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Abstract: Reactive oxygen species (ROS) are extremely important for various biological functions.
Lysosome plays key roles in cellular metabolism and has been known as the stomach of cells.
The abnormalities and malfunctioning of lysosomal function are associated with many diseases.
Accordingly, the quantitative monitoring and real-time imaging of ROS in lysosomes are of great
interest. In recent years, with the advancement of fluorescence imaging, fluorescent ROS probes
have received considerable interest in the biomedical field. Thus far, considerable efforts have
been undertaken to create synthetic fluorescent probes for sensing ROS in lysosomes; however,
specific review articles on this topic are still lacking. This review provides a general introduction
to fluorescence imaging technology, the sensing mechanisms of fluorescent probes, lysosomes, and
design strategies for lysosome-targetable fluorescent ROS probes. In addition, the latest advancements
in organic small-molecule fluorescent probes for ROS detection within lysosomes are discussed.
Finally, the main challenges and future perspectives for developing effective lysosome-targetable
fluorescent ROS probes for biomedical applications are presented.

Keywords: fluorescent probes; fluorescence imaging; lysosome; ROS; ROS detection

1. Introduction

1.1. Fluorescence Imaging and Fluorescent Probes

Intravital imaging technology is a crucial approach for modern biology and the medical
sciences, and allows us to gain a better insight into the physiological activities of living
organisms at the molecular level [1–3]. Among various imaging techniques, fluorescence
imaging shows significant potential in biomedical science due to its unique advantages such
as noninvasiveness, high spatial resolution and sensitivity, fast response time, technical
simplicity, and the lack of ionizing radiation exposure [2,4–7]. In recent decades, significant
advancements in fluorescence imaging technology have expanded the possibilities for
biological imaging. Ratiometric fluorescence imaging offers distinct advantages in contrast
to fluorescence-intensity-based imaging, primarily due to its built-in self-calibration and
robust anti-interference capabilities [8]. In addition, high-speed, high-resolution, and field-
of-view (FOV) fluorescence imaging offers additional advantages, enabling biologists to
utilize a diverse range of models for investigating biological systems [9,10].

Since the key component of the fluorescence imaging technique is the fluorescent probe,
advanced smart fluorescent probes are urgently required for it to fully be applied in clinical
practice. A fluorescent probe is defined as a material that can interact with a target and
transfer the recognition event into an optical signal output. A fluorescent probe typically
involves a recognition site, a fluorophore, and a sensing mechanism [11–13]. Typically, there
are three types of fluorescent probes, including type 1: the binding-site-signaling subunit
approach on the basis of molecular recognition and host–guest chemistry; type 2: a displacement
approach relying on a coordination complex; and type 3: chemodosimeters (reaction-based
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fluorescent probes) (Figure 1) [4,14,15]. Thus far, many fluorescent chemical sensors have been
developed for biosensing and bioimaging. In this regard, various photophysical strategies
have been established to design fluorescent probes, including photo-induced electron transfer
(PET) [16–18], chelation-induced fluorescence enhancement (CHFE), Forster resonance energy
transfer (FRET) [11,19], intramolecular charge transfer (ICT) [20–22], excited-state intramolecular
proton transfer (ESIPT) [23–26], monomer–excimer systems [11,19], and aggregation-induced
enhancement (AIE) [27–29].
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Figure 1. Three main sensing mechanisms of fluorescent chemical sensors. (a) Binding site-signaling
subunit approach (reversible recognition); (b) Displacement approach; (c) Chemodosimeter (reaction-
based fluorescent probe).

Up to now, most fluorescent ROS probes have belonged to type 3, chemodosime-
ters, which are designed and developed on the basis of various conventional fluorophore
skeletons such as coumarin, naphthalimide, flavonoid, BODIPY, rhodamine, pentame-
thine cyanine, hemicyanine, and heptamethine cyanine (Figure 2a) [4,11,30–33]. Generally,
the consideration of a “turn-on” or ratiometric fluorescent probe is more desirable com-
pared to “turn-off” fluorescent types due to its excellent sensitivity [34–36]. In addition,
near-infrared (NIR) fluorescent probes are of great interest because they can improve the
penetration depth of imaging and the signal-to-noise ratio in fluorescence imaging [2]. This
review highlights the design approaches of small-molecule fluorescent probes and their
bio-applications for biosensing and bioimaging of ROS in lysosomes. We believe that this
review may encourage more and more researchers to develop smart chemical probes for
practical applications.
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1.2. Lysosomes and Lysosome-Targeted Fluorescent Probes

