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Abstract: β-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB)
and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major
MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during
toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous
detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore,
multiple analyses are required to assess the toxic load of a sample. Here, we present a newly
developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-
LR, MC-RR, and MC-YR using RP LC-MS/MS. Method validation was performed, assessing linearity
(r2 > 0.996), accuracy (>90% recovery for spiked samples), precision (7% relative standard deviation),
and limits of detection (LODs) and quantification (LOQs) (ranging from 0.13 to 1.38 ng mL−1). The
application of this combined cyanotoxin analysis on a culture of Microcystis aeruginosa resulted in the
simultaneous detection of 2,4-DAB (0.249 ng mg−1 dry weight (DW)) and MC-YR (4828 ng mg−1

DW). This study provides a unified method for the quantitative analysis of BMAA, its isomers, and
three MC congeners in natural environmental samples.

Keywords: BMAA; microcystins; cyanotoxins; cyanobacteria; method validation

1. Introduction

Cyanobacteria are oxygenic, photosynthetic, prokaryotic microorganisms that are
known to inhabit terrestrial, marine, and freshwater environments. Under optimal environ-
mental conditions, cyanobacteria proliferate rapidly and form ‘algal’ blooms. Cyanobacte-
rial blooms have a number of ecological and epidemiological impacts [1], including the
death of aquatic organisms, decline in biodiversity, disruption of fresh water supplies,
and the production of allergens and toxic metabolites known as cyanotoxins [1–3]. The
impact of cyanobacterial blooms extends to fatalities of wildlife, livestock, and pets, as
well as issues related to human health. There are a range of cyanotoxins that are routinely
monitored, such as the hepatotoxic microcystins (MCs), and there are also a number of
toxins that are not yet well understood, such as the neurotoxin β-N-methylamino-L-alanine
(BMAA), which is rapidly gaining attention for its association with neurodegenerative
diseases [4–6].

BMAA is a non-protein amino acid (NPAA) produced by a wide range of cyanobacteria
from various aquatic ecosystems, with up to 90% of cyanobacteria and some diatoms having
been found to produce BMAA [3,7]. It has been proposed that BMAA is associated with
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the onset of amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) [8],
a complex neurological disorder observed in areas with potentially high BMAA exposure
such as the Mariana Islands (Guam and Rota), Kii Peninsula (Japan), and southeastern
Irian Jaya [9]. Surveys in the 1950s reported that ALS on Guam was 50 to 100 times
more prevalent than in the USA and other Western countries [9]. BMAA has two main
constitutional isomers, L-2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine
(AEG) (Figure 1), which are commonly found together; 2,4-DAB, like BMAA, is also
considered to be neurotoxic, with similar excitotoxic properties, and is widespread in
nature [10]. A recent in vitro study showed that the simultaneous exposure of human
neuroblastoma cells to 2,4-DAB and BMAA decreased cell viability more than exposure to
BMAA or 2,4-DAB alone, suggesting that the presence of 2,4-DAB increases the toxicity of
BMAA [11]. This study also showed that AEG was the least toxic of the three isomers, with
the exposure of human neuroblastoma cells (SH-SY5Y) to AEG being up to four times less
toxic than exposure to 2,4-DAB or BMAA [11]. In another study, AEG was found to be up
to ten thousand times less toxic than BMAA in an Artemia salina bioassay [12]. In contrast,
AEG was reported to be more toxic than BMAA and 2,4-DAB in mixed cortical cell cultures
from foetal mice [13].
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ensure the safety of drinking water [23].  

Figure 1. BMAA and isomer chemical structures: (a) β-N-methylamino-L-alanine (BMAA), (b) L-2,4-
diaminobutyric acid (2,4-DAB), and (c) N-(2-aminoethyl)glycine (AEG).

MCs are cyclic heptapeptides produced by various genera of freshwater cyanobacteria
worldwide. MCs were first isolated from the cyanobacterium Microcystis aeruginosa [14].
They have a general cyclic structure containing five non-protein amino acids and two
variable L-amino acid functional groups. From the array of MCs, MC nomenclature is
indicative of the amino acid functional groups and their positions within the MC chemical
structure [15]. There are 279 characterised congeners that have been reported in the
literature [15–17], and these are the most widespread cyanotoxins, with genetics and
environmental factors contributing to their structural diversity [16,18]. The most common
detected congeners of MCs are MC-LR, MC-RR, and MC-YR (Figure 2), containing the
amino acids leucine (L), arginine (R), and tyrosine (Y) [19–22]. MC-LR is also the most toxic,
where a provisional guideline value of 1.0 ng mL−1 has been set by the WHO to ensure the
safety of drinking water [23].
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MCs are highly potent hepatotoxins, high doses of which can cause severe acute
outcomes and even death as a result of liver damage. Acute doses lead to liver necrosis,
intrahepatic haemorrhage, and shock, whereas lower MC doses have been shown to lead
to a slower onset of liver and kidney failure. MC exposure can also lead to mitochondrial
alterations, affect intracellular calcium levels, and cause oxidative stress, all of which
contribute to hepatotoxicity [24]. Since MCs pose severe health risks from both acute
and chronic exposure, including hepatotoxicity [25] and nephrotoxicity [26], as well as
cardiovascular toxicity [27] and even reproductive toxicity [28], it is imperative to ensure
that human exposure is minimised; as such, their presence is monitored and regulated
in a number of countries, including Australia [29], the USA [30], Norway [31], and many
European countries [32,33].

