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Abstract: Protein structure prediction represents a significant challenge in the field of bioinformatics,
with the prediction of protein structures using backbone dihedral angles recently achieving significant
progress due to the rise of deep neural network research. However, there is a trend in protein
structure prediction research to employ increasingly complex neural networks and contributions
from multiple models. This study, on the other hand, explores how a single model transparently
behaves using sequence data only and what can be expected from the predicted angles. To this end,
the current paper presents data acquisition, deep learning model definition, and training toward
the final protein backbone angle prediction. The method applies a simple fully connected neural
network (FCNN) model that takes only the primary structure of the protein with a sliding window of
size 21 as input to predict protein backbone φ and ψ dihedral angles. Despite its simplicity, the model
shows surprising accuracy for the φ angle prediction and somewhat lower accuracy for the ψ angle
prediction. Moreover, this study demonstrates that protein secondary structure prediction is also
possible with simple neural networks that take in only the protein amino-acid residue sequence, but
more complex models are required for higher accuracies.

Keywords: protein structure prediction; backbone dihedral angles; deep neural network; fully
connected neural network (FCNN); φ and ψ angle prediction; protein secondary structure prediction

1. Introduction

Proteins are commonly composed of 20 natural amino acid residues, which together
form the primary protein structure. Each amino-acid residue contains the common atoms
N, Cα, and C that comprise the protein backbone, or main chain. As illustrated in Figure 1,
the backbone structure of amino-acid residues can be described by sets of φ (phi), ψ (psi),
andω (omega) dihedral angles. These angles are defined by considering four consecutive
backbone atoms from the sequence Ci−1, Ni, Cαi, Ci, Ni+1, and Cαi+1. In order to simplify
models, the ω angle can be typically fixed at 180◦ [1]. Each amino-acid residue has a
side chain emanating from its Cα atom; however, secondary structure prediction studies
typically disregard it and rather focus on the protein backbone.

Predicting the three-dimensional structure of a given protein from its sequence, known
as protein structure prediction (PSP), has presented a major challenge in biochemistry for
decades. In 2020, DeepMind released AlphaFold, which has become the most accurate
algorithm to date for tackling this problem [2]. AlphaFold’s exceptional performance in
the free modeling (FM) section of the thirteenth critical assessment of protein structure
prediction (CASP) ignited heightened public interest [3,4]. At CASP14, the most up-to-date
variant of AlphaFold entered under the group name “AlphaFold2”, showed tremendous
progress in accuracy, thereby setting a new benchmark for sub-Ångström root mean square
deviation (Cα r.m.s.d.) backbone predictions [5,6]. Before AlphaFold revolutionized PSP,
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numerous algorithms for accurately predicting protein secondary structure were developed
and remain indispensable, both for template-free and template-based protein structure
predictions [6–10].
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ous or discrete labels, with the aim of achieving increased accuracy compared to second-
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Figure 1. A schematic representation of φ, ψ, and ω protein backbone dihedral angles. Grey spheres
represent carbon atoms, blue spheres nitrogen atoms, and red spheres oxygen atoms.