Lysosomes are small membrane-enclosed cytoplasmic organelles with sizes of
0.1–0.5 µm in diameter, and lysosomes are described as the stomach of cells. Lysosomes
are responsible for degrading intracellular biomolecules such as proteins, nucleic acids,
lipids, and carbohydrates, triggered by various lysosomal enzymes. Lysosomes have acidic
environments with a pH range of 4.0 to 6.0 [37,38]. Although lysosomes play an important
role in physiological activities, lysosome dysfunction might induce numerous diseases.
Therefore, an in-depth understanding of the lysosomal working principle becomes highly
imperative for modern biomedical research [37]. At the cell organelle level, lysosomal
ROS play a crucial role in upholding the redox balance of lysosomal functions. However,
abnormal concentrations of ROS in lysosomes may induce a loss of lysosomal function.
Therefore, it is highly demanded to develop effective fluorescent probes for lysosomal
ROS [34,39–41]. Lysosomes display unique physicochemical and structural characteristics.
In particular, their acidic vesicular structures facilitate the accumulation of weakly basic
molecules. Some lysosomal trackers with weakly basic properties have been developed and
commercialized. Normally, morpholine and other amine groups are extensively utilized as
specific lysosome-targeting units [41]. Notably, the acidic tumor microenvironment may
enable the selective delivery of lysosome-targetable probes to tumors based on pH, with
the assistance of morpholine or other amine groups possessing lone pairs of electrons. This
review provides the design approaches of small-molecule fluorescent probes and their
applications for monitoring ROS in lysosomes.

2. Lysosome-Targeted Fluorescent Probes for ROS

ROS are chemically active compounds that are naturally produced within living
organisms as by-products of oxygen metabolism. ROS encompass various types and play
crucial roles in many physiological processes [4,42,43]. However, abnormal ROS generation
is closely linked to the pathological processes of various diseases [41]. Consequently,
there is a high demand for developing smart fluorescent probes for ROS. This section will
introduce the application of small-molecule fluorescent probes for the specific detection of
ROS, particularly in lysosomes.

2.1. Hydrogen Peroxide (H2O2)

H2O2 is one of the most significant ROS, and plays a crucial role in redox signaling
and oxidative stress in lysosomes. Nevertheless, uncontrolled levels of H2O2 may cause
many diseases, such as neurodegenerative diseases and cancer [44–47]. Thus, the sensing
and imaging of physiological H2O2 in lysosomes have attracted considerable attention.
In this section, organic fluorescent probes based on small molecules for lysosomal H2O2
are discussed. Lysosome-targeted fluorescent H2O2 probes usually consist of a boronate
ester as the specific sensing unit, a morpholine/amine group as the lysosomal targeting
moiety, and a fluorophore. Recently, Lin et al. introduced a two-photon probe, 1, to detect
H2O2 in lysosomes (Figure 3a) [6]. Probe 1 featured an “acceptor-п-acceptor” electronic
structure, initially exhibiting weak fluorescence. Upon exposure to H2O2, the boronate
ester group in 1 underwent oxidation, transforming into an electron-rich hydroxyl group.
The transformation triggered a significant increase in fluorescence around 550 nm due
to ICT from the hydroxyl group donor to the naphthalimide acceptor. Probe 1 remained
unaltered in the presence of other analytes, showcasing its exceptional selectivity for H2O2.
Probe 1 was successfully employed to visualize lysosomal H2O2 in cells and tissues using
two-photon fluorescence imaging.
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Based on the phthalazinone scaffold, Xu et al. developed a lysosome-targetable two-
photon probe, 2, for H2O2. Probe 2 was specifically designed to investigate the dynamic
progression of hypoxia–reoxygenation injury (Figure 3b) [48]. Probe 2 demonstrated rapid
responsiveness, high sensitivity, and excellent selectivity towards H2O2. By incorporating
the morpholine group, 2 was effectively utilized to monitor H2O2 within lysosomes. The
investigation revealed that reoxygenation potentially led to the accumulation of H2O2 in
lysosomes among post-hypoxia cells.

