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Abstract: Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein
science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino
acid side chains and for elaborating such building blocks into more complex fluorinated peptides
and proteins. We then describe the diverse benefits that fluorine can offer when located within
amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing
pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
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1. Introduction

Fluorination has proven to be an exceptionally useful strategy in the development
of small-molecule drugs and agrochemicals [1–10]. The presence of fluorine can confer
a variety of advantages including enhanced resistance to metabolism, higher membrane
permeability, more potent target-binding, and greater target selectivity.

While the value of fluorine is now well-established in the context of small-molecule
drugs, a major current trend in the pharmaceutical industry is towards “beyond rule of 5”
compounds, i.e., bioactive compounds that lie outside of the physicochemical parameters
that are commonly accepted to correlate with oral bioavailability [11–18]. Particularly
notable amongst this new generation of pharmaceutical agents are peptides and proteins.

Given the track record of fluorination in the context of small-molecule drugs, it seems
likely that fluorination could offer significant benefits in the optimization of peptide- and
protein-based drugs too.

The structure of a peptide offers several possible sites for fluorination, which can be
broadly categorized as on the backbone or on the side chain. In terms of the peptide backbone,
fluorine can be found within non-hydrolyzable amide isosteres (e.g., CF=CH; C(CF3)=CH;
C(CF3)–NH), or partway along a backbone-extended amino acid (e.g., fluorostatines such
as H2N–CH(iBu)–CH(OH)–CF2–CO2H). We have recently reviewed some of these aspects
of backbone fluorination [19].

In the present review, we focus on side chain fluorination (Figure 1). We will briefly dis-
cuss the various strategies for synthesizing side chain-fluorinated amino acids
(Section 2), and then we will delve into the varied roles that fluorine can play within
amino acid side chains, including enabling NMR and PET imaging applications (Section 3);
remediating problematic pharmacokinetic properties (Section 4); controlling conformation
on scales ranging from individual amino acids all the way up to protein quaternary structure
(Section 5); and, finally, enhancing target-binding interactions (Section 6). There have been
several excellent reviews of some of these topics [20–28] but we feel that it is worthwhile to
provide an updated and broad account of the field.
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the required amino and carboxylate groups using one of several established methods. The 
Schöllkopf approach is a typical example (Scheme 1). By this means, the simple building 
block 2,3,4-6-tetrafluorobenzyl bromide (1) can be converted, stereoselectively, into 
2,3,4,6-tetrafluorophenylalanine (3) [34,58,59]. 

Biochemical methods can also be utilized for transforming simple fluorinated building 
blocks into side chain-fluorinated amino acids [60–62]. For example, the directed evolu-
tion of tryptophan synthase β-subunit (TrpB) from Pyrococcus furiosus generated a mutant 
enzyme that could efficiently convert 5-fluoroindole (5) into the fluorinated tryptophan 
analog 6 [60]. 

A range of methods are available for forming the C–F bond at a later stage of the 
amino acid synthesis. Such fluorination methods can be broadly categorized according to 
the mechanism involved, one of which is nucleophilic fluorination [63–72]. A nucleophilic 
source of fluoride such as diethylaminosulfur trifluoride (DAST), morpholinosulfur tri-
fluoride (morph-DAST), or silver fluoride (AgF) can be employed to displace a leaving 
group and deliver a side chain-fluorinated amino acid product. A typical example is 
shown in Scheme 1: treatment of the secondary alcohol 7 with Deoxo-Fluor (8) affected 
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2. Synthetic Aspects

Mirroring the structural diversity of side chain-fluorinated amino acids is a diver-
sity of methods available for their chemical synthesis. Several reviews have already
been published on this topic [29–38], so we will provide only a very brief overview here
(Section 2.1). Additionally, we will provide a concise discussion of methods for elaborating
side chain-fluorinated amino acids into peptides and proteins (Section 2.2).

2.1. Strategies for the Synthesis of Side Chain-Fluorinated Amino Acids

One way to efficiently obtain a side chain-fluorinated amino acid is to commence
with a simple commercially available fluorinated building block [39–57], and then append
the required amino and carboxylate groups using one of several established methods.
The Schöllkopf approach is a typical example (Scheme 1). By this means, the simple
building block 2,3,4-6-tetrafluorobenzyl bromide (1) can be converted, stereoselectively,
into 2,3,4,6-tetrafluorophenylalanine (3) [34,58,59].

Biochemical methods can also be utilized for transforming simple fluorinated building
blocks into side chain-fluorinated amino acids [60–62]. For example, the directed evolution
of tryptophan synthase β-subunit (TrpB) from Pyrococcus furiosus generated a mutant
enzyme that could efficiently convert 5-fluoroindole (5) into the fluorinated tryptophan
analog 6 [60].
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Scheme 1. General strategies for synthesizing side chain-fluorinated amino acids.

A range of methods are available for forming the C–F bond at a later stage of the amino
acid synthesis. Such fluorination methods can be broadly categorized according to the
mechanism involved, one of which is nucleophilic fluorination [63–72]. A nucleophilic source
of fluoride such as diethylaminosulfur trifluoride (DAST), morpholinosulfur trifluoride
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(morph-DAST), or silver fluoride (AgF) can be employed to displace a leaving group
and deliver a side chain-fluorinated amino acid product. A typical example is shown in
Scheme 1: treatment of the secondary alcohol 7 with Deoxo-Fluor (8) affected substitution
with inversion to deliver the fluorinated β-amino ester 10 [67]. However, the modest yield
of this particular transformation highlights a limitation of the nucleophilic fluorination
approach more generally, which is that it can sometimes be outcompeted by side reactions
such as elimination or rearrangement.

Fluorine can alternatively be incorporated into amino acid side chains via electrophilic
fluorination. Electrophilic sources of fluorine such as N-fluorobenzensulfonimide (NFSI)
or Selectfluor (14) can be employed to react with electron-rich amino acid side chains and
deliver fluorinated targets [73–78]. For example, the electron-rich tyrosine side chain (11)
can undergo an SEAr reaction with acetyl hypofluorite to deliver the fluorinated tyrosine
derivative 12 in a reasonable yield (Scheme 1) [79]. This transformation is notable for
its chemoselectivity: no reaction at the less electron-rich phenylalanine side chain of 11
is observed.