Protein secondary structure prediction (PSSP) is commonly viewed as a categorization
problem wherein each amino acid residue is classified according to its secondary structure
type. PSSP models accept a sequence of amino-acid residues as input and return the cor-
responding sequence of secondary structures. They can be classified into several types
depending on the number of secondary structure categories, with three-state (Q3) and eight-
state (Q8) models being the most common. In the three-state PSSP model, the secondary
structure elements are composed of two main conformations, helix (H) and sheet (E) [11],
plus the coil (C) category representing the amino-acid residues that fall into neither of the
previous two categories. The eight-state PSSP framework, on the other hand, incorporates
eight categories of protein secondary structures: α-helix (H), 310-helix (G), parallel/anti-
parallel β-sheet conformation (E), isolated β-bridge (B), bend (S), turn (T), π-helix (I), and
coil (C) categories, as initially proposed by Kabsch and Sander [12]. Another approach
for the classification of protein structures is DISICL [13], a dihedral-based segment identi-
fication and classification method that offers 18 distinct structural classes, which can be
simplified into seven more general classes, providing a detailed analysis of subtle structural
changes. Over the years, numerous methods and algorithms have been developed that
reached 70.2–87.3% Q3 accuracies (PHD [14], PSIPRED [15], SPINE [16,17], SPARROW [18],
Porter 4.0 [19], SCORPION [20], SPIDER2 [21], Jpred4 [22,23], DeepCNF [24], SPIDER3 [25],
MUFOLD-SS [26], NetSurfP-2.0 [27], CRRNN and eCRRNN [28], OPUS-TASS [29], and
DNSS2 [30]), but lower Q8 accuracies ranging from 62.6% to 76.5% (SSpro8 [31], RaptorX-
SS8 [32], SCORPION [33], ICML2014 [34], DeepCNF [24], MUFOLD-SS [26], CRRNN and
eCRRNN [28]), owing to the increasing complexity of the problem.

Despite the recent improvements in predicting φ and ψ backbone angles, the ob-
tained ranges of indicative angles are still relatively wide (approximately 20◦), which
poses a significant challenge when attempting to capture the protein backbone structure
accurately. Various methods have been proposed to predict backbone angles as con-
tinuous or discrete labels, with the aim of achieving increased accuracy compared to
secondary structure prediction for application in ab initio structure prediction or refine-
ment [35,36]. Recent advances in protein backbone angle predictions (BAP) have been
made through the use of deep neural networks (DNNs). DNN variants, such as stacked
sparse auto-encoder neural networks [37], long short-term memory (LSTM), bidirectional
recurrent neural networks (BRNNs) [25,29,38], residual networks (ResNets) [38], and DNN
ensembles [29,38] or layered iterations [21], have been utilized for BAP. Common input
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features for BAP include position-specific scoring matrices (PSSMs) [21,37–41] generated
by PSI-BLAST, 7 physicochemical properties (7PCP) [21,37,38,40], such as hydrophobic-
ity and volume, predicted accessible surface area (ASA) [37,41], hidden Markov model
(HMM) profiles [27,38,40] (by HHBlits [42]), contact maps [38], and PSP19 [29]. Addition-
ally, to capture local structures around amino-acid residues, many methods use sliding
windows [21,25,37,41], while others apply entire protein sequences as features [21,43] to
capture long-range interactions. Convolutional neural networks (CNNs) [27,29] or LSTM-
BRNNs [25,38] have also been utilized for this purpose.

However, despite these advancements, more accurate BAP is still needed due to
the cascading effect of errors at any angle of a protein structure. Consequently, other
methods for BAP have been developed, such as ANGLOR [41], SPIDER [37], SPIDER2 [21],
SPIDER3 [25], SPOT—Contact [44], RaptorX-Angle [45], DeepRIN [19], NetSurfP-2.0 [27],
SPOT-1D [38], OPUS-TASS [29], and SAP [46]. For example, ANGLOR utilizes neural
networks and support vector machines (SVMs) [31] to predict φ and ψ angles separately,
while SPIDER applies a stacked sparse autoencoder DNN for predicting θ (planar angle
defined by the consecutive Cα atoms) and τ (dihedral angle defined by four consecutive
Cα atoms) angles. RaptorX-Angle uses a combination of clustering and deep learning to
predict φ and ψ values, and DeepRIN utilizes a deep residual inception network for the
same purpose. NetSurfP-2.0, on the other hand, employs large LSTM networks in BRNNs
to predict φ and ψ angles. Moreover, SPOT-1D applies an ensemble of LSTM-BRNN and
ResNets with input features PSSM, HMM, 7PCP, and contact maps; the contact maps are
taken from SPOT-Contact [44] and are used in a sliding window fashion. Entire proteins
are also applied as features for SPOT-1D. OPUS-TASS predicts only φ and ψ angles with
ensembles of DNNs having CNN, LSTM, and Transformer [32] layers. It utilizes an input
feature called PSP19 [33] that classifies residues into rigid-body blocks and a constrained
feature called CSF3 [34] to describe backbone structures. OPUS-TASS also employs a multi-
task learning strategy [35]. SAP predicts all four types of backbone angles using a simple
fully connected neural network (FCNN) with sliding windows, 8-state SS predictions,
PSSM, and 7PCP input features. On the benchmark datasets, SAP4SS [47] has achieved
mean absolute error (MAE) values of 15.59◦, 18.87◦, 6.03◦, and 21.71◦, respectively, for φ,
ψ, θ, and τ predictions, which is a slight improvement from SAP [46], which has achieved
values of 15.65◦, 18.59◦, 6.07◦, and 21.03◦, respectively. As a result, SAP4SS has somewhat
outperformed the existing state-of-the-art methods such as SAP, SPOT-1D, and OPUS-TASS,
with differences in MAE ranging from 1.5 to 4.1% compared to the best-known results.