Employing a similar oxidative cleavage of the boronate ester strategy, Zhao et al.
developed pH-activatable probes 3–6 for sensing H2O2 in lysosomes (Figure 4) [49]. In their
work, an aryl boronate group, a morpholine moiety, and a benzorhodol fluorophore were
used as the H2O2-sensing moiety, the lysosome-locating moiety, and the pH-responsive
unit, respectively. The aryl boronate moiety was introduced into the different positions of
the benzorhodol fluorophore to evaluate the response of the probes to H2O2. Among them,
4 exhibited an excellent ability to selectively monitor H2O2 under lysosomal pH (4.5–5.0)
compared to 5 and 6. Cell imaging studies further demonstrated that 4 was able to image
endogenous H2O2 in the lysosomes of living cells.

Kumar et al. constructed a fluorescent probe, 7, for monitoring H2O2, using a naph-
thalimide as the fluorophore, a catechol as the reactive site, and a morpholine moiety as the
lysosome-targeting group (Figure 5a) [50]. In the presence of H2O2, the probe converted
its catechol moiety into an o-quinone form, activating emission by blocking PeT from the
catechol to the naphthalimide core. Probe 7 was sensitive and selective towards H2O2, and
served as a promising fluorescence imaging agent for tracking H2O2 levels in lysosomes,
brain tissues, and living nematodes.
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Ge et al. reported an NIR lysosome-targetable probe, 8, using phenoxazinium and
methyl(phenyl)sulfane as the fluorophore and the sensing unit, respectively, for H2O2
detection (Figure 5b) [51]. With the addition of H2O2, oxidation took place at a sulfur atom
to produce the corresponding sulfoxide, which led to an increase in fluorescence intensity
around 676 nm by the suppression of the PET process. Probe 8 showed good selectivity,
excellent sensitivity, and rapid response time. Cell imaging studies indicated that 8 had a
potential for detecting and visualizing lysosomal H2O2 in cells.

Yoon et al. synthesized a boronate-based H2O2 probe, 9, using a naphthalimide as
the fluorophore and a morpholine moiety as the targeting group (Figure 6a) [52]. Probe
9 exhibited remarkable specificity for H2O2, both in the solution and the living cells.
The cellular imaging indicated its potential for monitoring endogenous and exogenous
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H2O2 levels effectively. Furthermore, time-dependent fluorescence bioimaging provided
additional verification of the probe’s efficacy as a reliable marker for detecting H2O2.
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Peng et al. introduced a ratiometric fluorescent probe, 10, for H2O2, utilizing a
naphthalimide as the fluorophore, a benzyl boronic acid as the reactive moiety for H2O2,
and a pyridine group as the lysosomal targeting unit (Figure 6b) [53]. Without H2O2, it
emitted bright blue light. With H2O2, it emitted vivid yellow light. Notably, probe 11
exhibited excellent sensing performance for H2O2: (1) it displayed a target-responsive
ratiometric fluorescence; (2) it featured a significant Stokes shift with distinct 425 nm and
550 nm channels; and (3) it responded rapidly (<1 min) and selectively to H2O2 over other
substances. Probe 11 successfully detected and imaged H2O2 in biological systems.

Ma et al. developed a H2O2-specific probe, 11, using a benzothiazole framework
as the fluorophore, a boric acid ester as the reactive site, and a morpholine group as the
lysosome-targeted unit (Figure 6c) [54]. In the absence of H2O2, the probe showed weak
fluorescence. However, the fluorescence intensity significantly increased in the presence of
H2O2. Probe 11 displayed a good linear correlation with a low LOD of 0.46 µM, indicating
excellent sensitivity. Probe 11 was non-toxic and effectively imaged H2O2 in the lysosomes
of A549 cells.