Another method for the synthesis of side chain-fluorinated amino acids is metal-
catalyzed fluorination [80,81]. For example, palladium catalysis has been applied for the
site-selective fluorination of a non-functionalized sp3 carbon to produce the fluorinated
α-amino acid derivative 16 (Scheme 1) [82]. This reaction was aided by the directing group
PIP (2-(pyridin-2-yl)isopropyl amine) that facilitated metal coordination.

Yet another general strategy for synthesizing side chain-fluorinated amino acids is
photocatalytic/radical fluorination [83,84]. Using catalytic dibenzosuberenone (18) and Select-
fluor (14) as the fluorine source, a visible-light-promoted fluorination of an sp3-hybridized
C-H bond was realized (Scheme 1). The method was optimized for benzylic protons on
phenylalanine-like residues and was shown to be efficient even for functionalizing short
peptides such as 17 [84].

2.2. Elaboration of Side Chain-Fluorinated Amino Acids into Peptides and Proteins

Solid-phase peptide synthesis (SPPS) is one of the most commonly used methods to obtain
synthetic peptides containing a side chain-fluorinated residue [85–93]. This technique relies
on the use of a solid support or resin onto which the desired peptide is assembled. The
synthesis is typically performed by initially attaching the C-terminal amino acid to the
resin. The succeeding amino acids from the target sequence are then individually attached
to this anchored residue in a stepwise manner using an appropriate coupling reagent.
For instance, SPPS using a leucinol (Lol)-substituted trityl-chloride resin was utilized in
introducing (4-fluorophenyl)alanine into an analog of the lipopeptaibiotic trichogin GA IV
(21, Scheme 2) in order to understand its conformation through 19F-NMR studies [88].

In addition to chemical approaches, several biosynthetic pathways for amino acid in-
corporation into peptides and proteins are available. Precursor-directed biosynthesis operates
by administering the fluorinated amino acid to a culture of the organism that produces
the desired peptide or protein [94,95]. For example, iturins and fengycins are lipopeptides
naturally produced by Bacillus sp. CS93, which has been shown to exhibit antifungal
properties. Feeding the bacterial cultures with fluorinated tyrosine (22) resulted in the
production of novel fluorinated counterparts of the lipopeptides (e.g., 23, Scheme 2) [95].

In some cases, biosynthetic incorporation of a fluorinated amino acid into the pro-
teome is actually the mechanism of action of a therapeutic agent. This approach has been
studied as a tool for inhibiting the growth of certain bacterial species [96–98]. In in vitro
cases, fluorinated amino acids fed into bacterial cultures were found to have become misin-
corporated into the bacterial proteome, ultimately inducing toxicity via inhibition of cell
growth [97,98]. A study on the toxicity of p-fluorophenylalanine (p-FPA) on Escherichia coli
15T revealed that when administered to the culture simultaneously with thymine, p-FPA
induced thymine starvation and led to decreased RNA/DNA synthesis, leading to cell
cycle arrest [99].
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Scheme 2. Approaches for elaborating fluorinated amino acids into peptides and proteins.

We return now to the situation where a high synthetic yield of a particular fluorinated
protein is desired. The rate of incorporation of the fluorinated amino acid can be enhanced
by making use of auxotrophic strains that are unable to synthesize a specific amino acid.
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Typically, the growth medium for the auxotrophic strain is deprived of that amino acid and
replaced by a surrogate fluorinated analog, resulting in the incorporation of the latter into
synthesized proteins in lieu of its natural amino acid counterpart [100–102]. This approach
was used in the synthesis of a mutant basic leucine zipper (bzip) peptide [102]. Using an
auxotrophic E. coli strain BL21(DE3), 5,5,5-trifluorolecine and 4,4,4-trifluorovaline were
successfully incorporated as isoleucine surrogates.

The amber stop codon (UAG) can be exploited for a similar purpose. This non-
sense codon can be included at a specific position of the mRNA where a desired fluo-
rinated amino acid is to be introduced and can therefore be used for site-specific fluo-
rination of a peptide [103–106]. Using a suppressor tRNA/aminoacyl-tRNA synthetase
pair (tRNAPyl

CUA/MmFAcKRS1) derived from Methanosarcina mazei, Nε-fluoroacetyllysine
(FAcK) was successfully incorporated into the Zspa Affibody (Afb) protein at the position
of the amber codon [106].

Finally, display technologies have been explored for the elaboration of side chain-
fluorinated amino acids into peptides. One such technique is mRNA display, a tool for
directed evolution wherein peptides with a desired trait are generated through iterative
cycles of diversification and selection (Scheme 2) [107–110]. The cycle is initiated by tran-
scription of a DNA library to the corresponding mRNA, followed by ligation to puromycin
at the 3′ end. Translation of the puromycin-linked mRNA produces mRNA-tagged peptides,
which undergo cyclization and reverse transcription into corresponding peptide-mRNA-
cDNA fusions. The desired fusions are then selected by binding to a bead-immobilized
target. The cDNA from selected fusions subsequently undergoes error-prone PCR to pro-
mote amplification and generate the library for the next selection cycle [111,112]. It is
possible for the DNA library to be expanded to accommodate unnatural amino acids such
as side chain-fluorinated amino acids [111,113]. This approach led to the discovery of
cyclic peptide 24 (Scheme 2), containing three side chain-fluorinated amino acid residues
for inhibition of proprotein convertase subtilisin-like/kexin type 9 (PCSK 9), which is a
valuable target for the treatment of coronary heart disease [107].

3. Fluorine, the “Spy”: Transmitting Intelligence on the Properties of Amino Acids,
Peptides, and Proteins

Sometimes, when fluorine is introduced into an amino acid side chain, it does not
dramatically alter the molecular properties. In such cases, the fluorine might be viewed
as an “innocent bystander” or perhaps as a “spy”: it offers the opportunity to gather
intelligence about the molecule’s properties through analytical techniques such as 19F NMR
spectrometry (Section 3.1) or positron emission tomography (Section 3.2).