The current study applies a simple fully connected neural network (FCNN) that
takes only a given primary structure of the protein with a sliding window of size 21 as
input features to predict φ and ψ angles. Despite its simplicity, the model predicts φ
dihedral angles with a surprising accuracy of 23.53◦ MAE but performs somewhat worse
for the prediction of ψ dihedral angles (MAE of 44.14◦). The study shows that even a naive
approach to a simple model can perform with surprising accuracy and can serve to study the
primary sequence of proteins while maintaining the transparency of the model and a good
overview of the input data. This study also serves to demonstrate how a simple model based
on sequence input data could integrate into complex ensemble solutions like AlphaFold.

2. Results

Upon finishing model training, the φ and ψ angle predictions were made for the
test dataset. For each prediction, the loss function formula was applied so that the error
calculation accounted for the angle periodicity, and all predicted angles were adjusted
either by adding or subtracting 360◦ so that they fell into the same −180◦ to 180◦ range as
the measured angles. The results were analyzed using custom Python functions using the
Pandas 1.5.1. package [48] for the dataset handling and MatPlotLib 3.6.3 [49] for the graphs.
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2.1. Mean Absolute Prediction Error

Figure 2 shows that the distribution of the neural network model predicted values
corresponds to the distribution of the measured values for ψ and φ angles, with peaks
and troughs in both distributions aligning across the range. However, the predicted
distributions’ peaks are larger and narrower than the measured distribution peaks, while
the predicted distributions’ troughs are wider than the ones of the measured distributions,
effectively resulting in a smoothed lower-resolution distribution curve. The neural network
model therefore produces similar angle distributions as the ones obtained by the SAP4SS
beforehand [47] (depicted in Figure 2).
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In Figure 2, where angle distributions are depicted, the peaks represent well-defined
secondary structures, such as helices and sheets. The φ distribution is heavily skewed
toward negative dihedral angle values because the three common secondary structure
elements overlap there—right-handed α-helix, 310-helix, and β-sheet—while the small
peak around 40◦ to 100◦ corresponds to the left-handed α-helix. Conversely, the ψ angle
distributions are more evenly divided into two peaks, corresponding to the two most promi-
nent secondary structure elements—right-handed α-helix and β-sheet. Herein, the reason
behind less accurate predictions of ψ angles by neural networks can be clearly visualized.

For each data row, the mean absolute error (MAE) was determined by utilizing the
already-described loss function formula. The mean absolute error and its corresponding
standard deviation were then calculated for all 20 amino-acid residues (Figure 3). The
resulting mean absolute error was 23.53◦ forφ angles and 44.14◦ forψ angles. An important
trend can be observed from Figure 3, namely that predictions of phi angles exhibit greater
accuracy when compared to psi angles (with the notable exception of glycine).
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dihedral angles.

