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Abstract: Environmental pollution has been a reality for many decades, with its contamination
intensifying daily due to rapid urbanization and the ever-increasing world population. Dyes, and
especially synthetic ones, constitute a category of pollutants that not only affect the quality of water
but also exhibit high toxicity toward living organisms. This study was thoroughly planned to
explore the removal of two toxic dyes, namely the methylene blue (MB) and methyl orange (MO)
compounds from contaminated aqueous media. For this purpose, we designed and synthesized two
new composite materials based on ammonium-functionalized Zr4+ MOF (MOR-1 or UiO-66-NH3

+)
and naturally occurring sorbents, such as bentonite and clinoptilolite. The composite materials
displayed exceptional sorption capability toward both MB+ and MO− ions. A key finding of this study
was the high efficiency of the composite materials to simultaneously remove MB+ and MO− under
continuous flow conditions, also showing regeneration capability and reusability, thus providing an
alternative to well-known mixed bed resins.

Keywords: metal–organic frameworks; composite materials; dyes’ sorption; methylene blue; methyl
orange; zeolite; clay; sorption column; alginate beads

1. Introduction

In recent centuries, the industrialization of human societies has led to massive urban-
ization in most regions on planet Earth. Consequently, different kinds of industries have
developed, which have served people’s needs in various aspects of their daily life. How-
ever, the proliferation of people’s needs for products and the rapid increase of industrial
production have resulted in the generation of hazardous waste and toxic gases, alongside
the production of the desired products. Aqueous wastes, originating from industry or
from human processes, when released into the environment without any kind of treatment,
cause serious water pollution.

Over the years, various pollutants, such as pharmaceuticals and personal care products
(PCPs), pesticides, dyes, oil, and aromatic and/or organic compounds, have been detected
in aquatic environments [1]. Interestingly, dyes and pigments, which are widely used in
textile industries, tanneries, paper mills, and plastics production, are the most abundant
pollutants in aquatic environments. It is estimated that approximately 100,000 commercially
available dyes are produced each year at a rate of 8 × 105 tons per year, with 15% of the
dyes produced typically being released as wastewater to water bodies [2–4]. Water quality
is greatly affected by color, and even a small percentage of dye can be visible and cause
a color sensation in the water [5]. These seemingly ‘innocent pollutants’ are harmful to
fish and other aquatic organisms, are potentially carcinogenic, and can cause acute or
chronic diseases to exposed living beings [6,7]. Moreover, dyes exhibit resistance to light,
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heat, and oxidizing agents, a fact that is derived from their complex aromatic molecular
structures. On that account, the protection of the earth’s water resources becomes vital
and has been facilitated through the development of effective and efficient separation and
purification techniques.

So far, the reported techniques for the treatment of dye-contaminated aquatic sources
include sorption, flocculation, electrolysis, photocatalysis, and biodegradation [8–11].
Among these methods, sorption is the simplest and most efficient one adopted for these
purposes [12]. Thus, in the last decades, special attention has been paid to the research
on nanoporous materials, as it has been found that they are good sorbents and play an
important role in separation and purification processes. The relatively new class of highly
crystalline porous solids, metal–organic frameworks (MOFs), is constantly gaining ground
in various research fields, and especially in applications regarding sorption removal and
the separation/purification of contaminated wastewater [13–16].

In our previous work, we reported the successful removal of the acidic/anionic
dye methyl orange (MO−) with the [Zr6O4(OH)4(NH3

+-BDC)6]Cl6·solvent (MOR-1 or
UiO-66-NH3

+), where NH2-BDC2− = 2-amino-terephthalate, in its composite form with
alginic acid (HA) [12]. Although MOR-1-HA has been shown to be an excellent sorbent
toward MO−, the results were rather discouraging when the cationic dye methylene blue
(MB+) was used as the target pollutant, confirming our prediction that the sorption mech-
anism involves an anion-exchange process [12]. To this end, we decided to improve the
sorbent functionality to enable the removing of both anionic and cationic species. Given
the fact that MOR-1-HA could easily exchange its Cl− with MO−, the goal was to design
a composite which consisted of MOR-1 and a secondary unit that could capture cationic
species. Clays and zeolites were two promising classes of materials since they have been
extensively applied in the removal of cationic dyes from wastewater, indicating superior
sorption behavior with great cation-exchange properties [17,18]. Herein, we present two
composite materials based on the anion-exchanging material MOR-1, combined with nat-
ural inorganic cation-exchange materials, specifically bentonite (clay) and clinoptilolite
(zeolite), together with alginic acid—a natural organic polymer. The composite mate-
rials (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA exhibited an exceptional
capability to remove MO− and MB+ dyes from water solutions under various conditions.
Additionally, we synthesized two composite sorbents based on the above-mentioned ma-
terials, calcium alginate and Fe3O4, which in the form of beads could be successfully
employed in ion-exchange columns. It is worth mentioning that such columns combine the
capability for the simultaneous reduction of the concentrations of mixed MO−/MB+ dyes
in aqueous solutions and regeneration capacity reusability, thus offering an alternative to
the use of mixed bed resins [19].