3.1. 19F-Containing Amino Acids as NMR Tags

The introduction of fluorine within a protein provides the opportunity to interrogate
the properties and functions of the biomacromolecule through 19F NMR spectrometry. This
is a longstanding concept that has been the subject of several recent reviews [114–118]. The
process begins with the synthesis of a non-natural analog of the protein in which one or
more residues are replaced with a side chain-fluorinated amino acid. Next, the 19F NMR
spectrum of this non-natural protein is recorded as a point of reference, assuming that the
presence of fluorine does not dramatically alter the structure compared to the native protein.
Starting from this reference point, any subsequent changes in the 19F NMR spectrum of the
protein can be used to detect, e.g., a conformational change in the protein, a ligand binding
event, or some other supramolecular interaction of the protein.

There are several reasons why fluorine is especially advantageous as an NMR tag. The
19F nucleus has 100% isotopic abundance and high NMR sensitivity (83% compared to 1H).
Since fluorine is not naturally present in any biomacromolecules, there are no background
signals even if the protein of interest is present within a complex biological milieu. Finally,
19F NMR signals can appear over a very wide chemical shift range (>500 ppm) and they
are extremely sensitive to their environment. Taken together, these two features mean that
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signal overlap is rare even if multiple copies of the same fluorinated amino acid residue
are present at different positions in the protein sequence. They also mean that even very
subtle changes to a protein’s structure can cause easily detectable perturbations to the 19F
NMR spectrum.

One way to incorporate fluorine as an NMR tag into a protein is to employ a “prosthetic
group” approach [119–122]. Reagents such as p-fluorobenzenesulfonyl chloride or 2,2,2,-
trifluoroethanethiol can undergo reaction with solvent-exposed lysine or cysteine side
chains, respectively, within an intact protein, delivering a fluorine-labelled structure (e.g.,
25–26, Figure 2a). In a more elaborate example, the enzyme transglutaminase was recently
shown to accept 2,2,2,-trifluoroethylamine as a substrate, which allowed it to be used as a
bioconjugation reagent for the labelling of a glutamate residue on the surface of a model
protein (27) [123].

A complementary set of NMR tags include the monofluorinated amino acids 28–29
and 22 (Figure 2a). Such structures can be considered to be more sophisticated than the
prosthetic group examples in the sense that they more closely mimic natural amino acid
side chains [88,92,124–133] and can be installed anywhere in the protein sequence (see
Section 2.2), not just at solvent-exposed regions. However, a limitation of 28–29 and 22 is
that they contain just one fluorine atom, which limits the NMR sensitivity. More recently,
polyfluorinated amino acids such as 30–32 (Figure 2a) have attracted interest because their
intense 19F NMR signals potentially allow lower concentrations of the protein analyte to be
employed [134].

Fluorinated prolines (e.g., 33–36, Figure 2a) are an interesting subset of NMR tags
because they illustrate the importance of identifying a conformational match with the native
amino acid [89,116,135,136]. 4-Fluoroprolines (e.g., 33) and 3-fluoroprolines (e.g., 34) adopt
different puckers of the 5-membered ring (see also Section 5.1) and different cis/trans ratios
of the peptide bond to the N-terminal side of the proline residue. In these cases, the fluorine
is no longer an “innocent bystander”. However, if two fluorine substituents are installed at
the 3- and 4-positions, with appropriate stereochemistry (e.g., 35), then the conformational
influences of the two fluorines offset one another, resulting in a fluorinated analog that has
very similar conformational characteristics to natural proline [137]. Another fluorinated
proline derivative that has been found to closely mimic the conformational characteristics of
proline itself, while providing an intense 19F NMR signal, is the trifluoromethyl-containing
analog 37 (Figure 2) [89].

Having seen some examples of amino acids that bear 19F NMR labels (Figure 2a), let
us turn our attention to the application of these building blocks and the study of protein
structure and function.

The conformational dynamics of proteins, including their folding and unfolding
processes, are fundamental aspects of biology [118,130]. A medicinally relevant case is
the misfolding of proteins into amyloid fibrils, which is the basis of diseases such as
Alzheimer’s disease and Creuzfeldt–Jakob disease. Mammalian prion protein (PrP) is a
predominantly α-helical protein that is associated with neuronal cell membranes. Under
certain circumstances, PrP can misfold into a β-sheet rich structure. The misfolded structure
catalyzes the misfolding of further molecules of PrP, and this autocatalytic process leads
to the accumulation of aggregates called amyloid fibrils, which can cause neuronal cell
death and disease pathology. To study the pathway of amyloid formation, a protein-
observed 19F NMR study was undertaken [138]. Three 3-fluorophenylalanine (29) residues
were introduced into the protein to replace the Phe141, Phe175, and Phe198 of PrP (38,
Figure 2b). The 19F NMR spectrum of the fluorinated protein (38) revealed the presence of
several oligomeric species, with the predominant constituent being assigned as an octamer.
Variable-temperature 19F NMR experiments then allowed the equilibrium distributions to
be perturbed and the thermodynamic driving forces of aggregation to be elucidated. The
protein-observed 19F NMR approach was also able to explain how certain mutations make
the PrP protein more prone to aggregation through the stabilization of the octamer [138].



Molecules 2023, 28, 6192 8 of 34Molecules 2023, 28, x FOR PEER REVIEW 8 of 37 
 

 

 
Figure 2. (a) Selected examples of fluorinated NMR tags; (b) 19F NMR spectrometry can be used to 
interrogate the structure, the conformational dynamics, or the binding events of proteins (e.g., mam-
malian prion protein, 38; bromodomain and plant homeodomain-containing transcription factor, 
39). 

Figure 2. (a) Selected examples of fluorinated NMR tags; (b) 19F NMR spectrometry can be used to
interrogate the structure, the conformational dynamics, or the binding events of proteins (e.g., mammalian
prion protein, 38; bromodomain and plant homeodomain-containing transcription factor, 39).