The poor performance of ψ predictions compared to φ predictions originates from the
differences in the input data. Namely, as observed beforehand, φ and ψ exhibit different
distribution patterns, with φ presenting a peak at around −90◦ and an effective distribution
of approximately 100◦, whileψ possesses two peaks at −110◦ and 130◦ with an approximate
distribution of 150◦ (Figure 2). Figure S1 also illustrates that the standard deviation of
proline φ angles is the smallest (10.93◦) in the dataset, as expected, due to the cyclic proline
structure, while the standard deviation of glycine φ angles is the largest (96.21◦), with
the average for all remaining amino-acid residues of 39.60◦ (Table S1). This difference in
the measured angle deviations between amino-acid residues corresponds to the pattern
observed in the mean absolute prediction error of φ angles per amino-acid residue—the
proline φ angles were the easiest to predict with the mean prediction error of 7.77◦, while
the small and flexible glycine was the most difficult to predict with the mean prediction
error of 58.72◦. The differences in the MAE of predictions for φ and ψ, therefore, directly
correlate with the average standard deviations of real angles in the dataset and follow the
structural observations of individual amino-acid residues.

Moreover, Figure S2 illustrates that the mean absolute error (MAE) of the current
amino-acid residue is not significantly influenced by neighboring amino-acid residues
within the sliding window, regardless of its position. However, the presence of the virtual
residue “0” (denoting an empty space or the start or end of the protein sequence) signifi-
cantly impacts the MAE of the current residue. It is known that amino-acid residues near
the protein sequence termini often lack a well-defined secondary structure, resulting in
a broader distribution of dihedral angles and increased prediction difficulty. The error
distributions of φ and ψ, shown in Figure 4, exhibit an expected rectangular hyperbola
shape (f(x) = n/x), with the majority of errors under 20 degrees (64.85% for φ and 57.87%
for ψ). The φ and ψ error distributions are similar up to 80 degrees, but the number of
ψ errors increases from 80 to 180 degrees, representing 23.26% of the error distribution,
compared to only 5.78% of the φ errors. The errors larger than 179 degrees represent 5.96%
of the ψ distribution, about 5 times more than the 1.28% of the same error span for the φ
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distributions. This increase in large errors for the ψ angle is also visible in Figures 2 and 4,
which display the comparison of measured and predicted ψ angles. The difference in the
large error distribution results in a much larger MAE of ψ angles compared to φ angles.
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2.2. Measured vs. Predicted Values

The results of Figure 5 show a comparison of measured and predicted dihedral angles,
φ and ψ. Each blue dot represents a measured-predicted dihedral angle pair. The trend
of the distribution of the measured and predicted φ and ψ angles from Figure 2 is visible
in Figure 5. The graphs in Figure 5 show that the majority of points are divided into two
groups that correspond to the major secondary structures and, consequently, to the peaks
in Figure 2. Due to the model’s tendency to assign angles that belong to one of the two
major secondary structure elements, model predictions result in lower distribution accuracy
than individual predictions. This is even more evident from the Figure 5 graph for the ψ
dihedral angle since its values are more evenly distributed into two groups.

The discussed groups can be found in Figure 4, located on the graphs’ top left and
bottom right edges. A scattered group located around −60◦ on the x-axis and 70◦ on the
y-axis represents predictions of theφ angle that should have been classified as right-handed
α-helix, 310-helix, or β-sheet but were instead predicted closer to the left-handed α-helix
(Table 1). The other group of mispredicted values is located in the bottom right quadrant,
which corresponds to the left-handed α-helix values predicted closer to the right-handed
α-helix, 310-helix, or β-sheet in terms of the φ angle. An analogous trend can be observed
for the graph of measured vs. predicted values of ψ angle, where the resulting scattering is
even more prominent due to the existence of two almost equal distributions (Figure 2). Since
the peaks of theψ distribution are almost 180◦ apart, each mispredictedψ angle contributes
a lot more towards a large MAE than a mispredicted φ angle. The Ramachandran plots of
the measured and predicted angles (Figure S3) are similar, with well-defined areas for the
helices and sheets. The purely predicted Ramachandran plot exhibits higher scattering and
a loss of detail when compared to the measured φ and ψ angles; however, even a naive
one-model prediction can identify general Ramachandran plot trends.
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Figure 5. Predicted dihedral angles in relation to the measured dihedral angles. Each blue dot
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Table 1. The portion of the real helix, sheet, and undesignated secondary structures predicted as
either helix, sheet, or undesignated secondary structures.