Water quality assessments for the presence of cyanotoxins can be problematic due to
the complex nature of cyanobacterial blooms, which contain multiple species of cyanobac-
teria and several classes of cyanotoxins, including MCs and BMAA, AEG, and 2,4-DAB. A
recent increase in awareness of the hazards presented by cyanobacterial toxins has resulted
in the development of various methods, from biological-based screening methods to more
sophisticated and confirmatory analytical techniques [34]. Currently, some regulatory
authorities issue warnings to the public when cyanobacterial blooms of species that are
known to produce MCs occur, based on total cell numbers [35]. However, an understanding
of the toxin concentrations in water samples is more useful to elucidate the risks to water
users and is covered in some guidelines, such as those of the WHO [23].

Liquid chromatography–tandem mass spectrometry (LC-MS/MS) is currently the most
common analytical technique for the separation, detection, and quantification of BMAA
and its isomers, AEG and 2,4-DAB [36]. For the analysis of BMAA, AEG and 2,4-DAB
pre-column derivatisation techniques such as 6-aminoquinoly-N-hydroxysuccinimidyl
carbamate (AQC) [37], 9-fluorenylmethyl chloroformate (FMOC) [38], and ethyl- or propyl-
chloroformate (ECF/PCF) [39] are generally employed to increase molecular mass to allow
for reverse-phase separation and increase ionisation efficiency [40]. More recently, LC-MS
has also been the preferred method for the identification and quantification of multiple MC
congeners, due to its ability to easily fragment and analyse native MCs whilst maintaining
good retention on reverse-phase columns [41–44].

The analysis of cyanotoxins has typically focused on only one class of toxin in a single
sample, and while several publications exist for multiclass cyanotoxin analysis of various
sample matrices, there have been few studies outlining methods that include the simul-
taneous screening and quantification of both MCs and BMAA within a single biological
sample—more specifically, algal samples [45–50]. It is important to employ multiclass
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cyanotoxin analyses to fully understand the toxic load of cyanobacterial blooms and to
minimise the risk of human and animal exposure. Studies on combined cyanotoxin analysis
have included BMAA and anatoxin [46]; MCs and cylindrospermopsin (CYN) [47,48]; a
combination of MCs, nodularin (NOD), anatoxins, CYN, and saxitoxins [45]; and an exten-
sive combination of 12 different MC congeners, CYN, ANA, and NOD, including two other
algal toxins: okadaic and domoic acids [49]. Recently, a combined multiclass cyanotoxin
analysis method was developed for the extraction, preconcentration, and determination of
eight cyanotoxins, including MC-LR, MC-RR, nodularin, cylindrospermopsin, anatoxin-a,
BMAA, 2,4-DAB, and AEG, using solid-phase extraction (SPE) sample treatment in tandem
with hydrophilic interaction liquid chromatography (HILIC)-MS/MS [50]. Another study
analysed seven of the aforementioned cyanotoxins, excluding cylindrospermopsin, on
spirulina-based supplements through a newly developed solid–liquid extraction method
combined with SPE and analysed by HILIC-MS/MS [51]. However, HILIC is known to
be temperamental, with poor peak shape, separation efficiency, and reproducibility. It
is also susceptible to decreased sensitivity due to ion suppression as a consequence of
the high buffer concentrations that are generally utilised, which may therefore require a
compromise between sufficient ion intensity and ideal chromatography [52]. Therefore,
we developed and validated a sensitive and efficient RPLC-MS/MS method for the si-
multaneous detection and quantification of BMAA, AEG, 2,4-DAB, MC-LR, MC-YR, and
MC-RR.