Molecules 2023, 28, 6192 9 of 34

Another application of 19F-labelled proteins is to discover and optimize small molecule
ligands. An example of this approach is seen with the protein known as BPTF, or “bromod-
omain and plant homeodomain-containing transcription factor”. This protein is involved
in the regulation of chromatin accessibility, and its overexpression is associated with lung
cancer. A 5-fluorotryptophan residue (28) was incorporated at the binding surface of BPTF
(39, Figure 2b), which enabled a medium-throughput screen of ~200 potential ligands to
be performed, using 19F NMR spectrometry as the detection technique [117]. This screen
resulted in a promising hit molecule, the subsequent structure-activity optimization of
which was also facilitated by protein-observed 19F NMR.

Protein-observed 19F NMR can be used to study the interactions of proteins with other
biomacromolecular structures such as membranes. When investigating the membrane
interactions of helical antimicrobial peptides by solid-state NMR, it is helpful to have a
fluorine tag that is held in a fixed orientation relative to the helical axis [85,139–143]. The
unusual amino acid 37 (Figure 2a), which contains a rigid bicyclo[1.1.1]pentane moiety,
meets this requirement [144,145].

19F NMR spectrometry can be applied not only to interrogate the properties of a
fluorinated molecule as described above, but alternatively to visualize where a fluorinated
molecule travels within the body (i.e., 19F magnetic resonance imaging, or 19F-MRI). For
example, 6-fluoro-DOPA, a ring-fluorinated analog of dihydroxyphenylalanine, has been
employed as a brain imaging agent in a rat model of Parkinson’s disease [146]. A multi-
fluorinated DOPA analog has also been developed in order to achieve a stronger signal
for 19F-MRI applications [147]. However, the use of 19F NMR spectrometry as an imaging
modality remains quite niche [148], particularly in comparison with PET, which is discussed
in the next section.

3.2. 18F-Labelled Amino Acids and Peptides as PET Tracers
18F-Radiolabelled amino acids can be valuable agents for the diagnosis and visu-

alization of cancer. Tumour cells have high biosynthetic demand [149], and one way
that they can secure an increased supply of biosynthetic building blocks is by upreg-
ulating amino acid transporter proteins [150,151]. Thus, 18F-radiolabelled amino acids
often selectively accumulate in tumours, where their presence can be detected by positron
emission tomography.

One of the most operationally straightforward ways to incorporate an 18F radiolabel
onto the side chain of an amino acid is to install a prosthetic group that contains 18F
(Figure 3a). For example, the tyrosine side chain contains a phenol moiety, which can
be alkylated with [18F]fluoroethyltosylate to provide 2-[18F]fluoroethyltyrosine (40). This
important radiotracer is particularly valuable for the imaging of brain cancers as the
amino acid transporter proteins mentioned above enable this tracer to efficiently cross the
blood–brain barrier [150,152–154]. Prosthetic groups for the radiolabelling of several other
amino acids besides tyrosine [155–157] have also been developed, taking advantage of the
reactivity of the side chains of serine (41) [158], threonine (42) [158], tryptophan (43) [159],
cysteine (44) [160,161], and ornithine (45) [151,162] (Figure 3a). Certain more elaborate
prosthetic groups afford the alternative possibility of late-stage fluorination through 18F/19F
isotopic exchange (e.g., 46–47) [163,164].

A potential disadvantage of the prosthetic group approach is that the structure of
the labelled amino acid has become rather different from the natural amino acid, so the
in vivo distribution might also differ. To overcome this issue, it is sometimes desirable
to attach the 18F atom directly to the amino acid side chain as a replacement for a C–H
hydrogen (Figure 3a). Most commonly, a synthetic precursor bearing a leaving group is
required to enable an SNAr [65,165–170] or SN2 reaction [171–181] to take place to install
the 18F substituent (e.g., 48–49). Some other reaction manifolds have also been exploited
for radiofluorination of amino acid side chains or precursors thereof, including direct C–H
fluorination (50) [182–184] and organocatalytic electrophilic fluorination (51) [76].
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More complex structures have also been created in which the 18F-radiolabel is attached
to an amino acid side chain within a peptide or protein architecture. This opens up the
potential to visualize a variety of different disease states, depending on the biomacro-
molecule that is radiolabelled. There are broadly two strategies for synthesizing a peptide
or protein in which one amino acid side chain bears an 18F-radiolabel: early-stage vs.
late-stage fluorination.

The early-stage radiofluorination strategy commences with an 18F-labelled amino
acid and then elaborates it into a peptide or protein (Figure 3b). Examples of this strategy
are quite rare due to the challenge of synthesizing an entire peptide or protein on a short
timescale, but the challenge can be met by leveraging biosynthetic machinery for the
elaboration task. For example, 2-[18F]fluoroethyl tyrosine (40) was elaborated via a cell-free
translation system into a small protein (or “affibody”) that binds to the human epidermal
growth factor receptor (52, Figure 3b) [185]. This biosynthesis afforded a 6.5% overall
radiochemical yield.

The second strategy for 18F-radiolabelling a peptide or protein is to perform a late-stage
derivatization of one amino acid side chain within the biomacromolecule (Figure 3b). Lysine
and cysteine are the most commonly targeted amino acids for this purpose [86,90,91,186–191].
For example, a lysine side chain within the 34-residue parathyroid hormone (53) was
derivatized as the p-[18F]fluorobenzoyl amide, generating a macromolecular radiotracer
(55) suitable for the study of osteoporosis [189]. In another example, a cysteine side chain
within the 36 kDa protein annexin V was derivatized with 18F via a maleimide adduct,
generating a macromolecular radiotracer capable of detecting apoptotic cells [190].

4. Fluorine, the “Tinker”: Improving the Pharmacokinetic Properties of Amino Acids,
Peptides, and Proteins

The sub-optimal pharmacokinetic properties of peptides are one of the key obstacles
to their development into viable drugs [15,17]. There is some evidence that fluorination
of amino acid side chains can help to improve the hydrophobicity, permeability, and/or
stability of the metabolism of certain amino acids and peptides [192]. Selected examples
are presented below.

