, recent advances in two-photon Aβ-specific fluorescence
probes are highlighted including design strategies and applications to the detection and
imaging of Aβ in vivo (Table 1).

To date, a class of two-photon NIR fluorescent probes for Aβ plaques has been de-
veloped, but several challenges remain for practical applications. First, sensitivity and
selectivity are the basic requirements for accurate detection of AD. Efforts need not only
increase the signal-to-noise contrast and improve the sensitivity, but also distinguish diffuse
and neuritic plaques and enhance selectivity. Second, for in vivo detection and imaging,
NIR or two-photon fluorescent probes should have large two-photon cross-sections and
NIR emission as a consequence of their low-power laser excitation (≤5 mW at the focal
point does not cause damage to the cells and tissues [94]) and deep penetration depth
(>100 µm). Third, appropriate lipophilicity (log P = 2.0–3.5) [79] and good permeability
of the blood–brain barrier (BBB) are needed for in vivo detection and imaging in brain
tissues. In addition, stability, cytotoxicity, and mechanism are important factors in practical
applications which also need to be tested and clarified. With more and more research,
outstanding progress of two-photon NIR fluorescent probes for Aβ plaques is expected to
be achieved, which will finally improve AD diagnoses and treatments in clinics.
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Table 1. Highlights of fluorescent probes included in this review for two-photon imaging of Aβ

in vivo.

Probe LogP λex (nm) δTPA (GM) λem (nm) Mice Depth (µm) Ref
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