2. Results and Discussion
2.1. Method Development
2.1.1. MC Protonation

The molecular weight of MC-RR is 1038.2 g mol−1, and it therefore produces a singly
charged m/z of 1039.2 [M+H]+ in the electrospray ionisation source. However, the two
arginine (R) residues of MC-RR both become protonated in the process of ionisation, result-
ing in a double-protonated molecule at 520 m/z [M+2H]2+ [53]. Generally, the electrospray
ionisation process of MC-LR and MC-YR results in singly charged ions [M+H]+ [54], al-
though considering the double-protonation behaviour of MC-RR during ionisation, double-
protonation of MC-LR and -YR was also investigated. There is strong evidence suggesting
that MCs containing the -R residue may have an additional protonation site, either on
amide nitrogens in cyclic peptide bonds or on the Adda moiety of MCs [16,55]. Various
studies have used the double-protonated MRM transitions for MC-LR and MC-YR (MC-LR,
498→ 135 m/z and MC-YR, 523→ 135 m/z) to determine the concentrations of MCs using
LC-MS/MS, with improved LODs [56–58]. The inclusion of the double-protonated transi-
tions in this method also increased the peak intensities for MC-LR and MC-YR, consistent
with the literature [45].

2.1.2. Derivatisation Considerations

For RPLC-MS/MS, derivatisation is essential for the detection of BMAA, AEG, and
2,4-DAB to improve chromatographic separation and sensitivity. The derivatisation method
of choice for the simultaneous analysis of BMAA, AEG, 2,4-DAB, and the MCs was AQC. A
critical point to consider in the combination of these cyanotoxins is whether derivatisation,
specifically AQC, affects the MCs. A simple experiment was conducted in which the MCs
were analysed under three conditions: (1) 10 µL of 1 ppm MCs + 90 µL of MeOH (control);
(2) 10 µL of 1 ppm MCs + 90 µL of MeOH, incubated for 10 min at 55 ◦C; and (3) 10 µL of
1 ppm MCs + 20 µL of derivatising reagent + 70 µL of borate buffer, incubated for 10 min
at 55 ◦C. The peak area comparison results indicated that the MCs were not derivatised
or affected by the derivatisation process. The likelihood of the AQC tag reacting with
the primary or secondary amines of amino acid residues in MCs is low, as it is generally
more difficult to derivatise large molecules due to their significantly slower chemical
reaction rates. Derivatisation of large molecules is not impossible; however, the efficiency
of larger molecules’ derivatisation is significantly lower than that of smaller, more reactive
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molecules [59]. Furthermore, the energy of activation required to derivatise a primary
amino group in a large molecule like MC is much greater than the activation energies
required to derivatise small molecules like BMAA [59].

2.1.3. Chromatographic Optimisation

In determining the chromatographic conditions for the combined cyanotoxin analysis,
each class of cyanotoxin compounds was tested under various chromatographic conditions,
with acetonitrile (+0.1% formic acid) as the organic mobile phase. It was initially observed
that 10% organic mobile phase in isocratic mode did not provide an acceptable resolution
between BMAA, AEG, and 2,4-DAB within a reasonable chromatographic timeframe.
Previous studies have used gradient elution for the separation of AQC-derivatised BMAA,
AEG, and 2,4-DAB [60,61]; thus, gradient elution was also explored to further develop the
method. Chromatographic conditions alone (i.e., elution mode, mobile phase composition,
and column) did not produce a sufficient separation resolution between BMAA, AEG, and
2,4-DAB. To achieve adequate separation of BMAA, AEG, and 2,4-DAB, various column
temperatures were explored. Column temperature assists in chromatographic separation
by directly impacting the analyte exchange rates between the mobile and stationary phases;
the higher the temperature, the faster the exchange rate and, thus, the shorter the retention
time. However, increasing the column temperature reduced the resolution between BMAA,
AEG, and 2,4-DAB, while lowering the column temperature provided better separation
performance and, thus, better resolution, albeit with slightly longer retention times. Figure 3
shows the effect of column temperature on the separation of BMAA, AEG, and 2,4-DAB. The
optimal column temperature for the separation of BMAA and its isomers was determined
to be 18 ◦C, providing a resolution factor of 1.65 between BMAA and AEG and 2.68 between
AEG and 2,4-DAB.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 18 
 

 

smaller, more reactive molecules [59]. Furthermore, the energy of activation required to 

derivatise a primary amino group in a large molecule like MC is much greater than the 

activation energies required to derivatise small molecules like BMAA [59]. 

2.1.3. Chromatographic Optimisation 

In determining the chromatographic conditions for the combined cyanotoxin analy-

sis, each class of cyanotoxin compounds was tested under various chromatographic 

conditions, with acetonitrile (+0.1% formic acid) as the organic mobile phase. It was ini-

tially observed that 10% organic mobile phase in isocratic mode did not provide an ac-

ceptable resolution between BMAA, AEG, and 2,4-DAB within a reasonable chromato-

graphic timeframe. Previous studies have used gradient elution for the separation of 