4.1. Hydrophobicity and Permeability

The bicyclic amino acid 56 (Figure 4) is a potent agonist of the metabotropic glutamate
receptor, and it shows promise for the treatment of a variety of central nervous system
disorders including schizophrenia. Compound 56 suffers from poor oral bioavailability,
but this limitation is impressively overcome in the fluorinated analog 57, which replicates
the agonist activity of 56 in vitro while being far more efficacious in vivo (Figure 4) [193].
It is unclear whether the improved oral bioavailability of 57 is attributable to increased
hydrophobicity, to greater resistance to metabolism, or to some other effect.

Mephalan (57, Figure 4) is a DNA-targeted anticancer drug featuring a nitrogen
mustard moiety located on the side chain of phenylalanine. A major limitation of compound
58 is its inability to traverse cell membranes. This limitation can be overcome through a
prodrug approach, in which mephalan is temporarily masked as a di- or a tripeptide (e.g.,
59–60, Figure 4) [194,195]. The presence of the fluorinated amino acid in 59–60 enhances
the drugs’ membrane permeability, and thereby substantially boosts the anticancer potency
in each case.
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4.2. Stability towards Proteolysis

When it comes to the issue of proteolytic stability, much work has been done in terms
of fluorination of the peptide backbone (e.g., peptidomimetics containing fluoroalkenes
or –C(CF3)=CH– groups as non-hydrolyzable isosteres of the amide bond). By contrast,
fluorinating peptide side chains is a less intuitive strategy for imparting proteolytic stability
because in such structures the potentially hydrolyzable amide functional group is retained;
essentially the hope is that a fluorinated side chain would be incompatible with the corre-
sponding binding pocket within a protease enzyme’s active site, preventing its hydrolytic
action. There is some evidence that this strategy can indeed impart proteolytic stability to
peptides, but only in particular cases, not as a general trend [196–199].

The α-helical peptide magainin (61, Figure 5) exhibits antimicrobial activity through
its ability to assemble into toroidal pores within the bacterial cell membrane. However,
61 contains several trypsin cleavage sites, which leads to a short half-life in vivo and limits
the usefulness of 61 as a pharmaceutical agent. The fluorinated analogs 62 and 63 (Figure 5),
which contain two or five hexafluoroleucine residues positioned along the hydrophobic face
of the helix, respectively, show either a modest or a dramatic increase in proteolytic stability,
due to steric incompatibility of the fluorinated side chains with the protease active site.
However, the increased proteolytic stability of 63 comes at a price: this fluorinated peptide
has lower antimicrobial activity than 61, due to its propensity to self-assemble into helical
bundles in aqueous solution rather than toroidal pores within the bacterial membrane (the
aggregation behavior of other highly fluorinated peptide helices is discussed in Section 5.4).

A related approach that can deliver increased proteolytic stability is to incorporate a
fluorinated side chain as an additional structural feature. α,α-Disubstituted amino acids,
in which a trifluoromethyl side chain is present in addition to a canonical side chain, can
endow peptides with greater proteolytic stability if the location and stereochemistry of the
trifluoromethyl substituent causes a clash within the protease active site [200].

In contrast with the aliphatic fluorinated side chains such as those seen in 62–63
(Figure 5), the presence of aromatic fluorinated side chains seldom leads to greater pro-
teolytic stability. For example, p-fluorophenylalanine has been incorporated into a variety of
short peptides and globular proteins as a replacement for natural phenylalanine, but this
usually leads to greater susceptibility, not resistance, to protease digestion [131,199,201–206].
This can be attributed to the likely ability of the p-fluorophenylalanine side chain to also
bind efficiently within protease binding pockets that have evolved to accommodate natural
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phenylalanine. Indeed, the design of the prodrugs 59–60 (Figure 4) highlights cases in
which efficient hydrolysis of an amide bond adjacent to p-fluorophenylalanine is a desirable
event as part of the prodrug strategy.
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4.3. Resistance to P450 Oxidation

Compound 64 (Figure 6) is a potent inhibitor of the protease enzyme cathepsin K. As
such, it is a promising lead compound for the treatment of osteoporosis. Compound 64
suffers from rapid metabolism in the body, due to the action of a cytochrome P450 enzyme
(CYP3A), which catalyzes the hydroxylation of the leucine side chain of 64. This metabolic
process is prevented in the fluorinated next-generation analog 65 (Figure 6), leading to
dramatically enhanced bioavailability [207].
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5. Fluorine, the “Tailor”: Folding Amino Acids, Peptides, and Proteins into Precise
3D Shapes

In the world of amino acids, peptides, and proteins, conformation is inextricably
linked to function. Therefore, methods for controlling conformation can have a variety of
valuable applications. Conformational control can be considered across a range of scales,
from the individual amino acid level (Section 5.1) [73], to the peptide secondary structure
(Section 5.2), to the protein tertiary structure (Section 5.3), and even to the quaternary
structure (Section 5.4). Fluorination can have significant impacts on all of these scales.

5.1. Conformational Control at the Individual Amino Acid Level

Fluorine offers a unique ability to control the conformations of individual amino
acid side chains. The polar C–F bond tends to align in predictable ways with neighbor-
ing functional groups [208,209]. For example, molecules containing a N+–C–C–F moiety
preferentially adopt conformations in which the N+ and Fδ− atoms are gauche, due to
electrostatic attraction. In another example, α-fluoroamides (i.e., molecules containing a
F–C–C(=O)–NH moiety) preferentially adopt a conformation in which the CF and CO bonds
are anti-periplanar, which can be rationalized in terms of dipolar forces. In yet another
example, molecules containing a F–C–C–H moiety preferentially adopt a conformation
in which the CF and CH bonds are anti-periplanar, due to σCH→σ*CF hyperconjugation
(note that this latter effect can reinforce the conformational preference described above for
N+–C–C–F compounds).

Such conformational effects can be exploited to control the conformations of amino
acid side chains, and this has been demonstrated most notably for proline [27,210–216]. For
example, fluorination at the 4-position of the proline side chain (i.e., 33 and 66, Figure 7)
can stabilize either the C4-endo or C4-exo pucker depending on the configuration of the
fluorinated stereocentre, which is attributable to σCH→σ*CF hyperconjugation in each case.
This ability to control the pucker of the proline ring has been exploited for a range of
applications, including enhancing the enantioselectivity of organocatalytic reactions (e.g.,
70→73, Figure 7) [217–219]. Fluorination at the 3-position of the proline side chain can
influence the pucker in a similar way [220,221].