2. Results
2.1. Synthesis of the Composite Materials

In our group, several ammonium-functionalized Zr4+ MOFs have been reported and
widely used as sorbents for the removal of various anionic species [12,20–25]. However,
these MOFs could not be applied in solutions containing cationic pollutants without the
previous deprotonation of the amine group [26], which means that the material could
not further uptake anions. The principal idea in this study was to design composite
multifunctional sorbents based on MOR-1 (Figure 1), an excellent anion sorbent, and widely
available aluminosilicate materials, such as bentonite and clinoptilolite (Figure S1) that are
well-known for their highly efficient cation-exchange properties [27–30]. Thus, the resulted
materials were capable of simultaneously removing both anionic and cationic pollutants.
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Figure 2. Schematic representation of the preparation of (MOR-1/Bentonite/Fe3O4)-10%CA beads. 

Figure 1. Representation of the structure of MOR-1. Color code: C, grey; O, red; N, blue; Zr, cyan.

The synthesis of these composite materials was carried out in aqueous solutions of
sodium alginate where MOR-1 and bentonite or clinoptilolite were mixed in a weight
percentage ratio of 1:1. Within these solutions, layers of alginate anions covered the parti-
cles of the materials and the addition of concentrated acetic acid led to the precipitation
of the (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA (HA = alginic acid) com-
posites. The weight percentage of alginate’s contribution in each composite was only
2% and did not affect the sorption process. These materials were proven excellent sorbents
via batch sorption studies (see below). However, they were isolated in the form of fine
powder, and thus they were not suitable to be used as stationary phases in columns. To
this end, we prepared composite materials, namely (MOR-1/Bentonite/Fe3O4)-10%CA
and (MOR-1/Clinoptilolite/Fe3O4)-10%CA (CA = calcium alginate) in the form of beads
(Figure 2), which contained more alginate content (10%) as well as Fe3O4 particles. The
latter component not only allowed an easy recovery of the beads by applying an external
magnetic field (Figure S2), but also seemed to enhance the mechanical strength of the beads,
facilitating the unhindered flow of water solutions through the stationary phase of the
column. We should note that the significantly increased alginate content in the beads,
compared to that of the powder form of the composites, may result in slower sorption
kinetics; however, the isolation of composites in the form of beads requires a content of
alginate ≥10% w/w.
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2.2. Characterization of the Composite Materials

In our previous work, we reported that MOR-1 and its alginic acid composite were
highly crystalline materials [20,21]. The PXRD pattern of bentonite revealed a typical
amorphous structure from 4 to 40 2θ (Figure 3A). In PXRD patterns obtained after the
synthesis of (MOR-1/Bentonite)-HA, a slight loss of the crystallinity of MOR-1-HA was
observed; however, the characteristic diffraction peaks of MOR-1-HA at 2θ of 7.3◦, 8.5◦, and
12◦ corresponding to (111), (200), and (220) planes, respectively, were present (Figure 3A).
A typical PXRD pattern of clinoptilolite displays several diffraction peaks (Figure 3B) [31].
The PXRD pattern of (MOR-1/Clinoptilolite)-HA (Figure 3B) contained diffraction peaks
of both MOR-1-HA and clinoptilolite, thus confirming the successful preparation of the
composite material. Similarly, the PXRD patterns of Fe3O4-modified composites revealed
great consistency with those of pristine materials (Figure S3).
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The successful modification of MOR-1 with either bentonite or clinoptilolite was further
supported by FT-IR spectroscopy (Figure 4). The IR spectrum of (MOR-1/Bentonite)-HA
indicated several characteristic bands of MOR-1, such as those at 1565 and 1383 cm−1