2.2. Hypochlorous Acid (HOCl)

Hypochlorous acid (HOCl) is also known as a crucial ROS in living systems, and
is mainly generated through the reaction of chloride (Cl¯) and H2O2 in the presence
of myeloperoxidase (MPO) [4,34,55,56]. HOCl plays a pivotal role within the context of
the immune system. However, excessive HOCl production is implicated in numerous
pathological processes, leading to various diseases, even cancer [39,41,56]. Accordingly,
the consideration of probes for lysosomal HOCl has garnered great interest. In 2017,
Ye et al. introduced a two-photon fluorescent probe, 12, based on the ICT mechanism for
detecting HOCl. Probe 12 was prepared via a direct attachment of the methyl thioether
group to the naphthalimide structure at its four-position (Figure 7a) [57]. Upon the addition
of ClO¯ into solutions of 12, the absorption peak at 405 nm diminished as the color of the
solutions changed from yellow to colorless, and the emission band around 505 nm was
gradually quenched. The observation was ascribed to the conversion of methyl thioether
into sulfoxide through oxidative processes. Probe 12 exhibited a low LOD of 0.674 µM and
a rapid response time in a broad working pH range (pH 4.0 to pH 10.0). In addition, 12 was
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able to monitor the redox cycles between ClO¯ and GSH because the resulting oxidized
product could be reconverted to 12 by GSH. Finally, probe 12 was used to image HOCl in
lysosomes by using one- and two-photon fluorescence imaging.
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Zeng et al. developed a water-soluble probe, 13, for determining HOCl using a
hydrazone as the responsive unit and a morpholine as the lysosome-targeting moiety
(Figure 7b) [58]. In the absence of HOCl in water, 13 was weakly fluorescent (ΦPL = 0.04).
The emission of 13 rapidly grew in intensity (ΦPL = 0.77) when ClO¯ was added. The
titration outcomes revealed a highly linear association between fluorescence intensities
and ClO¯ concentrations (0.5−2.5 µM) and the low LOD (~60 nM). The “off-on” sensing
mechanism was achieved through the promotion of hydrazone oxidation by ClO¯ and led
to the ring-opening of the spirolactame. Probe 13 was successfully employed for imaging
of HOCl in lysosomes.

Yuan et al. designed two europium-complex-based probes for HOCl, in which a
triphenylphosphonium (14) and a morpholine (15) were used as the mitochondrial target-
ing moiety and the lysosomal targeting moiety, respectively (Figure 7c) [59]. Upon the
addition of incremental amounts of HOCl, the carbonyl group of Eu3+ complexes readily
transformed into a carboxylic acid. Consequently, the luminescence intensity of probes
gradually quenched due to the decomposition of complexes. They displayed remarkable
sensitivity (<15 nM) in a wide pH range and a rapid response (<5 s). Both complexes
were applied to visualize HOCl in mitochondrial and lysosomal cells and animals using
time-gated luminescence microscopy.

Considering the distinct chlorination-induced cyclization properties of rhodamine acid,
Zhang et al. reported a pH-mediated probe, 16, for the recognition of HOCl (Figure 8a) [60].
Upon the introduction of HOCl into the acidic solution of 16, HOCl was easily decomposed
into chlorinium ions (Cl+). The resulting Cl+ induced the ring-closure process of the
rhodamine derivative to form a chlorinated spirolactone structure. As a result, a significant
decrease in fluorescence at 587 nm was observed. Probe 16 was reported to be highly
sensitive (at the picomolar level) and selective over other bioactive molecules. Probe 16
was applied for imaging of HOCl in the lysosomes of live RAW264.7 macrophage cells.
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A ratiometric fluorescent probe, 17, for visualizing HOCl, relying on the FRET mechanism
and the rhodamine ring-opening processes, was developed by Lin et al. (Figure 8b) [61]. The
probe was composed of a naphthalene as the donor, a rhodamine fluorophore as the acceptor,
and a morpholine as the lysosome-targeting unit. As shown in Figure 8b, the rhodamine ring-
opening processes were induced upon the addition of HOCl to the 17 solutions, resulting in
the ratiometric fluorescence response. Probe 17 was used for ratiometric imaging of lysosomal
HOCl.

An NIR ratiometric fluorescent probe for HOCl was developed by Fan et al., utilizing
a BODIPY dye conjugated with Fisher aldehyde (Figure 9a) [62]. During the addition of
NaClO into the 18 solutions, the absorption band centered at 650 nm gradually decreased
while a new absorption band at 501 nm emerged, resulting in a color shift from blue
to vibrant pink. Meanwhile, fluorescent intensity at 713 nm (λex = 635 nm) decreased
and fluorescent intensity at 511 nm (λex = 488 nm) increased with the gradual addition
of NaClO. The fluorescence intensity ratio (I511 nm/I713 nm) correlated well with the
NaOCl concentrations and had a 300-fold enhancement in the presence of HOCl. Probe 18
exhibited high sensitivity to HOCl and was utilized to visualize HOCl in lysosomes with
low cytotoxicity.
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Taking advantage of the ratiometric fluorescent probe, Zhao et al. synthesized a
coumarin–rhodamine platform, 19, for HOCl detection based on the FRET mechanism
and rhodamine ring-opening characteristics. Coumarin and rhodamine moieties were
linked by monothio-bishydrazide (Figure 9b) [63]. Without HOCl, the rhodamine moiety
existed in a ring-closed form, and 19 displayed only the fluorescence of the coumarin
moiety at 480 nm under 410 nm excitation. However, upon the addition of HOCl, a
decrease in the emission intensity of coumarin and an increase in rhodamine emission were
observed. The observation was described as a proficient FRET mechanism, initiated by the
HOCl-induced ring-opening process of the rhodamine platform, facilitating energy transfer
from the coumarin donor to the rhodamine acceptor. Probe 19 was suitable for sensing
lysosomal HOCl.