Fluorine can also influence the conformation of the ring-expanded proline analog,
pipecolic acid (69, Figure 7) [222,223]. The six-membered ring of 69 preferentially adopts
a chair conformation in which the carboxyl group is equatorial. This conformation is
maintained in the difluorinated analog 67 (Figure 7), with the N+–C–C–F and F–C–C–F
moieties both adopting favorable gauche alignments. In contrast, the diastereoisomeric
analog 68 adopts a ring-flipped conformation in which the carboxyl group is forced into
the axial position.

The ability of fluorine to control the conformations of proline analogs will be further
examined in Sections 5.2, 5.3 and 6.2.

Another context in which fluorine-derived conformational control of amino acid side
chains can be valuable is in the elucidation of the binding conformation of certain receptor
ligands. For example, the N-methyl-D-aspartate (NMDA) receptor is a target of interest for
the treatment of several disorders of the nervous system. An X-ray crystal structure of this
receptor bound to its natural ligand (NMDA, 74) reveals a “bent” ligand conformation in
which the carboxylate substituents of 74 are gauche to one another (Figure 7) [224]. This
information is supported by the relative activity of two fluorinated NMDA analogs, 75 and
76 (Figure 7) [225]. For analog 75, binding leads to a favorable gauche N+–C–C–F alignment,
and as a result, this ligand exhibits strong agonism almost equal to that of the native ligand,
74. In contrast, for analog 76, binding would require an unfavorable anti-N+–C–C–F angle,
and as a result, this ligand is virtually inactive.
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5.2. Peptide Secondary Structure

We have seen that fluorine can influence the conformations of individual amino acid
side chains (Section 5.1). Now, if a fluorinated amino acid is elaborated into a peptide,
the fluorine-derived conformational control can sometimes extend beyond the individ-
ual amino acid and can also start to influence the preferred rotameric species along the
peptide backbone.

Consider again the example of fluorinated proline. It has been established that in
peptides containing trans-4-fluoroproline (e.g., 77, Figure 8a), the amide bond preceding
the fluoroproline residue strongly favors the trans-conformation [93,226–228]. In contrast,
peptides containing cis-4-fluoroproline (e.g., 78, Figure 8a) favor a cis-amide conformation
adjacent to the fluoroproline residue. This contrast can be exploited to alter the target-
binding properties of a bioactive peptide. For example, the peptide sequence in 77–78 is
derived from the gastrin hormone G17. This hormone binds to a G-protein coupled receptor
called cholecystokinin-2 (CCK-2R), which is overexpressed in a range of cancers. The key
binding motif of G17 is thought to adopt a compact, hairpin-like structure; this conformation
is better replicated by the cis-4-fluoroproline-containing peptide 78 (Figure 8a), endowing
this peptide with higher CCK-2R binding affinity than the trans-4-fluoroproline-containing
peptide 77 [93].
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The idea of fluorine-derived conformational control holding small peptides into de-
sired shapes for binding to targets is further examined in Section 6.3.

The ability of side chain-fluorinated amino acids to influence peptide secondary struc-
ture is not just limited to hairpin turns: α-helices and β-sheets can be affected too [229]. For
example, peptide 79 (Figure 8b) is an engineered structure that is capable of adopting either
an α-helix or a β-sheet conformation. When fluorine atoms are successively introduced into
one side chain, the helix is destabilized to a greater and greater extent [230]. This can be
attributed to the increased hydrophobicity of the highly fluorinated side chains, which are
not favorably accommodated at the water-exposed edge of the helix. Intriguingly, in this
peptide scaffold, there is an inverse relationship between α-helical and β-sheet propensity.
This knowledge about the effects of side chain hydrophobicity on the kinetics and thermo-
dynamics of β-sheet formation could be relevant in the future for designing amyloid-based
materials, or perhaps even in understanding the progression of amyloid-based diseases.
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It should be noted that the outcome can be different if not one, but multiple fluorinated
residues are incorporated along the same edge of an α-helix [231]. In some cases, the helix
can be stabilized because it contains a “fluorous edge”, which can engage in favorable
supramolecular aggregation phenomena. This concept was mentioned in Section 4.2 and is
explored further in Section 5.4 of this review.

5.3. Protein Tertiary Structure

Side chain-fluorinated amino acids can act as protein “superfolders”. For example,
collagen, which consists of many tripeptide repeats of typical structure 83 (Figure 9), must
adopt an all-trans conformation in order to assemble into its final triple-helical structure.
Fluorine can accelerate this folding process. The fluorine substituent in the non-natural
collagen analog 84 exerts an inductive pull that lowers the amide C–N bond order, reducing
the kinetic barrier to cis/trans isomerization, and thereby helping the peptide chain to find
its way to the required all-trans conformation [232]. The fluorine also provides thermody-
namic stabilization of the final structure by favoring the C4-exo pucker, which matches the
pucker found in natural collagen [233].
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Fluoroprolines have been incorporated into several other proteins besides colla-
gen [211,212,214,215,234–237]. For example, fluoroproline incorporation has led to a “su-
perfolding” analog of green fluorescent protein (GFP). The crystal structure of GFP reveals
that the majority of its proline residues (9 out of 10) adopt the C4-endo pucker [238]. An
analog of GFP in which all 10 proline residues are replaced with cis-4-fluoroproline (85,
Figure 9) displays enhanced folding characteristics, attributable to (i) lowering of the kinetic
barrier to cis/trans peptide bond isomerization, as described above for collagen, and (ii)
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thermodynamic stabilization of the required C4-endo pucker [239]. In contrast, the corre-
sponding GFP analog containing trans-4-fluoroprolines does not fold efficiently and lacks
fluorescent properties.

