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Experimental Section
Chemicals

All the chemicals were commercially available and used without further purification.
Zirconium chloride (ZrCls), 2-aminoterephthalic (NH2-H2BDC) and FeCls.6H20 were pur-
chased from Aldrich. Natural bentonite clay and clinoptilolite were purchased from com-
mercial sources. Sodium alginate powder was purchased from Aldrich and used as re-
ceived. The solvents were used as received.

Synthesis

The synthesis and characterization of MOR-1 and MOR-1-HA was reported previ-
ously by us.[20,21]

Synthesis of (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilolite)-HA

A suspension of (MOR-1/Bentonite)-SA or (MOR-1/Clinoptilolite)-SA) was pre-
pared by dispersing 0.1 g MOR-1 and 0.1g bentonite (or 0.1g clinoptilolite) in 7.85 mL 50%
w/v sodium alginate aqueous solution via ultrasonication. The mixture was kept under
stirring for 30 min. To this suspension, CHsCOOH was added dropwise, resulting to the
formation of the composite materials (MOR-1/Bentonite)-HA and (MOR-1/Clinoptilo-
lite)-HA. CH3COOH converts sodium alginate to alginic acid which is insoluble in water
and encapsulates the sorbent particles forming a thin layer around them.[2] The composite
materials were isolated via filtration using a Buchner funnel, washed several times with
excess of water to remove the spare amount of unbound calcium, and dried overnight at
60 °C (Yield: 0.146 g of (MOR-1/Bentonite)-HA) and 0.170 g of (MOR-1/Clinoptilolite)-
HA.

Preparation of (MOR-1/Bentonite/Fe3O4)-10% calcium alginate beads

In a suspension of 0.255 g MOR-1 and 0.255 g bentonite in 10 mL distilled water, 0.03
g FesO4 were added. The mixture was kept under stirring for 30 min. To this suspension,
0.06 g of sodium alginate were added, and the mixture was stirred vigorously for 1-2 h.
The resulting suspension was dropped through a syringe needle into 2% (w/v) CaCl
solution where the spherization was performed. In order to improve the mechanical
strength of the beads, they were kept in the mother liquor for 30 min. Afterwards, the
isolation of the fully formed spheres occurred via filtration. The beads were washed with
excess of water to remove any unbound amount of calcium and dried overnight at 60 °C
(Yield: 0.506 g).

The later procedure was also followed for the preparation of (MOR-
1/Clinoptilolite/FesO4)-10% calcium alginate beads (Yield: 0.512 g), with the exception
that Clinoptilolite was used instead of Bentonite.

Sorption studies

Preparation of the column. 0.6 g of (MOR-1/Bentonite/Fes04)-10%CA beads were
used to fill a glass column (0.7 cm ID column). Prior the sorption study, the column was
washed with ~ 50 mL HCI (1 M) solution, in order to protonate the amine groups and 200
mL deionized water to remove the excess of HCI. A second column was filled up with 0.6
g of (MOR-1/Clinoptilolite/Fes04)-10%CA beads and was treated as above.

Batch sorption studies. A typical sorption experiment of the composite material
(MOR-1/Bentonite)-HA (or (MOR-1/Clinoptilolite)-HA) with the MB* or MO- is the
following: In a solution of MB* or MO- (0.4 mmol) in water (10 mL, pH ~ 7), 0.04 mmol of
(MOR-1/Bentonite)-HA (or (MOR-1/Clinoptilolite)-HA) was added as a solid. The
mixture was kept under magnetic stirring for ~ 1 h. Then, the solid material was isolated
by filtration, washed several times with water and acetone and dried in the air. The MB*
or MO- uptake from solutions of various concentrations was studied by the batch method
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at V:m ~ 1000 mL/g, room temperature and 1 h of contact. The competitive and variable
pH ion exchange experiments were also carried out with the batch method at V: m ratio
(1000) mL/g, room temperature and 1 h contact. For the determination of the sorption
kinetics, MB* or MO- ion-exchange experiments of various reaction times (1-60 min) have
been performed. For each experiment, a 10 mL sample of MB* or MO- solution (initial
concentration =21.6 ppm, pH~7) was added to each vial and the mixtures were kept under
magnetic stirring for the designated reaction times. The suspensions from the various
reactions were filtrated and the resulting solutions were analyzed for their MB* or MO
content with UV-Vis spectroscopy. Each sorption experiment has been done at least twice
and the reported sorption data represent the average of sorption results from the different
sorption experiments. The difference between the concentrations of the dyes determined
for the different sorption experiments was <2%. Batch MO- and MB+ sorption tests with
calcium alginate (CA) beads (containing no sorbent material) indicated no sorption
capacity for the dyes.