SS Label Helix (Predicted) Sheet (Predicted) Undesignated
(Predicted)

Helix (real) 73.2% (141,380) 16.0% (30,837) 10.8% (20,908)
Sheet (real) 14.9% (33,535) 73.9% (166,673) 11.2% (25,300)

Undesignated (real) 27.1% (23,151) 26.8% (22,905) 46.1% (39,335)

2.3. Dihedral Angle Predictability in Amino Acids

Our model permits an examination of the degree to which adjacent amino acid residues
influence the structure of a given amino acid residue and the extent of this influence. To
observe this effect, we trained and evaluated the same neural network using a varying
sliding window input, ranging from 3 to 21 amino acid residues (Table 2). Our preliminary
results indicate that the two closest neighboring residues significantly impact the secondary
structure, as shown in Table 2. Interestingly, a sliding window of size three already provides
a certain level of accuracy in predicting backbone dihedral angles (28.37 for φ and 64.09
for ψ in our tests). However, expanding the sliding window to incorporate 21 residues,
with 10 amino acid residues on each side, further enhances the model’s accuracy. These
findings align with those reported by Chen K. [50], which stated that the formation of a
helical structure can be influenced by amino acids situated up to nine positions away in the
sequence. Similarly, the formation of coils and strands can be affected by amino acids up to
three and six positions away, respectively, suggesting that for optimal secondary structure
prediction, a sliding window comprising 19 residues might be most effective.

Furthermore, regions of the Ramachandran plot previously thought to be conforma-
tionally uniform, such as the ones corresponding to α-helices or β-structures, can actually
be subdivided based on their distinctive conformational propensities, and these propensi-
ties are more influenced by the local (φ, ψ) angles than by the secondary structure itself [51].
Comparing our test data with the propensities reported in the literature [52], we observed
that both our real and predicted amino acid propensities in the Ramachandran space show-
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case similarities (Table S2). For instance, residues like Ala, Glu, and Gln exhibit a prominent
inclination towards specific alpha-helices, while Val, Thr, and Tyr favor beta-sheets, whereas
Gly favors coils.

Table 2. The correlation between the sliding window size, the accuracy of the model, and the
training duration.

Sliding Window Phi MAE [deg] Psi MAE [deg] Epoch Duration [s]

3 28.37 64.09 57
7 25.67 53.36 102
11 24.51 48.98 130
15 23.96 46.74 155
21 23.53 44.14 210

In supplementary information (Figure S2), we illustrate that Pro φ dihedral angles
are the most straightforward to predict, whereas predicting φ or ψ dihedral angles for
Gly proves to be the most challenging. This aligns with the observations in Figure S1,
which demonstrates the minimal standard deviation among Pro φ dihedral angles and
the maximum deviation for Gly φ dihedral angles. In general, the prediction of dihedral
angles is more complex when they are positioned near the beginning or end of a protein
sequence. Yet, this does not seem to significantly affect the ψ dihedral angles of Ile and Val.
These angles display an MAE better than 30◦—an improvement compared to the average
φ MAE of 44.14◦—across a broad range when they occur at the sequence’s start (up to
10 positions). However, this pattern is not observed when these angles are positioned
at the sequence’s end.