assigned to the νas(COO–) and νs(COO–) stretching modes, respectively, as well as the
characteristic bands of pristine bentonite. Specifically, the peak at 3627 cm−1 was attributed
to the vibration of the Al-O-H group, while the peaks at 1117 and 1030 cm−1 were due
to the vibrations of Si-O units. Moreover, the bands at 524 and 463 cm−1 were related
to the Al-O-Si and Si-O-Si bending vibrations of bentonite, respectively (Figure 4A) [32].
Similarly, the IR spectrum of (MOR-1/Clinoptilolite)-HA revealed the characteristic bands
for MOR-1 as well as those for clinoptilolite (Figure 4B). In addition, the IR spectra of
(MOR-1/Bentonite/Fe3O4)-10%CA and (MOR-1/Clinoptilolite/Fe3O4)-10%CA displayed
the characteristic peaks for MOR-1 and either of those for bentonite (Figure S4a) or clinop-
tilolite materials (Figure S4b).
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Furthermore, diffuse reflectance UV-Vis data for the composite materials indicated
absorption features of both MOR-1 and aluminosilicate components (Figures S5 and S6).
The Brunauer–Emmett–Teller (BET) surface areas for (MOR-1/Bentonite)-HA and (MOR-
1/Clinoptilolite)-HA were found to be 313 and 368 m2/g, respectively (Figure 5), whereas
the BET surface areas of (MOR-1/Bentonite/Fe3O4)-10%CA and (MOR-1/Clinoptilolite/
Fe3O4)-10%CA were determined to be 246 and 286 m2/g, respectively (Figure S7). In gen-
eral, the surface areas of the composite materials were found to be significantly smaller than
those of pristine MOR-1 (Figure 5), which implied a partial blockage of the pores of the MOF
framework by the aluminosilicate material. Scanning electron microscopy (SEM) images
revealed a two-phase morphology for all the composite materials (Figure S8). In addition,
EDS analysis confirmed further the amalgamation of the MOF with bentonite or clinoptilo-
lite (Figure S9), as well as the presence of Fe in the (MOR-1/Bentonite/Fe3O4)-10%CA and
(MOR-1/Clinoptilolite/Fe3O4)-10%CA composite materials (Figures S10 and S11).
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2.3. Batch Sorption Studies
2.3.1. Sorption Kinetics

The contact time was one of the critical factors that pointedly influenced the per-
formance and assessed the applicability of the sorbent. Thus, the determination of the
sorption kinetics was the first step in the investigation of the sorption properties of (MOR-
1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA toward MB+ and MO− ions. Lager-
gren’s first-order equation and Ho–Mckay’s pseudo-second-order equation are the com-
monly used models for the fitting of the kinetics data. In the current study, both models were
applied; however, the significantly higher R2 values, the low values for the residual sum of
squares and relatively small uncertainty parameters, suggested that Ho–Mckay’s pseudo-
second-order equation better represented the kinetics of the dyes’ sorption (Table S1). This
finding suggested a mechanism involving the chemisorption of dyes on the composite
materials [33]. Figure 6 illustrates the effect of the contact time on the sorption of MB+ and
MO− by the composite materials.
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The results indicated that the rate of sorption was very fast in the first 10 min of
the interaction between the dyes’ ions and the sorbents. After that time, the removal
rate became almost insignificant considering that by elapsing the contact time, the vacant
sorption sites were less than in the beginning of the experiments. Significantly, within
only the 1st min of contact, both materials successfully removed ~97% of the MO− and
~98% of the MB+ ions. After 10 min of contact, an equilibrium was reached with removal
percentages ≥ 99%.
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2.3.2. Sorption Isotherms

Equilibrium analysis is a powerful tool for the comprehension of the sorption pro-
cess. Toward this end, we carried out sorption experiments with solutions of variable
concentrations. The sorption equilibrium data were fitted with the Langmuir, Freundlich,
and Langmuir−Freundlich isotherm models, the mathematical expressions of which are
provided below:

(a) Langmuir

q = qm
bCe

1 + bCe

(b) Freundlich

q = KFC
1
n
e

(c) Langmuir–Freundlich

q = qm
(bCe)

1
n

1 + (bCe)
1
n

where q (milligrams per gram) represents the amount of the ion removed at the equilibrium
concentration Ce (parts per million), qm is the maximum sorption capacity of the sorbent, b
(milligrams per liter) is the Langmuir constant related to the free energy of the sorption,
and KF and 1/n are the Freundlich constants [34].