Fluorination can modulate protein tertiary structures in other ways too. For example,
fluorination can be exploited to enhance or disrupt a specific interaction within a protein
core, in order to assess the contribution of that interaction to the protein’s structure and/or
function [58,139,240,241]. This idea has been applied to study both aromatic–aromatic and
sulfur–π interactions within the dopamine D2 receptor (86, Figure 9) [242]. Analogs of 86
were created in which fluorine atoms were successively incorporated, separately, into the
side chains of Phe197 and Trp342. Increasing levels of fluorination were found to correlate
with reduced protein function in both cases, and this was taken as evidence that Phe197
and Trp342 probably participate as electron-rich components within the native protein in
aromatic–aromatic and sulfur–π interactions, respectively. Cation–π interactions within
other proteins have also been interrogated in a similar fashion [242–245].

Having seen examples of individual, targeted interactions mediated by fluorine within
a protein core, let us now consider a scenario where there are multiple, non-specific inter-
actions. Proteins have been engineered to have multiple, highly fluorinated amino acids
buried within the hydrophobic interior (e.g., 87, Figure 9) [246–251]. For example, protein
87 contains 12 hexafluoroleucine residues (i.e., 72 fluorine atoms) whose side chains form a
highly fluorinated spine within the protein core. Such “fluorous core” proteins typically dis-
play markedly greater structural stability compared with their non-fluorinated counterparts
(e.g., ∆G◦fold = −27.6 kcal/mol for 87, compared with ∆G◦fold = −18.0 kcal/mol for the
non-fluorinated parent protein) [251]. The increased structural stability of “fluorous core”
proteins such as 87 can be rationalized by comparing the relative energies of the unfolded
and folded states [87,137,251–253]. In the unfolded state, the perfluorinated side chains of
87 are solvent-exposed; this is unfavorable because the fluorinated moieties cannot interact
attractively with the water solvent, and also because the fluorinated moieties occlude the
backbone NH and CO groups from hydrogen bonding with water. These unfavorable
phenomena are avoided in the folded state.

5.4. Protein Quaternary Structure

We consider again the structure of the “fluorous-core” protein 87 (Figure 9). It com-
prises a bundle of four α-helices, which are connected from one to the next via peptide
loops. It is intriguing to consider a hypothetical scenario in which the loops were removed
so that 87 was no longer a single protein but rather four separate α-helical peptides. Would
the fluorous packing effect be strong enough to induce separate “fluorous-edged” peptide
helices to come together and form higher-order structures?

The answer is yes [254]. Several peptide systems have been engineered that can self-assemble,
zipper-like, into aggregates via a fluorous interface (e.g., 88, Figure 10) [21,197,198,255–264].
A notable feature of this fluorine-directed self-assembly phenomenon is that it can be
engineered to occur either within hydrophilic peptide helices (which can dimerize in aqueous
solution) or within hydrophobic peptide helices (which can dimerize while embedded within
a lipid membrane) [265,266]. This versatility comes from the amphipathic character of the
“fluorous edge”.

Self-association phenomena have been investigated with other fluorinated peptide
systems too. Certain peptides have a propensity to aggregate into supramolecular architec-
tures like fibrils or hydrogels. Such aggregation-prone peptides can have a wide range of
sizes, but a common feature is the presence of phenylalanine residues within the sequence.
In several cases, the replacement of phenylalanine residues with fluorophenylalanine has
been found to modify the propensity for self-assembly and/or the mechanical properties of
the resulting supramolecular architecture [267–270].

All of the quaternary structures that we have examined so far have been of homomeric
species. We will now conclude this section with an example of heteromeric peptide aggre-
gation that is driven by fluorine-based interactions [271]. The first peptide of interest is
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a designed 32-residue scaffold known as α2D (89, Figure 10). In the absence of any other
peptides, α2D folds and aggregates into a homodimer in which four phenylalanine side
chains (two from each monomer) form stacking interactions at the dimer interface. This
homodimeric folding pattern is also seen with a fluorinated analog of α2D (90, Figure 10) in
which the phenylalanine residues are replaced with pentafluorophenylalanine. Remarkably,
however, if the two homodimers 89–90 are mixed together, they re-assemble selectively into
heterodimers (91) as depicted in Figure 10. This preference for heterodimerization can be ex-
plained by the quadrupolar attraction of the phenyl group of 89 with the pentafluorophenyl
group of 90.
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6. Fluorine, the “Soldier”: Guiding Amino Acids, Peptides, and Proteins to Hit Their
Biological Targets

Our attention now turns from “within” a biomolecule to its surroundings, i.e., how an
amino acid or peptide interacts with its broader environment. Fluorination can modulate
this in useful ways, for example, in the design of mechanism-based enzyme inhibitors
(Section 6.1), in the enhancement of the intermolecular forces between an amino acid side
chain and its biological target (Section 6.2), or through conformational pre-organization of
a bioactive peptide (Section 6.3).

6.1. Mechanism-Based Enzyme Inhibitors

Side chain-fluorinated amino acids have proven to be useful as mechanism-based
inhibitors of a range of pyridoxal phosphate (PLP) dependent enzymes, including amino
acid racemases, decarboxylases, and transaminases [272–274]. Several such enzymes are of
medicinal importance as targets for the treatment of African sleeping sickness, hirsutism,
epilepsy, and cancer [275]. A fluorine atom strategically located at the β-position of a
substrate mimic (e.g., 92, Scheme 3) provides a leaving group that can ultimately lead to
irreversible alkylation, and hence inactivation, of the enzyme.
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6.2. Enhancing Intermolecular Forces

Fluorination can also enhance the non-covalent binding of amino acids and peptides
towards their biological targets. This is possible because fluorination can modulate inter-
molecular forces.

The first type that we will consider is hydrophobic (or van der Vaals) forces [276]. In
some instances, the presence of a fluorinated substituent like -CF3 on the side chain of a
peptide ligand (e.g., 93, Figure 11) [277] can provide good size- and shape-complementarity
within a binding pocket of a biomacromolecule; the fluorines contribute to the binding
interaction simply by presenting an appropriately shaped hydrophobic volume.