AQC-derivatised BMAA, AEG, and 2,4-DAB [60,61]; thus, gradient elution was also ex-

plored to further develop the method. Chromatographic conditions alone (i.e., elution 

mode, mobile phase composition, and column) did not produce a sufficient separation 

resolution between BMAA, AEG, and 2,4-DAB. To achieve adequate separation of 

BMAA, AEG, and 2,4-DAB, various column temperatures were explored. Column tem-

perature assists in chromatographic separation by directly impacting the analyte ex-

change rates between the mobile and stationary phases; the higher the temperature, the 

faster the exchange rate and, thus, the shorter the retention time. However, increasing the 

column temperature reduced the resolution between BMAA, AEG, and 2,4-DAB, while 

lowering the column temperature provided better separation performance and, thus, 

better resolution, albeit with slightly longer retention times. Figure 3 shows the effect of 

column temperature on the separation of BMAA, AEG, and 2,4-DAB. The optimal col-

umn temperature for the separation of BMAA and its isomers was determined to be 18 

°C, providing a resolution factor of 1.65 between BMAA and AEG and 2.68 between AEG 

and 2,4-DAB. 

 

Figure 3. Total ion count (TIC) and MRM chromatograms showing the variable effect of column 

oven temperature on BMAA, AEG, and DAB peak separation. 

MCs have higher molecular weights compared to BMAA and required stronger 

mobile-phase conditions for timely elution, with chromatographic conditions of 33% to 

45% acetonitrile (+0.1% v/v formic acid) separating nodularin, MC-YR, MC-LR, and 

MC-RR. Good separation between the three MC congeners was achieved with the re-

duced column temperature (18 °C) required for separating BMAA, AEG, and 2,4-DAB. 

The chromatographic information obtained from both cyanotoxin classes was then com-

bined, resulting in a single method that allowed for the adequate separation of each an-

alyte, the final analytical conditions of which are detailed in the Materials and Methods 

section. Figure 4 illustrates the chromatographic separation of a 10 ng mL−1 standard 

containing all of the cyanotoxins in a single run using this newly developed multiclass 

analytical method. 

Figure 3. Total ion count (TIC) and MRM chromatograms showing the variable effect of column oven
temperature on BMAA, AEG, and DAB peak separation.

MCs have higher molecular weights compared to BMAA and required stronger mobile-
phase conditions for timely elution, with chromatographic conditions of 33% to 45% ace-
tonitrile (+0.1% v/v formic acid) separating nodularin, MC-YR, MC-LR, and MC-RR. Good
separation between the three MC congeners was achieved with the reduced column tem-
perature (18 ◦C) required for separating BMAA, AEG, and 2,4-DAB. The chromatographic
information obtained from both cyanotoxin classes was then combined, resulting in a
single method that allowed for the adequate separation of each analyte, the final analytical
conditions of which are detailed in the Section 3. Figure 4 illustrates the chromatographic
separation of a 10 ng mL−1 standard containing all of the cyanotoxins in a single run using
this newly developed multiclass analytical method.
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2.2. Method Validation

Recently, an SPE-HILIC-MS/MS method was published for the extraction, precon-
centration, and analysis of multiclass cyanotoxins, including MC-LR, MC-RR, nodularin,
cylindrospermopsin, anatoxin-a, BMAA, AEG, and 2,4-DAB [50]. The method involved
two different SPE cartridges (Strata-X and Oasis MCX) in tandem to allow for the extraction
and preconcentration of all of the classes of cyanotoxins in reservoir waters, which were
then analysed using a zwitterionic HILIC column (LC-MS/MS). The method validation
involved a procedural calibration, which underwent the SPE preconcentration step prior to
LC-MS/MS analysis, assisting in achieving low LODs ranging from 0.001 to 0.015 ng mL−1,
LOQs ranging from 0.004 to 0.05 ng mL−1, and maximum precision of 14.1% for the same
classes of cyanotoxins. The recovery rates were based on several spiked reservoir water
samples, with 70–100% (%RSD < 17.5%) for most classes of cyanotoxins, except for BMAA
and DAB, which showed a reduction in recovery rates in reservoir waters with high cation
contents. Although the authors achieved the development of a method for multiclass cyan-
otoxins, including MC-RR, MC-LR, BMAA, AEG, and 2,4-DAB, their study was limited to
water samples, and its application to cyanobacteria matrices (along with the limitations of
HILIC, as previously mentioned) is not feasible.

HILIC is a technique that is well suited to the analysis of small molecules; however, its
application to the analysis of BMAA and its isomers has shown poor performance across
all validation factors, as demonstrated by Tymm et al. [62]. Analyses using HILIC generally
fail to detect BMAA in cyanobacteria more often than RPLC techniques [63]. In addition,
RPLC methods are more robust and do not require lengthy re-equilibration procedures
for sensitive analyses [62]. Thus, the application of the AQC-derivatised RP LC-MS/MS
method was deemed most appropriate for the analysis of BMAA, AEG, 2,4-DAB, and
MCs-RR, -LR, and –YR, as well as for biological samples like cyanobacteria, providing fast
and reliable results.