Figure 7 depicts the equilibrium data for the sorption of MB+ and MO− ions by
(MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA, as well as their fitting with the
suitable model. The sorption isotherm data revealed that (MOR-1/Bentonite)-HA was able
to remove 321 mg g−1 of MB+ and 312 mg g−1 of MO− from the corresponding solutions.
The best fitting of isotherm sorption data for (MOR-1/Bentonite)-HA was achieved with
the Langmuir–Freundlich model for the sorption of MB+ and the Langmuir model for the
sorption of MO−. The description of the MO− sorption data by (MOR-1/Bentonite)-HA
with the Langmuir model indicated a monolayer sorption of the dyes’ anionic species
inside the pores of the MOR-1 material [35]. The fact that the MB+ sorption isotherm
of (MOR-1/Bentonite)-HA followed the Langmuir–Freundlich model, which combines
features of both the Langmuir and Freundlich approaches, indicated the contribution of
both homogenous and heterogenous sorption processes [35]. In our previous study, we
reported that the sorption of MO− by MOR-1-HA was attributed to the exchange of Cl−

ions with MO− ions. However, no sorption capacity was observed for the cationic dye
MB+, which has a similar molecular size to MO−, revealing that MOR-1–HA material can
selectively sorb the anionic but not the cationic dye through an ion-exchange process [12].
These findings suggested that bentonite was responsible for the removal of MB+ ions and
not the MOR-1-HA. Indeed, the latter was supported by the equilibrium data obtained from
the sorption of MB+ by the pristine bentonite material. The maximum sorption capacity
was found to be 525 mg g−1 (Figure S12a). The value of 321 mg of MB+ removed per gram
of (MOR-1/Bentonite)-HA was close to the theoretical, given that the weight percentage of
bentonite in the composite material was 50%.

The isotherm sorption data for (MOR-1/Clinoptilolite)-HA were fitted with the
Langmuir–Freundlich model for both the MB+ and MO− sorption processes. The maximum
MB+ and MO− sorption capacities for (MOR-1/Clinoptilolite)-HA were calculated to be
312 mg g−1 and 323 mg g−1, respectively. Pristine clinoptilolite was able to remove 403 mg
of MB+ g−1 (Figure S12b), while the composite (MOR-1/Clinoptilolite)-HA seemed to be
more effective for the removal of MB+. It is worth mentioning that bentonite and clinop-
tilolite showed no sorption capacity for MO−. The results acquired from the isotherm
studies in combination with those previously obtained for MOR-1-HA [12] revealed that
the sorption process involved the cation exchange of MB+ in the aluminosilicate component
and anion exchange of MO− in the MOR-1 material.
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2.3.3. Variable pH Studies

Detailed studies with dye-contaminated solutions of a wide pH range revealed that
pH was not a critical factor for the performance of our sorbents. The pH study was
conducted with solutions containing MB+ or MO− and in the pH range from 1 to 10 for
both materials. Significantly, the capture of MB+ from either (MOR-1/Bentonite)-HA or
(MOR-1/Clinoptilolite)-HA was overwhelming since the removal percentages were close
to 100% (>99.86–100%) independent of the pH of the solution (Figure 8A,C). Furthermore,
(MOR-1/Bentonite)-HA exhibited astonishing sorptive behavior toward the anionic dye
MO−, with removal percentages higher than 97% (Figure 8B). (MOR-1/Clinoptilolite)-HA
was found capable to remove MO− as effectively as (MOR-1/Bentonite)-HA in solutions
with a pH > 3, while a slight loss was observed at pH 2 and 1, with removal percentages
reaching 90% and 72% (Figure 8D), respectively. It is likely that the high excess of Cl−

anions resulted from the HCl acid used for pH adjustment and not that the presence of
H+ affected the sorption of MO− by (MOR-1/Clinoptilolite)-HA. It is not clear, however,
why the sorption of MO− by (MOR-1/bentonite)-HA was inhibited only a little under
similar conditions.
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2.3.4. Selectivity Studies