Zeng et al. prepared naphthalimide-based “off–on” fluorescent probes (20 and 21)
for sensing HOCl (Figure 10a) [64]. The intact probes were reported to be essentially
non-fluorescent because of the PET process from the phenothiazine (electron donor) to
the naphthalimide fluorophore (electron acceptor). Upon the addition of HOCl, the phe-
nothiazine unit was oxidized to form sulfoxide, which inhibited the PET process. As a
result, the fluorescence intensity significantly increased over 160-fold and 34-fold for 20
and 21, respectively. Both probes showed high selectivity and selectivity with fast response
time (within 10 s) towards HOCl. They were applied to monitor HOCl in lysosomes. In
particular, 21 was capable of accurately exploring the functions of lysosomal HOCl in cells.
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Considering both photocaging technology and traditional lysosomal HOCl-responsive
systems, Lin et al. developed the first photo-controllable fluorescent probe for HOCl,
using a 2-nitrobenzyl group as the photon-sensitive moiety, a morpholine as the targeting
unit, and a fluorescein as the fluorophore (Figure 10b) [65]. Probe 22 itself exhibited weak
fluorescence (ΦFL = 0.03) and was intact towards HOCl in dark conditions. However, in
the presence of HOCl and UV light irradiation, an approximate 102-fold enhancement
of fluorescence intensity (ΦFL = 0.57) was observed under neutral and acidic conditions,
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indicating the formation of fluorescein dye. Probe 22 was highly sensitive (62 nM) and
selective for HOCl. Probe 22 was suitable for the visualization of HOCl in lysosomes after
UV-light photolysis.

Cao et al. reported a rhodamine-based HOCl fluorescent probe, 23 (Figure 11a) [66].
In the presence of HOCl, 23 rapidly reacted with HOCl, leading to an enhancement of
fluorescence at 582 nm. In addition, a clear change in the solution color from colorless to
pink was observed with the naked eye. The phenomena were attributed to the structural
conversion of the rhodamine moiety from the spirocyclic form to the ring-opened form by
HOCl. The LOD of 23 was 2.6 nM. Probe 23 could detect endogenous HOCl in lysosomes
with low cytotoxicity.
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Cao et al. developed a FRET-based system as a ratiometric fluorescent sensor for
HOCl using an imidazo[1,5-a]pyridine and a rhodamine (Figure 11b) [67]. When HOCl
was introduced, the absorption peak at 360 nm for imidazo[1,5-a]pyridine remained nearly
unchanged but a new absorption peak at 565 nm emerged, resulting in a shift in color
from colorless to light red. The emission peak of the imidazo[1,5-a]pyridine decreased
significantly, while a rhodamine-specific emission peak at 588 nm grew with HOCl addition.
Probe 24 exhibited a rapid response to HOCl, excellent selectivity, and a low LOD of 27 nM.
The fluorescence imaging demonstrated that 24 enabled visualizations of endogenous
HOCl in lysosomes.

Chen et al. developed a PET-based two-photon fluorescent probe, 25, for lysosomal
HOCl detection using a naphthalimide as the fluorophore, a phenyl-thiourea as the HOCl
recognition unit, and a morpholine as the lysosome-targetable group (Figure 12a) [68].
Probe 25 exhibited weak emission (ΦPL < 0.01) in the absence of HOCl. However, upon
the addition of HOCl, the fluorescence significantly increased. The enhanced fluorescence
intensity was primarily attributed to the oxidation of thiourea to urea triggered by HOCl.
The LOD of 25 was estimated to be 5.7 nM. Probe 25 was capable of imaging HOCl using
one- and two-photon microscopy.