In other instances, fluorination can deliver more targeted interactions within a binding
site. For example, a common structural motif within peptide-based drugs is a fluoropheny-
lalanine residue (e.g., 94, Figure 11) [37,278–281]. The presence of a polar C–F bond within
the phenylalanine side chain of 94 offers the opportunity for adventitious dipolar inter-
actions to be achieved within a hydrophobic binding pocket [282], leading to enhanced
affinity. This is separate from the other benefits that we have already seen in terms of
the pharmacokinetic properties of fluorophenylalanines (see Section 4). Other aromatic
amino acids (e.g., tryptophan) have also been fluorinated as a means to alter their dipolar
character and enhance their bioactivity [283].

Another type of intermolecular force that aromatic amino acid side chains can partici-
pate in is cation–π interactions. As discussed in Section 5.3, multiply-fluorinated aryl side
chains can be incorporated into proteins in order to disrupt, and thereby measure the impor-
tance of, cation–π interactions to the protein’s tertiary structural integrity [242–245]. Those
examples are technically intramolecular in nature. It is also possible to employ fluorination
to study intermolecular cation–π interactions [284–286]. For example, pentafluorophenylala-
nine residues (i.e., 95, Figure 11) have been introduced into ion channel proteins in order to
interrogate the contribution of cation–π interactions in the binding of ion channel blockers
such as tetrodotoxin [287,288].

Fluorine substituents can also alter the hydrogen-bonding character of amino acid
side chains. For example, fluorine has been introduced into tyrosine side chains (e.g.,
96, Figure 11) as a means of modulating the hydrogen-bonding ability of the adjacent
phenolic group through inductive effects [289,290]. This strategy has been applied to
optimize the binding of fluorinated small-molecule ligands to their cognate receptors (e.g.,
3-fluorotyrosine binding to an amino acid transporter protein). The conceptual inverse,
in which a protein is fluorinated in order to alter its interactions with non-fluorinated
small-molecule binders, is also possible. For example, the enzyme glutathione S-transferase
contains a key tyrosine residue within its active site. Replacement of this key residue with
3-fluorotyrosine (96) resulted in an altered hydrogen-bonding ability within the active site
and correspondingly altered reaction kinetics, which is information that helped to reveal
the native enzyme’s catalytic mechanism [291,292].
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The difluoromethyl (-CF2H) substituent (e.g., 97, Figure 11) is another example of a
fluorinated hydrogen-bonding moiety that has been successfully incorporated into amino
acid side chains to enhance target-binding affinity [293–295].

Finally, fluorine can be useful for the design of bioisosteres of post-translationally
modified amino acids [296]. A common type of post-translational modification is the
phosphorylation of tyrosine residues (i.e., to provide Ar-O-PO3

2−). Aryl phosphonates (i.e.,
residues containing Ar-CH2-PO3

2−) are non-hydrolyzable isosteres of tyrosine phosphates,
and they can serve as inhibitors of phosphatase enzymes. However, the inhibitory potency
is dramatically enhanced with the more advanced isosteres, difluorophosphonates (i.e.,
Ar-CF2-PO3

2−, e.g., 98, Figure 11) [46,297]. The fluorine substituents provide a closer
mimicry of the phosphate group in terms of the hydrogen bond acceptor ability, but also in
terms of the pKa2 and even the Ar-X-P bite angle [209].

6.3. Conformational Pre-Organization

Aside from the modulation of intermolecular forces (Figure 11), another way that
fluorine can enhance the binding affinity of a peptide ligand towards its target is through
conformational control [221]. If a ligand is flexible, then an entropic penalty must be
paid upon target binding. However, if the ligand can be pre-organized into the target-
binding conformation, then the entropic cost is pre-paid, and this can translate into higher
binding affinity.

We have already seen an example of conformational pre-organization delivering
higher binding affinity (Section 5.2). Another example of the concept of conformational
pre-organization is seen with thrombin inhibitor 99 (Figure 12). This molecule is disordered
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in solution, with the proline side chain interconverting between the C4-endo and C4-exo
puckers; however, only the latter conformation is suitable for target binding [210]. In
the fluorinated analog 100, the required C4-exo pucker is pre-organized, and this leads to
stronger target binding. Conversely, in the fluorinated analog 101, the “wrong” C4-endo
pucker is pre-organized, and this leads to weaker target binding.
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7. Conclusions

Side chain-fluorinated amino acids offer fascinating and fruitful research opportunities.
Synthetic chemistry underpins the field. A wide variety of methods for synthesizing

side chain-fluorinated amino acids have now been established (outlined in Section 2.1 of
this review), encompassing nucleophilic, electrophilic, metal-catalyzed, and photochemical
fluorination methods. These synthetic advances have enabled the creation of structurally
diverse amino acid targets, ranging from selectively fluorinated structures bearing one or a
small number of fluorines on the side chain, all the way up to perfluorinated structures
bearing a large number of fluorines. A range of methods for elaborating such fluorinated
amino acids into peptides and proteins are also available (Section 2.2), including both
chemical and biochemical strategies.

Fluorine is able to perform a variety of roles within amino acid side chains. The
first role (described in Section 3 of this review) may be likened to that of a “spy”: flu-
orine enables the collection of information about the properties of biologically relevant
molecules, through 19F-NMR or 18F-PET analysis. Fluorine’s second role (Section 4) is
akin to that of a “tinker”: fluorine can repair some of the well-known pharmacokinetic
problems associated with peptide-based drugs, including their permeability and their sus-
ceptibility to metabolism. Fluorine’s third role (Section 5) invites comparison with that of a
“tailor”: fluorine can control the ways in which amino acids, peptides, and proteins fold.
Fluorine’s fourth and final role (Section 6) may be likened to that of a “soldier”: fluorine
can guide molecules to better hit their biological targets through both covalent and non-
covalent means.

In the future, it seems likely that research into side chain-fluorinated amino acids will
continue to yield valuable outcomes. Two areas merit special mention. First, the concept of
site-selective, late-stage protein fluorination [298] is an exciting development that could
enable a greater variety of fluorinated proteins to be created for diverse applications.
Second, it is noteworthy that although many side chain-fluorinated amino acids have been
examined in this review, the examples that are stereoselectively fluorinated are relatively
scarce and mostly limited to proline analogs; there seems to be an opportunity to further
explore a wider variety of stereoselectively fluorinated amino acids for applications such
as conformational control and enhancement of target-binding.
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