Column Sorption Study

Column ion-exchange study. 1t Procedure: An aqueous solution containing a
mixture of MB* (3.7 ppm) and MO- (5.3 ppm) was prepared. The mixture was passed
through the column and the effluents were collected in vials and analyzed via UV-vis
spectroscopy. For the regeneration of the column ~ 50 mL of HCl acid (1 M) solution. Then,
the column was washed with 200 mL of water to remove excess acid and tested again for
MB*/MO- simultaneous ion-exchange. The column was regenerated and reused for two
cycles after the first application. Column sorption study with calcium alginate beads
showed no removal capacity for MB* or MO-ions. 2nd Procedure: 40mL of an aqueous
solution containing a mixture of MB* (3.7 ppm) and MO- (5.3 ppm) was prepared. The
mixture was passed through the column and the effluent was collected in a flask and
analyzed via UV-vis spectroscopy. The effluent was circularly passed through the column
and analyzed up to 10 consecutive times. Subsequently, the column was regenerated with
~ 50 mL of 1M HCl, washed with 200 mL of water to remove excess acid and tested again
for MB*/MO- simultaneous ion-exchange as above.

Characterization Techniques

Powder X-ray diffraction patterns were recorded on a Bruker D8 Advance X-ray
diffractometer (CuKa radiation, A=1.5418 A). IR spectra were recorded in the range of 4000-
400 cm™ range using an Agilent Cary 630 FT-IR. UV/vis MB* and MO- solution spectra
were obtained on an Agilent Cary 4000 in the wavelength range of 200-800 nm. UV-vis
diffuse reflectance spectra were also obtained on an Agilent Cary 4000. Images and Energy
dispersive spectroscopy (EDS) analyses were recorded on a JEOL JSM-6390LV scanning
electron microscope (SEM) equipped with an Oxford INCA PentaFET-x3 energy
dispersive X-ray spectroscopy (EDS) detector. N2 adsorption-desorption isotherms were
measured at 77K on a Quantachrome Nova 3200e sorption analyzer. Before analysis, all
samples were EtOH exchanged, activated via supercritical CO2 drying and then, degassed
at 150 °C under vacuum (<107 Torr) for 12 h. The specific surface areas were calculated by
applying the Brumauer-Emmett-Teller (BET) method to the absorption branch of
isotherms in the 0.04-0.23 relative pressure (P/P.) range.
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Results and discussion

Synthesis of the composite materials

Figure S1. Representation of the structures of (a) bentonite and (b) clinoptilolite. Bentonite is mainly
(80%) made from montmorillonite, a clay mineral with the general formula
Koss(Al,Mg)(Si,Al)O10(OH)2. Clinoptilolite is a zeolite mineral with the general formula (K, Na,
Ca)s[(Si, Al)36O72] nH20 (n = 20-24). Color code: Al, blue; K, purple; Mg, dark yellow; O, red; OH,
brown; Si, pink; Ca, turquoise; Na, light yellow.

Figure S2. (a) Optical image of (MOR-1/Bentonite/FesOs)-10%CA beads, (b) Recovery of the (MOR-
1/Bentonite/Fe304)-10%CA beads by applying magnetic field.
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Figure S3. PXRD patterns of (a) bentonite, MOR-1-HA, (MOR-1/Bentonite/Fe3sO4)-10%CA and (b)
clinoptilolite, MOR-1-HA, (MOR-1/Clinoptilolite/Fe3O4)-10%CA.
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Figure S4. FTIR spectra of (a) bentonite, MOR-1, (MOR-1/Bentonite/Fe304)-10%CA and (b) clinop-
tilolite, MOR-1, (MOR-1/Clinoptilolite/Fe3Os)-10%CA.

Uw-vis characterization

UV-vis spectra of Bentonite, MOR-1 and (MOR-1/Bentonite)-HA were measured by
the solid-state diffuse reflectance method and converted to absorption spectra with the
Kubelka—Munk function. The intensity of all spectra has been normalized in order to be
comparable. The spectrum of MOR-1 revealed two characteristic peaks at 240 and 370 nm
attributed to a r-mt* transition of the ligand. In the bentonite spectrum, the peak at 240 nm
corresponds to charge transfer from the oxygen atoms to the octahedral Fe(IlI), which may
exist in the form of oxides in bentonite.[37] In the spectrum of the composite, two broad
peaks at 240 nm and 370 nm are observed, which are almost identical to those of MOR-1.
The absorption peak of bentonite cannot be distinguished in the spectrum of the compo-
site as it coincides with that of MOR-1 at 240 nm. In the spectrum of Clinoptilolite, the
peaks at 240 nm and 310 nm are attributed to the charge transfer from the oxygen atoms
to tetrahedral and octahedral Al, respectively.[38-40] At 405 nm the absorption peak is
due to various metal oxides such as iron oxides existing in clinoptilolite.[41,42] In the
(MOR-1/Clinoptilolite)-HA composite, two peaks are observed at 240 nm and 370 nm
(broad peak), which are due to the presence of both (MOR-1 and clinoptilolite) compo-
nents.
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Figure S5. Solid state UV spectra of (a) bentonite, MOR-1, (MOR-1/Bentonite)-HA and (b) Clinop-
tilolite, MOR-1, (MOR-1/Clinoptilolite)-HA.
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Figure S6. Solid state UV spectra of (a) bentonite, MOR-1, (MOR-1/Bentonite/Fe3Os)-10%CA and (b)
clinoptilolite, MOR-1, (MOR-1/Clinoptilolite/Fe3O4)-10%CA.
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Figure S7. N2 sorption isotherms (77 K) for MOR-1, (a) (MOR-1/Bentonite/Fe301)-10%CA and (b)
(MOR-1/Clinoptilolite/FesO4)-10%CA.
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Figure S8. SEM images of (a) (MOR-1/Bentonite)-HA, (b) (MOR-1/Clinoptilolite)-HA, (c) (MOR-
1/Bentonite/Fes0s)-10%CA bead and (d) (MOR-1/Clinoptilolite/FesO4)-10%CA.
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Figure S9. EDS spectra of (a) (MOR-1/Bentonite)-HA and (b) (MOR-1/Clinoptilolite)-HA.
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Figure S10. EDS spectrum of (MOR-1/Bentonite/FesO4)-10%CA.