It is important to note that another isomer of BMAA, β-amino-N-methyl-alanine
(BAMA), may be present; however, it is not as widely studied as the other BMAA isomers
and has limited ecotoxicological data [38]. BAMA is known to produce the same frag-
mentation patterns as BMAA in MS/MS when derivatised with AQC [64,65]. Therefore,
insufficient chromatographic separation may result in the false-positive identification and
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quantification of BMAA. Some studies suggest that the detection of BMAA in the liter-
ature is misidentified and overestimated due to the possible interference of the BAMA
isomer [66,67]. However, the inclusion of ion ratio comparisons can be used to distinguish
BMAA from BAMA and other interfering analytes, as a study showed that BMAA and
BAMA have different ion ratios between 119.08 and 258.09 mass-to-charge (m/z), with
ratios of 4.4 and 18.4 for BMAA and BAMA, respectively [64]. Therefore, any shift in ion
ratio between 119.08/258.09 m/z is indicative of compromised BMAA identification, and
this was not observed here.

The proposed LC-MS/MS method was validated in terms of linearity, limits of detec-
tion (LODs), limits of quantification (LOQs), accuracy, and intra- and inter-day precision.
The linearity and calibration range for each analyte were examined with 10-point internal
standard calibration curves, ranging from 0.5 to 500 ng mL−1, with each calibration point
run in five replicates. The correlation coefficients (r) were greater than 0.996 for all target
analytes. The linear range for BMAA, AEG, and 2,4-DAB was 2–500 ng mL−1, and the
linear range of the MC compounds was 0.5–500 ng mL−1, resulting in lower LODs and
LOQs than for BMAA and its isomers, AEG and 2,4-DAB, within the WHO guidelines
with respect to MCs. These results are presented in Table 1. The accuracy of the method
was determined using a spike-recovery test, whereby a sample matrix was spiked with
10 ng mL−1 of each analyte and compared to the 10 ng mL−1 calibration standard. The re-
covery rates are summarised in Table 1. All analytes produced good recovery rates, ranging
from 85.4% (2,4-DAB) to 109.3% (MC-LR). The method’s precision was evaluated in terms
of inter- and intra-day repeatability of peak areas and retention times at the concentration
of 10 ng mL−1, and it was reported as the % relative standard deviation (%RSD) (Table 2).
The repeatability tests produced acceptable levels of %RSD for the peak area, with the
highest %RSD being 6.6% for AEG during inter-day analysis. The linearity data obtained
from this method validation, alongside the recovery rates and repeatability results, suggest
that this method is adequate for sample analysis.

Table 1. Method validation linearity results and recovery rates for BMAA isomers and MCs.

Compound Correlation
Coefficient (r)

Linear Range
(ng mL−1)

LOD
(ng mL−1)

LOQ
(ng mL−1)

% Recovery of a
Spiked Sample

BMAA 0.9971 2–500 0.46 1.38 107.1

AEG 0.9964 2–500 0.43 1.29 93.4

2,4-DAB 0.9967 2–500 0.42 1.27 85.5

MC-RR 0.9982 0.5–500 0.13 0.40 94.6

MC-YR 0.9975 0.5–500 0.30 0.90 106.0

MC-LR 0.9971 0.5–500 0.28 0.85 109.3

Table 2. Method validation precision (%RSD) through intra- and inter-day (7-day) repeatability
analysis, based on average peak area (n = 7) and retention time.

Peak Area %RSD Retention Time %RSD

Intra-Day
Inter-Day

Intra-Day
Inter-Day

Day 1 Day 2 Day 1 Day 2

BMAA 4.9 1.2 1.1 0.3 0 0.2

AEG 5.1 6.6 3.8 0.2 0 0.2

2,4-DAB 4.8 1.9 2.0 0.3 0.1 0.4

MC-RR 2.1 1.7 3.1 0.3 0 0

MC-YR 2.9 2.8 2.9 0.3 0.1 0

MC-LR 3.0 1.5 2.7 0.3 0.1 0
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2.3. Cyanotoxin Identification in Cyanobacterial Samples

A cyanobacterial bloom scum sample (a mixture of Microcystis flos aquae and Dolichos-
permum crassum) and a cyanobacterial culture of MA were tested for BMAA, AEG, 2,4-DAB,
MC-RR, MC-LR, and MC-YR. The samples underwent BMAA, AEG, 2,4-DAB, and MC
extraction as per the protocol outlined in the Materials and Methods. Table 3 lists the
average dry weight (DW) concentrations of each cyanotoxin detected. MA was found to
contain the 2,4-DAB isomer (0.249 ng mg−1 DW) and MC-YR (4828 ng mg−1 DW) (see
Figure 5). The environmental scum sample collected from Gunbower, Victoria contained
MC-RR and MC-LR (134.9 and 41.17 ng mg−1, respectively), with no BMAA or its isomers
detected.

