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Figure S1. Cytotoxicity of naphthoquinones at 10 µM against TF1 and HEL cells by Presto Blue assay. 
*** p ≤ 0.001 vs. tofacitinib, ## p ≤ 0.01 and ### p ≤ 0.001 vs. ruxolitinib. 

 



 

Figure S2. IC50 for cell viability inhibition of naphthoquinones and known drugs (tofacitinib and 
ruxolitinib) in TF1 cells by Presto Blue assay.   

 



 

Figure S3. IC50 for cell viability inhibition of naphthoquinones and known drugs (tofacitinib and 
ruxolitinib) in HEL cells by Presto Blue assay.     

 

 

 

 



 

Figure S4. IC50 for JAK2/3 inhibitions of napabucasin and 2’-methyl napabucasin comparisons with 
known drugs, tofacitinib and ruxolitinib by ADP-Glo™ kinase assay.   

 

 



 

Figure S5. Dose-dependent effect of napabucasin and 2’-methyl napabucasin comparison with drugs, 
tofacitinib and ruxolitinib at IC25, IC50 and IC75 values (nM) on the apoptosis of TF1 cells by annexin V 
for 24 h. (A) The flow cytometry dot plot of each group which divided into four quadrants: live cells, 
early apoptotic cells, late apoptotic cells, and necrotic cells. (B) The percentages of live cells and 
apoptotic cells. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001 compared with the untreated group. 

 

 



 

Figure S6. Snapshot per time (25 frames) of complex between JAK2 and ruxolitinib along 500 ns 
simulations. 

    

 

Figure S7. Energy contribution between napabucasin series within JAK2 in ATP binding pocket from 
the average three independent simulations (last 100 ns).   

 

 

 

 

 

 

 

 



 
 Figure S8. 1H NMR (300 MHz) spectrum of napabucasin in CDCl3. 

 

 
Figure S9. 13C NMR (100 MHz) spectrum of napabucasin in CDCl3. 
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Figure S10. 1H NMR (300 MHz) spectrum of 2′-methyl napabucasin in CDCl3. 

 

 
Figure S11. 13C NMR (100 MHz) spectrum of 2′-methyl napabucasin in CDCl3. 
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