2.4. Three-State Secondary Structure Prediction

Although our model was not trained to predict the discrete elements of the protein
secondary structure, it can be repurposed by converting the pairs of dihedral anglesφ andψ
to the three-state secondary structure elements—helix, sheet, and undesignated. Converting
the dihedral angles into secondary structure elements is a challenge in itself because most
well-known algorithms utilize atomic coordinates to assign secondary structures; however,
our dataset is based on a sliding window of residue labels. For example, the STRIDE [53]
algorithm recognizes secondary structure elements using hydrogen bond energy and
mainchain dihedral angles, while the DSSP of Kasch and Sander [12] employs hydrogen
bonds alone. To assign a three-state secondary structure based solely on dihedral angles φ
and ψ, three areas were determined based on the Ramachandran plot in VMD software
(version 1.9.3.) [54] (Figure S4). The secondary structures were then assigned for both
measured and predicted dihedral angles of each amino-acid residue from the test dataset.
The accuracy of the predicted secondary structures was subsequently determined by
comparing the predicted dihedral angles for each residue in the test dataset to the measured
dihedral angles. The accuracy was calculated as the number of correctly predicted residues
(347,388) divided by the total number of residues (504,024), resulting in an overall accuracy
of 68.9% (Table 1).

This study found that our model most accurately predicted sheet structures at a rate of
73.9%, closely followed by helices at 73.2%. However, the prediction accuracy significantly
dropped for undesignated structures, which stood at a mere 46.1%. The high accuracy
in sheet structure prediction is attributed to their significant representation in the dataset
(44.7%; 225,508), facilitating more effective learning of their angle distributions. Conversely,
the wide range of dihedral angles from −180◦ to 180◦ and their scarce representation
in the dataset (16.9%; 85,391) made undesignated structures particularly challenging to
predict. One inherent limitation of our analysis is the conversion of continuous dihedral
angles into discrete Q3 labels, which may lead to misclassification of predictions at the
boundaries of the secondary structure Ramachandran regions. Additionally, the restriction
to Q3 rather than Q8 predictions amalgamated all types of helices, potentially counting
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incorrect dihedral angle predictions as accurate secondary structure elements. We postulate
that for our present input data and given the modest model architecture, a naive classifi-
cation might yield better results than a regression of individual values. Importantly, the
improved accuracy in predicting key secondary protein structure components—helices and
sheet structures—offers a simplified, yet effective, approach for secondary structure predic-
tion. This capability paves the way for the creation of a foundation, enabling subsequent
refinement for more accurate and comprehensive protein structure modeling.

Upon conducting a per-protein analysis on our test dataset, it was observed that the
model exhibited a higher degree of accuracy in predicting helices, as evidenced by the
MAE values of 15.13◦ for phi and 36.58◦ for psi angle, accordingly, pertaining to all-alpha
proteins. Conversely, the predictive accuracy for all-beta proteins was found to be lower,
potentially due to their underrepresentation in comparison to all-alpha proteins—they
constitute merely 25% of the all-alpha protein count.

Moreover, a correlation study was conducted on eleven further experimental sys-
tems. These included a small well-described system (PDB ID: 1CRN [55]; Figure S5),
a large system of Salinosporamide A complexed with yeast 20S proteasome (PDB ID:
2FAK [56]; Figure S6), homodimeric hemoglobin (PDB ID: 3QOB [57], Figure S7), a medium-
sized system E. Coli DNA gyrase subunit B (PDB ID: 4DUH [58]; Figure S8), IFN alpha8
(PDB ID: 6JHD [59]; Figure S9), crystal structure of HL homo-diabody (PDB ID: 6KR0 [60];
Figure S10), a cryo-EM structure of the human PA200 and PA200-20S complex (PDB ID:
6KWY [61]; Figure S11), S109 in complex with CRM1-Ran-RanBP1 (PDB ID: 6LQ9 [62];
Figure S12), and a structure of NHP D11A.F2 Fab (PDB ID: 6XLZ [63]; Figure S13), as well
as both Ala and Val MnSOD models (Figures S14 and S15), based on the X-ray diffraction
by Azadmanesh, et al. [64] and studied by Broz et al. [65]. All model predictions exhibit
MAE values similar to the test dataset predictions, ranging from 12.24◦to 28.26◦ for φ errors
and from 16.70◦ to 77.66◦ for ψ errors (Table S3), and the I model could generally classify
the correct secondary structure.