Given the fact that dye-contaminated wastewater contains several anionic and/or
cationic species besides the dyes’ ions, dye sorption studies were also performed in complex
solutions with a number of antagonistic cations and/or anions. To this end, the sorptive
ability of (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA toward MB+ was in-
vestigated in solutions containing a series of competitive cations, such as Na+, K+, and
Ca2+ in large excesses. Interestingly, the MB+ removal ability of both composites seemed
not to be importantly influenced by the presence of the antagonistic cations. In particular,
(MOR-1/Bentonite)-HA achieved removal percentages for MB+ as high as 99.80%, 98.95%,
and 99.46% even in the presence of a 1000-fold excess of Na+, K+, and Ca2+, respectively,
while the correspondent percentages for (MOR-1/Clinoptilolite)-HA were found to be
97.90%, 95.40%, and 96.11% (Figure 9A). In addition, the ability of (MOR-1/Bentonite)-HA
and (MOR-1/Clinoptilolite)-HA to capture MO− was investigated in aqueous solutions
containing Cl−, Br−, NO3

−, or SO4
2− anions in relatively high concentrations. As shown

in Figure 9B, both composite materials could efficiently remove MO−, even in the pres-
ence of quite high concentrations of competitive anionic species. Specifically, despite
the presence of 1000-fold excesses of Cl− or NO3

−, the removal percentages of MO− by
(MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA were calculated to be equal or
higher than 80%. A slight decrease was observed when a 1000-fold excess of Br− was
added to the solutions (removal percentages = 65.6% and 73.0% for (MOR-1/Bentonite)-
HA and (MOR-1/Clinoptilolite)-HA, respectively), and even higher was the decrease after
adding a 1000-fold of SO4

2− (~60% removal). However, the latter finding can be easily
explained since SO4

2− is bivalent and can interact more efficiently with the MOF’s active
sites than the monoanionic MO−. The last step to the selectivity study was the inves-
tigation of the efficiency of (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA to
uptake the ions of dyes under realistic conditions. For this reason, the sorption occurred
in bottled water intentionally contaminated with MB+ or MO−. These samples were rich
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in several anionic and cationic species, including Cl−, NO3
−, SO4

2−, HCO3
−, Na+, K+,

Ca2+, and Mg2+, with concentrations that exceeded those of MB+ and MO− by up to 35
times. Although the removal of MO− seemed to be slightly hindered due to the mixture
of the anions, the removal percentages of 67.64% and 65.45% with (MOR-1/Bentonite)-
HA and (MOR-1/Clinoptilolite)-HA were still high and very promising, considering the
complexity of these solutions (Figure 9). Moreover, the selective removal of MB+ by both
(MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA was exceptional, since the pres-
ence of the ions had zero effect on the sorption process and no traces of the dyes were
detected in the bottled samples.
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Figure 9. (A) MB+ sorption data for (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA in
the presence of various competitive anions (initial MB+ concentration = 18 ppm, pH ∼ 6.5) and in
contaminated bottled water samples (initial MB+ concentration = 18 ppm, pH ∼ 7.8). For comparison,
sorption results in distilled water (DH2O) solutions (containing no antagonistic ions) are also provided.
(B) MO− sorption data for (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA in the presence
of various competitive anions (initial MB+ concentration = 18 ppm, pH ∼ 6.5), in contaminated bottled
water samples (initial MB+ concentration = 19 ppm, pH ∼ 7.8), and in distilled water solutions. The
composition of the bottled water was as follows: pH = 7.8, HCO3

− = 244 ppm, Cl− = 4.29 ppm,
NO3

− = 1.93 ppm, SO4
2− = 9.16 ppm, Na+ = 2.24 ppm, K+ = 0.6 ppm, Ca2+ = 80.7 ppm, and

Mg2+ = 5.34 ppm.