Similarly, Cao et al. also described a fluorescent probe, 26, based on the rhodamine
fluorophore for HOCl (Figure 12b) [69]. When probe 26 reacted with HOCl, it resulted in
the emergence of an absorption band at 568 nm, accompanied by a noticeable change in the
solution’s color from colorless to pink. This phenomenon allowed for visual, colorimetric
detection of HOCl with the naked eye. Furthermore, an increase in fluorescence intensity
at 592 nm was observed following the addition of HOCl. The observation was attributed to
the structural transformation from the spirocyclic form to the ring-opened configuration of
the rhodamine derivative. Probe 26 demonstrated excellent selectivity and sensitivity to
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HOCl (LOD = 2.8 nM) in aqueous conditions. Probe 26 was successfully applied to image
endogenous HOCl in RAW264.7 cells.
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In their ongoing research in this field, Shen et al. utilized the rhodamine-imidazo[1,5-a]
pyridine platform to develop a through-bond energy transfer (TBET)-based ratiometric
fluorescent probe, 27, for the selective detection of lysosomal HOCl (Figure 12c) [70]. In the
absence of HOCl, the rhodamine moiety remained in its non-fluorescent ring-closed form,
and probe 27 exhibited only the typical absorption and fluorescence of the imidazo[1,5-a]
pyridine moiety. However, upon interaction with HOCl, an absorption band in the range
of 500−600 nm and a fluorescence peak corresponding to the ring-opened rhodamine
emerged. The spectral change was attributed to the formation of the oxadiazole compound,
facilitated by efficient TBET between the imidazo[1,5-a] pyridine donor and the rhodamine
acceptor. Probe 27 was utilized to image HOCl in lysosomes.

Zhang et al. proposed an AIE-based ratiometric fluorescent nanoprobe, 28, primarily
composed of an AIE fluorogen and a rhodamine B unit for imaging HOCl in living cells
(Figure 13a) [71]. The nanoprobe exhibited excellent water solubility, high photostability,
and good biocompatibility. In the presence of ClO− under acidic conditions, the rhodamine
B moiety was converted into a chlorinated spirolactone structure. The transformation
led to a significant decrease in the fluorescence intensity of the rhodamine B unit and
minimal change in the fluorescence intensity of the AIE dye, resulting in a shift in emission
color from orange to blue. Moreover, nanoprobe 28 was applied to monitor HOCl within
lysosomes.

A rhodamine-based spiro-ring platform, 29, was utilized by Gong et al. for HOCl
detection by connecting a thiolactone rhodamine unit with a morpholine lysosome-specific
moiety (Figure 13b) [72]. When exposed to HOCl, notable photophysical changes were
observed, including a gradual increase in fluorescence emission (λem = 632 nm) and ab-
sorption (λex = 591 nm). The observation was attributed to the rapid chlorination reaction
between HOCl and the sulfur atom, resulting in the spiro-ring-opening process. Probe 29
was utilized to image lysosomal HOCl in cells and tissues using two-photon microscopy.
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Wang et al. developed phenothiazine-based ratiometric fluorescent probes (30 and
31) for sensing HOCl by converting AIE into ICT emission in solution (Figure 13c) [73]. In
an aqueous medium, intramolecular motion was suppressed, leading to highly red ICT
emission by the probes. Upon the addition of HOCl, the emission peak at 620 nm was
reduced, while the emission intensity at 470 nm increased. Consequently, the fluorescence
intensity ratios (I470/I620) increased about 600-fold. The observed phenomenon was
attributed to the selective cleavage of the imine linkage between the phenothiazine and
the diaminomaleonitrile (DAMN) in the probes by HOCl, resulting in the removal of
the DAMN moiety and the eventual formation of aldehyde or carboxylic acid products.
Imaging results demonstrated that 31 was more effective in monitoring endogenous HOCl
than a non-targeting probe. Probe 31 was successfully utilized to monitor HOCl generation
in zebrafish.