3. Materials and Methods
3.1. Dataset Preparation

The dataset was created by extracting proteins from the PISCES [66] database as of
February 2023 (Figure S16), which represents a public server for culling sets of protein
sequences from the protein data bank (PDB) [67] by sequence identity and structural quality
criteria. This database was selected for its ability to provide high-quality lists compared
to servers that use BLAST, which often overestimate sequence identity by aligning only
well-conserved fragments (alternatives are CoDNas datasets). The criteria used to ex-
tract the proteins from PISCES were R-free < 0.25 and protein length ranging from 40
to 10,000 amino acid residues, resulting in a total of 64,220 protein chains. Additional filters
were then applied to select models with a resolution of <2.5 Å, one chain per PDB entry,
and no missing amino-acid residues, resulting in a final dataset of 20,605 protein chains.
To prepare the dataset for analysis, the coordinates of each residue were converted into
backbone dihedral angles φ and ψ using the Biopython 1.75 Bio.PDB package [68] and
Python programming package version 3.10 [69]. The analysis excluded side chains and
only considered the first listed amino-acid residue in cases where multiple residues were
present due to mutation studies.

Our method employed a sliding window of size 21 for each row of data, which
comprises the current amino-acid residue and the 10 residues preceding and following it.
This choice was motivated by the trade-off between model accuracy and computational
efficiency. As demonstrated in Table 2, while larger window sizes slightly increased
accuracy, they also substantially extended the training duration due to the increase in
data complexity. At a window size of 21, the accuracy gains practically diminished while
computational time escalated.

At the start and end of the protein sequences, where a sliding window of size 21 could
not be defined, a virtual amino-acid residue denoted as “0” was introduced. For example,
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a sliding window of size 21 for a mitochondrial human manganese superoxide dismutase
is presented in Figure 6.
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Figure 6. A schematic representation of the amino-acid residue sliding window, using the FASTA
sequence of the 5VF9 [64] model. The sliding window consists of 10 amino-acid residues before and
10 amino-acid residues after the current amino-acid residue, shifting the window by one amino-acid
residue to the right at each step. Virtual residues denoted by “0” were added to the start and end
of the sequence to define the sliding window in these regions. The current amino-acid residue is
indicated with a bold letter, while the sliding window is highlighted in light blue.

In this work, we applied one-hot encoding to the one-letter amino-acid codes using
the get_dummies function of the Pandas 1.3.5 library. Each amino-acid residue in the
sliding window was encoded into a 20 × 1 vector, yielding 420 independent variables
(21 × 20 = 420). Notably, the 21st virtual amino-acid residue we introduced to denote empty
spaces at sequence beginnings or ends was represented with a null vector rather than with
an additional 20 × 1 vector to optimize computational efficiency. This strategy reduced
the potential number of independent variables from 438 to 420 without information loss.
The resulting dataset comprised 5,040,244 rows and 422 columns, with the 420 columns
representing the one-hot encoded amino-acid residues (the independent variables) and
the 2 columns indicating the real φ and ψ angles (the dependent variables). This dataset
was split into training (80%), validation (10%), and testing (10%) datasets using the
train_test_split function in the Tensorflow 2.11.0 package [70].