2.4. Column Sorption Study

The above sorption results derived from the batch reaction experiments are promis-
ing for the possible use of (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA in
MO− and MB+ sorption applications. However, the efficient performance of ion-exchange
materials under stirring conditions does not necessarily mean that they can be applied in in-
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dustrial wastewater treatment. The latter requires the use of continuous flow ion-exchange
columns [19]. Furthermore, dye-contaminated industrial wastewater contains more than
one coloring factor, which can be either anionic or cationic. With a view to address this issue,
we decided to perform column sorption studies with a mixture of MB+/MO−, which better
met the requirements for real-world wastewater treatment. As reported above, (MOR-
1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA are in the form of fine powder, and thus
they cannot be used as stationary phases in columns for the removal of dyes under continu-
ous flow. Thus, two new composite materials in the form of beads were isolated and used
for the simultaneous removal of a mixture of MB+/MO− under dynamic conditions, namely
(MOR-1/Bentonite/Fe3O4)-10%CA and (MOR-1/Clinoptilolite/Fe3O4)-10%CA. Column
sorption studies were conducted with a MB+/MO− mixture solution of an initial concentra-
tion of 3.7 ppm MB+ and 5.3 ppm MO+. Since the light green solution passed through the
column, it was decolorized (Figure S13). Importantly, the columns could be easily regener-
ated by treatment with a solution of 1M HCl and reused for several cycles. Specifically, a
column filled with (MOR-1/Bentonite/Fe3O4)-10%CA beads achieved the removal of 82%
of MB+ from the first bed volume received (bed volume = bed height [cm] x cross sectional
area [cm2]), while after 115 bed volumes, the correspondent removal percentage was close
to 48% of the initial MB+ concentration (Figure S14a). At the same time, 69% and 20%
removal were observed for MO− at the first and last bed volumes collected, respectively
(Figure S14b). In the second and third runs, the performance of the column seemed to
be improved due to the slower flow rate, which resulted in a longer contact time. The
bed volume was 1.15 mL, the average flow rate = 1.66 mL min−1, and the empty bed
contact time (EBCT) = 0.69 min [36]. Specifically, in the first bed volume collected in the
second run, the removal percentages were increased to 88% and 86% for MB+ and MO−,
respectively, whereas the corresponding percentages found in the third run of the column
were as high as 96% and 90%, respectively (Figure S14). It is worth mentioning that 83%
and 75% removal of the initial MB+ and MO− content, respectively, could be achieved even
after passing 85 bed volumes in the third run of the column. Similar results were obtained
from the ion-exchange column filled with (MOR-1/Clinoptilolite/Fe3O4)-10%CA beads
(bed volume = 1.34 mL, the average flow rate = 2.5 mL min−1, and the EBCT = 0.54 min)
(Figure S15).

Furthermore, we designed a column sorption investigation where 40 mL of the mix-
ture solution circularly passed through the column. The latter simulated a popular pro-
cedure for industrial wastewater treatment, where a series of columns was applied to
improve the removal performance of the sorbent [19]. The results proved that both types
of columns were impressive, since both (MOR-1/Bentonite/Fe3O4)-10%CA and (MOR-
1/Clinoptilolite/Fe3O4)-10%CA were able to successfully capture approximately 90% of
the initial MB+/MO− content (Figure 10). Specifically, (MOR-1/Bentonite/Fe3O4)-10%CA
was able to remove 95% and 92% of the MB+ and MO−, respectively, after 10 times of
circularly passing the effluent through the column (bed volume = 1.15 mL, the average
flow rate = 8 mL min−1, and the EBCT = 0.14 min) (Figure 10A,B). It should be noted
that the column was treated with 1M HCl and was reused showing a similar removal
capacity. Likewise, the removal percentages for (MOR-1/Clinoptilolite/Fe3O4)-10%CA
were as high as 96% and 90% for MB+ and MO−, respectively (bed volume = 1.34 mL, the
average flow rate = 8 mL min−1, and the EBCT = 0.17 min) (Figure 10C,D). The regeneration
and reuse of this column revealed slight changes in the removal capability of the column.
Noteworthily, the average flow rate of the columns was calculated to be 8 mL min−1, which
meant that 5 min was enough to complete every cycle of 40 mL solution feeding. The latter
finding is very promising for industrial applications, not only because a single column with
circularity feeding would be able to sufficiently downgrade a mixture of dye-contaminated
wastewater, but also due to the short operation time and the “ready to use” ability after a
simple regeneration procedure. In addition, the regeneration of the composite materials
was achieved inside the column, in contrast to the traditional mixed bed columns where
the regeneration demands removal and repacking at the stationary phase [19].
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Figure 10. Column sorption data regarding the removal of (A) MB+ and (B) MO− with (MOR-
1/Bentonite/Fe3O4)-10%CA from the mixture solution. Column sorption data regarding the removal
of (C) MB+ and (D) MO− with (MOR-1/Clinoptilolite/Fe3O4)-10%CA from the mixture solution.
The MB+/MO− mixture solution circularly passed through the column up to 10 times.