Figure S11. EDS spectrum of (MOR-1/Clinoptilolite/Fe304)-10%CA.

Batch ion-exchange studies

Lagergren’s First-order equation and Ho-Mckay’s pseudo-second-order equation
were used to fit the kinetics data. The expressions of these equations are the following;:
Lagergren’s First-order equation:

q, = q.[1-exp(=K,1)]
where ge = the amount (mg g) of ion sorbed in equilibrium, Kt = the Lagergren’s or first-

order rate constant.[9]
Ho and Mckay’s pseudo-second-order equation:

_ kzqezt
@ 1+ k,q,t

where q:= the amount (mg/g) of ion sorbed at different reaction times (t), qe= the amount
(mg/g) of ion sorbed in equilibrium, and where k: is the second-order rate constant
[g/(mg-min)].[9]
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Table S1. The parameters of Lagergren’s first-order equation and Ho-Mckay’s second-order equa-
tion, found after the fitting of kinetics data for the sorption of MB* and MO~ by the composite mate-
rials.

qe Ku : R2 RSS qe Ko . R? RSS
mgg! g (mgmin)? mgg' g (mgmin)?

VORI BeRiOnite S HAGMBY 22.71 +0.05 3.45+021 070 017 22.88+0.02 1.09+008 095  0.02
VORI Benionites HA@MO® 21.84 +0.07 3.09+021 071 030 2208+0.03 078+0.06 096  0.04

_ 21.90+0.02 4.66 +0.29 0.59 0.002 21.95+0.01 3.62+0.22 0.97  0.0001
_ 21.81+0.04 4.23+0.35 0.48 0.08 21.89+0.02 2.28+0.25 0.92 0.01

T 600 g
2 _ ) £
£ 500; 2 400- . .
o 8 "
= 400 2 300-
o —
[&]
2 3001 = 200
g )
“ 200 0 100
o 5 0-
%,_ 100 « —— Langmuir fit g, — Langmuir fit
0 20 40 60 80 100 120 £ 0 500 1000 1500 2000
a) Equilibrium concentration C_(ppm)  b) Equilibrium concentration C (ppm)

Figure S12. MB*isotherm sorption data for (a) bentonite and (b) clinoptilolite.
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Figure S13. (a) MB*/MO- mixture solution of initial concentration of 3.7 ppm MB* and 5.3 ppm MO*.
(b) The effluent of the column is colorless. (c¢) UV spectra of the MB*/MO- mixture solution before
(blue line) and after passing through the column (black line).
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Figure S14. Column sorption data for the removal of (a) MB* and (b) MO- by (MOR-1/Benton-
ite/Fes04)-10%CA beads.
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Figure S15. Column sorption data for the removal of (a) MB*and (b) MO-by (MOR-1/Clinoptilo-
lite/Fe304)-10%CA beads.

b) c)

“ .- -
S gl
’ - > ,
-..'- 3 > - _:" L=
< _ Lk
". o .
N P

Figure S16. Optical images of (a) (MOR-1/Bentonite)-HA, (b) (MOR-1/Bentonite)-HA@MB* and (c)
(MOR-1/Bentonite)-HA@MO-.
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Figure S17. Optical images of (a) (MOR-1/Clinoptilolite)-HA, (b) (MOR-1/ Clinoptilolite)-HA@MB*
and (c¢) (MOR-1/ Clinoptilolite)-HA@MO-.
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Figure S18. Solid state UV spectra of (MOR-1/Bentonite)-HA in comparison with (a) (MOR-1/Ben-
tonite)-HA@MB* and (b) (MOR-1/Bentonite)-HA@MO-.
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Figure S19. Solid state UV spectra of (MOR-1/Clinoptilolite)-HA in comparison with (a) (MOR-1/
Clinoptilolite)-HA@MB* and (b) (MOR-1/ Clinoptilolite)-HA@MO-.
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Figure S20. Solid state UV spectra of (a) (MOR-1/Bentonite/Fes04)-10%CA and (b) (MOR-
1/Clinoptilolite/Fe3O4)-10%CA, before and after the sorption of the MB* and MO-.
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Figure S21. PXRD patterns of (a) (MOR-1/Bentonite/FesOs)-10%CA and (b) (MOR-
1/Clinoptilolite/FesO4)-10%CA, before and after the sorption of the MB* and MO-.
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