Table 3. Cyanotoxin detection and concentration (DW) of cyanobacterial samples to 3 significant
figures (N.D. = not detected) (n = 3).

Compound Microcystis aeruginosa
DW (ng mg−1) ± SEM

Gunbower Scum
DW (ng mg−1) ± SEM

BMAA N.D. N.D.

AEG N.D. N.D.

2,4-DAB 0.249 ± 0.062 N.D.

MC-RR N.D. 135 ± 4.80

MC-YR N.D. N.D.

MC-LR 4830 ± 721 47.2 ± 19.3
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(3.0–9.8 min); (b) zoomed chromatographic window (5.5–9.5 min) chromatogram showing 2,4-DAB
and MC-LR peaks.

Cyanobacterial blooms may contain a variety of cyanobacteria species, resulting in
the potential for the co-occurrence of multiclass cyanotoxins, such as MCs, anatoxins, and
NPAAs, with two-, three-, and up to four-class co-occurrence [68]. Due to anthropogenic
factors, the occurrence, intensity, and duration of cyanobacterial blooms are increasing,
posing a greater risk to human health and ecosystems, and as the possible routes of
exposure increase—such as through the contamination of drinking water and crops—
the potential risks to human health are magnified. Algae-based food supplements have
also been on the rise, with studies showing their positive health effects through human
consumption [69–71]. However, the regulation of the promotion and consumption of algae
is not strictly controlled, where in Europe up to 150 algae species have been identified in
regular consumption, with only one-fifth of them having been approved by the EU Novel
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Food legislation [72]. The MCs are well-researched and regularly monitored cyanotoxins
that are known to be produced by common taxa such as Microcystis, Dolichospermum, and
Planktothrix [68]. BMAA has also been detected in these cyanobacteria genera [73]. The
MA sample that was analysed in this study illustrated the co-occurrence of multiclass
cyanotoxins produced by a single cyanobacterial species, with the detection of 2,4-DAB
and MC-LR.

Furthermore, with the recent discovery of the combined toxic effects of BMAA and
2,4-DAB on human neuroblastoma cells in vitro, it is important to detect and assess the
presence of both BMAA and 2,4-DAB, along with their quantities, as the cytotoxic effects
are greater than those of BMAA or 2,4-DAB alone [11]. The co-occurrence of multiple
cyanotoxins may exacerbate potential health risks. As our knowledge of neurotoxins
such as BMAA increases, there is a need for it to be included in multiclass cyanotoxin
analysis methods to better facilitate routine monitoring and testing of drinking water, foods,
supplements, and water bodies.

There have been several studies looking at a range of cyanotoxin classes for various
sample matrices [49,74]. However, only recently have methods included both the MC
and BMAA classes within the range of analysed cyanotoxins, albeit these studies have
been limited to water samples [75] and HILIC-MS methods with the inclusion of SPE
preparation techniques [50]. The most widespread cyanotoxins are MCs, with MC-LR, MC-
RR, and MC-YR being the most commonly detected congeners [19,20] and MC-LR being
the most toxic variant [76]. Governments that regulate the use of waterways affected by
cyanobacterial blooms do so based on the presence of species that produce these congeners;
therefore, they were selected in the development of this multiclass method. The inclusion
of more MC congeners would provide additional information on the potential toxicity of
a bloom [19]; however, potential use of this method by contract laboratories performing
routine monitoring to meet regulatory requirements would be exceeded. BMAA and
its isomers were selected due to the increase in knowledge of their toxicity and links to
neurodegenerative diseases. There is still conjecture as to the mechanisms of BMAA’s and
2,4-DAB’s toxicity, and they are not currently monitored by regulatory bodies; however,
once these are established, it may be necessary to include them in routine analysis methods.

3. Materials and Methods
3.1. Chemicals and Reagents
3.1.1. Standards

Standards of L- β-N-methylamino-L-alanine hydrochloride (≥97%), HPLC-grade MC
standard mix (-RR, -YR, and -LR), and nodularin methanol solution were purchased from
Sigma-Aldrich (Castle Hill, NSW, Australia). L-2,4-diaminobutyric acid dihydrochloride
(≥95%) and N-(2-aminoethyl)-glycine (≥97%) were purchased from Toronto Research
Chemicals Inc. (North York, ON, Canada). D-2,4-diaminobutyric-2,3,3,4,4-d5 acid dihy-
drochloride was purchased from CDN Isotopes (Pointe-Claire, QC, Canada). BMAA, AEG,
and 2,4-DAB were derivatised using the AccQ-Tag Ultra Derivatization Kit, supplied by
Waters Corporation (Milford, MA, USA).