Although we cannot clarify if a synergistic effect occurred in the simultaneous sorption
of anionic and cationic dyes, several findings from this study supported the opposite
scenario. The batch sorption data with solutions containing either MB+ or MO− (individual
dye sorption experiments) indicated in general the higher sorption capability of composites
for MB+ vs. MO−. This trend seemed to be followed also in column sorption with a mixture
of dyes, and thus synergistic sorption phenomena were not rather likely.

2.5. Isolation and Characterization of the Composite Materials and Dye-Loaded Composite Materials

The color of both composite materials changed from light yellow to blue or orange
after the sorption of MB+ or MO−, respectively (Figures S16 and S17). Moreover, UV−vis
diffuse reflectance spectroscopy further supported the capture of the dyes’ ions by the
composite materials. Specifically, the wide band appearing in the region of 550 to 800 nm at
the spectra of (MOR-1/Bentonite)-HA@MB+ (Figure S17a) and (MOR-1/Clinoptilolite)-
HA@MB+ (Figure S19a) was assigned to the absorption of MB+. Similarly, in Figures
S18b and S19b, the characteristic peak at 464 nm was due to the absorption of MO−. In
addition, UV-vis spectra of the materials used as the stationary phase in the ion-exchange
columns displayed absorption peaks of both MB+ and MO−, confirming the simultaneous
sorption of the two anionic species by the composites (Figure S18). The PXRD patterns of
(MOR-1/Bentonite)-HA@MB+, (MOR-1/Bentonite)-HA@MO−, (MOR-1/Clinoptilolite)-
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HA@MB+, and (MOR-1/Clinoptilolite)-HA@MO− revealed that the crystal structures
were retained after the sorption processes (Figure 11). Moreover, the PXRD patterns ob-
tained from (MOR-1/Bentonite/Fe3O4)-10%CA and (MOR-1/Clinoptilolite/Fe3O4)-10%CA
beads, after the treatment of the column with the mixture of MB+ and MO−, indicated that
the crystallinity of the composites was preserved (Figure S21).
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Figure 11. PXRD patterns of (MOR-1/Bentonite)-HA along with those of (A) (MOR-1/Bentonite)-
HA@MB+, (B) (MOR-1/Bentonite)-HA@MO− and MOR-1/Clinoptilolite)-HA, (C) (MOR-
1/Clinoptilolite)-HA@MB+, and (D) (MOR-1/Clinoptilolite)-HA@MO−.

3. Conclusions

In conclusion, this study dealt with the development of novel composite sorbents
with the capability for the simultaneous removal of anionic and cationic toxic dyes from
aqueous media. Specifically, the two composite materials, (MOR-1/Bentonite)-HA and
(MOR-1/Clinoptilolite)-HA, were synthesized via a facile method and their sorptive effi-
ciencies toward the toxic dyes MB and MO were investigated in detail. (MOR-1/Bentonite)-
HA and (MOR-1/Clinoptilolite)-HA exhibited a high sorption capacity, fast sorption ki-
netics (the equilibrium can be achieved in ~10 min), excellent sorption ability in acidic
and alkaline solutions, and high selectivity for the dyes over various coexisting ionic
species. Toward practical applications, (MOR-1/Bentonite/Fe3O4)-10%CA and (MOR-
1/Clinoptilolite/Fe3O4)-10%CA in the form of beads were used as stationary phases in
columns, achieving the highly efficient removal of MB+ and MO− ions from a mixture
containing both dyes. Overall, this study provides an alternative technology combining the
high removal efficiency of multiple pollutants and capability for the in-situ regeneration of
sorbents, as opposed to well-known mixed bed columns requiring the ex-situ regeneration
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of resins, a process that causes significant delays to the water treatment procedure and
increased costs.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/molecules28020815/s1, Figure S1: Representation of the structures of bentonite
and clinoptilolite; Figure S2: Optical image of (MOR-1/Bentonite/Fe3O4)-10%CA beads and recov-
ery of the (MOR-1/Bentonite/Fe3O4)-10%CA beads by applying magnetic field; Figure S3: PXRD
patterns of bentonite, MOR-1-HA, (MOR-1/Bentonite/Fe3O4)-10%CA and clinoptilolite, MOR-1-
HA, (MOR-1/Clinoptilolite/Fe3O4)-10%CA; Figure S4: FTIR spectra of bentonite, MOR-1, (MOR-
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