Qian et al. introduced a lysosome-targeting fluorescent probe, 32, by incorporating an al-
doxime unit into the BODIPY fluorophore platform for specific ClO¯ detection (Figure 14a) [74].
Upon exposure to ClO¯, the probe exhibited a substantial 29-fold increase in fluorescence
intensity at 530 nm, which was ascribed to the conversion of aldoximes into aldehydes through
oxidation. Probe 33 displayed an LOD of 16.5 nM and a rapid response to ClO¯ within 60 s.
Notably, 32 was effectively employed to image ClO¯ levels in MCF-7 cells.
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Hou et al. devised a novel phenothiazine derivative, 33, serving as a lysosome-
targeted fluorescent probe for detecting ClO¯ (Figure 14b) [75]. Probe 33 combined a
lysosome-targeting group (the morpholine), a fluorophore moiety (the phenothiazine-
benzo[d]thiazole), and a recognition site (the sulfur atom within phenothiazine). In the
recognition process, the sulfur atom in phenothiazine could be readily oxidized by ClO¯
to form a sulfoxide, leading to a substantial blue shift in the emission. The effectiveness of
33 in ClO¯ detection was demonstrated both in cells and in zebrafish.

2.3. Hypobromous Acid (HOBr)

HOBr is formed through the catalysis of MPO, combining hydrogen peroxide (H2O2)
with bromide ions (Br¯). Excessive generation of HOBr can lead to a redox imbalance
and the loss of lysosomal function, resulting in tissue damage and diseases [76]. In 2018,
Zhang et al. developed a two-photon fluorescent probe, 34, for HOBr (Figure 15) [77].
When exposed to HOBr, both the amino and methylthio groups underwent a cyclization
reaction, forming a nitrogen–sulfur double bond. Consequently, the fluorescence intensity
at 540 nm gradually decreased upon the addition of HOBr. The “on-off” fluorescence
phenomenon was elucidated based on the PET mechanism. The LOD of 34 was determined
to be 33.5 nM, indicating good sensitivity. Probe 34 demonstrated its capability to detect
HOBr within lysosomes in HeLa cells and visualize endogenous HOBr in living mice using
two-photon fluorescence microscopy.
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Figure 15. Schematic illustration for the fluorescence response of 34 to HOBr. The different back-
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3. Conclusions and Outlook

Numerous organic lysosome-targetable probes based on small molecules have been
developed for ROS detection, which are summarized in this work. Despite the progress
made to date in developing organic small-molecule fluorescent probes for sensing ROS
in lysosomes, several issues should be overcome. Firstly, morpholine and other amine-
based lysosome-targeting probes can potentially lead to toxicity due to their alkalinizing
effect on lysosomal pH. For instance, the alkalinization of lysosomal pH can disrupt the
proper functioning of lysosomes, impairing enzyme activity and hindering cellular waste
degradation [78,79]. To mitigate the potential toxicities associated with these probes, re-
searchers should meticulously optimize their experimental conditions, including probe
concentrations and exposure times. Additionally, proper validation of lysosomal target-
ing and probe specificity are essential. Secondly, current probes suffer from poor water
solubility, poor aqueous stability, and aggregation-induced quenching effects in aqueous
media, which limit their performance in biological systems. By considering water-soluble
and non-aggregating fluorophore skeletons or employing nanodelivery systems, these
drawbacks can be addressed to enhance in vivo imaging.

In addition, fluorescent probes based on coumarin, naphthalimide, flavonoid, BODIPY,
and rhodamine skeletons usually exhibit short excitation (<550 nm)/emission (<600 nm)
wavelengths, limiting their applications in in vivo imaging due to restricted penetration
depth, the signal-to-noise ratio in fluorescence imaging, and the risk of phototoxicity. To
address these issues, the extension of fluorophore-skeleton-based probes for NIR absorption
and emission and the consideration of two-photon fluorescent probes from these skeletons
are crucial. Currently, most of the NIR fluorescent probes used for in vivo imaging are
cyanine derivatives. An exemplary case is indocyanine green (ICG), which has received
clinical approval from the FDA for in vivo imaging applications. Thus, the development
of organic lysosome-targetable ROS probes based on cyanine platforms should be con-
sidered. However, the enhancement of the performance of cyanine-based probes is still
required due to the high susceptibility of cyanine skeletons to oxidants and photobleaching.
Nanotechnology can be used to address these limitations of cyanine-based probes. The
recent discovery of the hemicyanine platform with superior performance may provide an
excellent alternative platform for the construction of lysosome-targetable ROS probes.

Most importantly, the focus should be on developing lysosomal fluorescent ROS
probes with clinical potential and ensuring their entry into clinical trials for successful
translation. We anticipate that, through the combined efforts of chemists, physicists,
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biologists, and medical scientists, these challenges will be addressed soon, and organic
small-molecule fluorescent probes will serve as powerful molecular tools for gaining a
better understanding of the physiological functions of ROS in lysosomes.
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