3.1.2. Samples

A cyanobacterial scum was collected from off-take (‘diverted’) water from a weir in
Gunbower, Victoria, Australia (collection date: 9 September 2016). A cultured cyanobacteria
strain of Microcystis aeruginosa was also collected from the Faculty of Science, UTS Australia.
The samples were freeze-dried at 0.1 mbar and −80 ◦C prior to extraction.

3.2. Sample Extraction
3.2.1. Extraction of BMAA, AEG, and 2,4-DAB

The extraction of BMAA, AEG, and 2,4-DAB was carried out based on an existing
and validated method [77,78]. Approximately 15 mg of dry cyanobacterial mass was lysed
twice in 300 µL of 10% w/v trichloroacetic acid (TCA) via probe sonication for 1 min at
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70% amplitude, followed by overnight precipitation at 4 ◦C. The precipitated pellet was
centrifuged at 3000× g and 4 ◦C for 15 min, and the supernatant was transferred into a
‘free fraction’ tube. Another 300 µL of 10% w/v TCA was added to the pellet, and the
centrifuge and supernatant transfer step was repeated. This step was repeated for the third
time with the use of 10% TCA/acetone instead of 10% TCA. The remaining pellet (‘bound
fraction’) was transferred to an engraved shell vial with 100% acetone. The shell vials
containing the pellets were centrifuged, and the supernatant was transferred into the ‘free
fraction’ tube. The ‘free fraction’ tube was then placed into a SpeedVac concentrator for
30 min, frozen in a −80 ◦C freezer, and freeze-dried at 0.1 mbar and −80 ◦C. The shell vials
that contained the pellets were dried using the SpeedVac concentrator and prepared for
acid hydrolysis by adding 1 mL of 6 M HCl to the bottom of the hydrolysis vial from an
Eldex Hydrolysis/Derivatization Workstation (Eldex Laboratories, Inc. Napa, CA, USA),
followed by the insertion of the shell vials. The oxygen was removed from the hydrolysis
vial by subjecting it to a vacuum pump, lowering the pressure to 300 mbar, and filling it
with nitrogen gas for three cycles. The sample then underwent hydrolysis overnight in an
oven set at 110 ◦C. The hydrolysed pellet, or ‘bound fraction’, was reconstituted with 200 µL
of 500 ng mL−1 D5-DAB internal standard and then transferred to the corresponding ‘free
fraction’. The samples were then filtered through a 0.2 µm pore membrane filter under
centrifugation, resulting in the ‘Final Product’. Figure 6 schematically describes the BMAA,
AEG, and 2,4-DAB extraction process.
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3.2.2. MC Extraction

Approximately 5 mg of dry algae was weighed and then probe-sonicated twice with
400 µL of 70% v/v LC-MS-grade methanol [21,79] for 1 min at 70% amplitude. The sample
was then centrifuged at 3000× g and 4 ◦C for 15 min, whereupon the supernatant was
then transferred to a 0.2 µm pore membrane filter tube. The remaining pellet was washed
and subsequently extracted via centrifugation two more times with 400 µL of 70% v/v
methanol. The supernatants were combined with the previous supernatant in the filter
tube, which was then centrifuged for 30 min at 5000× g, resulting in the ‘Final Product’.
Figure 7 provides a schematic representation of the MC extraction.
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3.2.3. Standard and Sample Preparation and Derivatisation

A standard curve range of 0.1–100 ng mL−1 of BMAA isomers (internal standard:
50 ng mL−1 D5-DAB) and 0.5–1000 ng mL−1 of MC standards (internal standard: 50 ng mL−1

nodularin) were prepared. The BMAA, AEG, 2,4-DAB, MC-RR, MC-YR, and MC-LR
standards were combined and derivatised using an AccQ-Tag Ultra Derivatisation Kit
in accordance with the manufacturer’s guidelines, with minor modifications. AccQ-Tag
derivatisation in this method was carried out with a 10 µL BMAA standard/’Final Product’
sample, a 10 µL MC standard/’Final Product’ sample, 20 µL of derivatising reagent, and
60 µL of borate buffer, as opposed to 10:20:70 (sample:reagent:buffer). The BMAA, AEG,
2,4-DAB, and MC extracts of the cyanobacteria samples were combined with 500 ng mL−1

of nodularin prior to AccQ-Tag derivatisation.
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3.3. LC-MS/MS Analysis

Analysis was performed on an Agilent 1290 series Infinity UPLC coupled with an Agi-
lent 6490 Triple-Quadrupole LC-MS (Agilent Technologies—Mulgrave, Victoria Australia).
All data analysis was performed using Agilent MassHunter Qualitative and Quantitative
Analysis Software. The method optimisation, including source conditions, was performed
on Agilent MassHunter Optimiser and Source Optimiser software.

Chromatographic analysis was carried out on an Agilent 2.1× 100 mm, 1.8 µm, reverse-
phase Zorbax RRHD Eclipse Plus C18 column, with the column temperature set to 18 ◦C.
Separation was achieved by gradient elution at 0.65 mL min−1, with the initial conditions
set at 100% A (ultrapure water + 0.1% v/v formic acid (Sigma-Aldrich, Castle Hill, NSW,
Australia)), increasing to 10% B (acetonitrile (Sigma-Aldrich, Castle Hill, NSW, Australia) +
0.1% v/v formic acid) over 6 min, then 33% B in the 7th minute, and subsequently increasing
to 45% B at 10 min. At 10 min, the column was washed for 2 min at 100% B and equilibrated
under the initial conditions for another 2 min. The injection volume of the samples was
5 µL, with each sample and standard injected in triplicate.

Multiple reaction monitoring (MRM) transitions were established for each analyte and
internal standard, with each compound having at least 3 MRM transitions, 1 quantifier
ion transition, and 2 qualifier ion transitions. To ensure maximum sensitivity, acquisition
segments were implemented, where BMAA, AEG, and 2,4-DAB were acquired between 3
and 7 min and the MCs between 7 and 10 min. Outside of these acquisition windows, the
flow was diverted to waste. The collision energies accompanying the MRM transitions (see
Table 4) were optimised using MassHunter Optimiser software.

Table 4. MRM transitions for all analytes using LC-QqQ-MS; * denotes quantifier ions.

Sample Retention
Time (min)

Precursor Ion
(m/z)

Product Ions
(m/z)

Collision
Energy (eV)

Dwell Time
(ms)

BMAA 5.28 459

119 30

50
171 35

258 * 30

289 20

AEG 5.53 459

119 30

50
171 35

214 * 35

289 20

2,4-DAB 6.01 459

119 30

50
171 35

188 * 35

289 20

D5-DAB 5.97 464

123 18

50145 * 30

171 20

MC-RR 7.86 520

103 70

50127 50

135 * 30

NOD 8.30 826

103 70

50135 * 60

227 50

MC-YR 8.74
1046

127 80

50213 72

523 135 * 75

MC-LR 8.88
996

112 68

50213 76

498 135 * 70
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The electrospray ionisation (ESI) source settings were optimised for BMAA, AEG, and
2,4-DAB, as well as the MCs’ protonation. The ESI probe was supplied with nitrogen gas,
and the method was run in positive ionisation mode, with the nebulising pressure of 20 psi
and the iFunnel voltage at 110–200 V. The drying gas temperature was optimised and set
to 210 ◦C, with gas flow of 14.0 L min−1. The sheath gas temperature was set to 400 ◦C
at 11.0 L min−1. The capillary voltage was operating at 3000 V, and the nozzle voltage at
1500 V.

3.4. Method Validation Parameters

The method was validated to ensure its adherence to the available WHO guidelines
regarding exposure to the MCs. External calibration standards with ranges of 0.1 to
100 ng mL−1 for BMAA and its isomers and 0.1 to 1000 ng mL−1 for the MC standards
were used. Each standard was injected in triplicate, with repeatability determined after
7 injections of the 10 ng mL−1 standard, and inter-day precision was determined based on
a 7-day reproducibility test. The LOD was calculated based on the 0.1 ng mL−1 standard
as 3.3× the signal-to-noise ratio (S/N), and the LOQ was calculated as 7× the S/N. Spike-
recovery tests were conducted to assess the accuracy of the method in the sample matrix
of interest, which involved the spiking of an algal sample with a 10 ng mL−1 spike and
comparing the signal to a 10 ng mL−1 standard. Various other parameters were assessed
during the method development, and they are discussed in Section 3.

3.5. Data Analysis

All data processing was carried out using Agilent MassHunter Software and Microsoft
Excel. Cyanotoxin concentration (C) was determined against the calibration curve in
ng mL−1 and then normalised to the dry weight (M) and reconstitution/wash volume of
the sample (V), with respect to the dilution factor (Di. F) (Equation (1)).

Normalised Mass
(

ng mg−1
)
=

C
(

ng mL−1
)
×V(mL)× Di. F

M(mg)
(1)

4. Conclusions

We developed a multiclass LC-MS/MS method for the separation and quantification of
BMAA, AEG, 2,4-DAB, MC-LR, MC-RR, and MC-YR in cyanobacteria in a single analytical
run. The method was validated by assessing the linearity, accuracy, precision, and detection
and quantification limits, and it was adequate for the quantitative determination of mul-
ticlass toxins in cyanobacterial samples. Since cyanobacteria have the potential to have a
detrimental effect on human health and a negative impact on surrounding ecosystems, it is
important that routine cyanotoxin analyses are performed. Combined cyanotoxin screening
will not only provide greater efficiency in terms of time and cost but will also expand our
understanding of the range of toxins produced by individual cyanobacterial species.
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