3.2. Neural Network

In this study, a sequential neural network was utilized to solve a regression prob-
lem. The network consisted of an input layer with 420 neurons, four hidden layers
with 713 neurons, and an output layer with two neurons (Figure 7). All hidden lay-
ers employed the rectified linear unit (ReLU) activation function, while the input and
output layers utilized a linear activation function. The network was implemented using
the Keras library [71] and Adadelta optimizer [72] with default settings. Network topol-
ogy was defined and optimized using the Optuna library (https://optuna.org/; accessed
on 28 August 2023). In this study, the Adadelta optimizer was selected for training the
sequential neural network due to its adaptability, efficiency, and proven success in deep
learning, as it forms an adaptive learning rate optimization algorithm that does not require
the specification of a fixed learning rate or momentum parameter. The learning rate was set

https://optuna.org/
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to 0.5, and the training was stopped after four iterations without the validation loss function
improvement. The model was trained on four AMD EPYC 7402 24-Core processors.
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Figure 7. The structure of the applied neural network. The gray circles symbolize individual neurons,
while the arrows indicate connections from the output of one artificial neuron to the input of another.
This network consists of four hidden layers, with the input layer containing 420 neurons, all four
hidden layers 713 neurons each, and the output layer 2 neurons. All layers, except the last one, utilize
the ReLU activation function.

3.3. Loss Function

The custom loss function was used instead of root mean squared error (RMSE) or
MAE because it addresses the periodicity of angles. The function calculates the absolute
error for each residue using Equation (1):

AE = min(D, |360 − D|), (1)

where D = |P − A|, P is the predicted angle, and A is the measured angle for an amino-
acid residue (Figure 8). This equation ensures that errors near the wrap-around point of
360 degrees are handled appropriately. Namely, due to the periodic nature of angles, the
minimum error is 0 degrees and the maximum error is 180 degrees. The mean of these
absolute errors is then used as the loss function to train, evaluate, and test the neural
network. This approach is consistent with previous studies (SAP [46] and SAP4SS [47]) and
is used during all stages of the analysis.
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Figure 8. The schematic representation of the custom loss function. For illustrative purposes, the
real angle is set at 0 degrees, while the predicted angle is 245 degrees. In this case, D is 245◦,
while |360◦ − D| is 115◦. The custom loss function adopts the minimum value between D and
|360◦ − D|, which in this instance is 115◦. This methodology ensures that all calculated errors are
confined within the appropriate range of [0, 180◦].

3.4. Optimization

The Bayesian optimization method [73] was constructed using the create_study func-
tion in the Optuna hyperparameter optimization framework [74]. While it offers a wealth
of sampling and pruning background algorithms, the default settings were used—this
encompassed the tree-structured Parzen estimator (TPE) sampler [75] and MedianPruner
for pruning. The minimization method was employed to optimize the number of layers
and neurons per layer. Bayesian optimization facilitated a more effective exploration of
the hyperparameter space through modeling the objective function and employing a prob-
abilistic strategy to maintain a balance between exploration and exploitation during the
parameter tuning phase.

The possible hidden layer count was established within a range of one to five, while
the neuron count was determined to be between 26 and 840, representing 1/16th and
twice the number of the input features, respectively. The optimization procedure, aimed at
minimizing the sum of the φ and ψ loss functions, was carried out over 30 trials. Figure 9
illustrates that the loss function stopped improving beyond a certain complexity of our
neural network. The complexity of a neural network is also directly correlated with the
training duration.
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Figure 9. Total loss function (φ + ψ) in relation to the number of parameters of the neural network.
The total number of parameters in a sequential neural network was calculated by adding the product
of the number of neurons in each layer with the number of neurons in the following layer for all
layers. This represents the total number of connection weights between neurons in adjacent layers,
which yields a single number indicative of the network’s size and complexity.

In addition to our primary dual-output neural network, we explored potential im-
provements by optimizing two separate neural networks, each featuring a single out-
put neuron dedicated to predicting either the φ or ψ angle. However, as shown in
Tables S1–S3, neither approach provided superior accuracy (Figure S17). The two-neuron
approach traded off accuracy between the angles, reducing one to minimize the sum of both.
Therefore, while either method could be utilized when accuracy is the primary concern,
we propose that the dual-output neural network, predicting both angles simultaneously,
presents a time-efficient and robust solution. The results can also easily be coupled to
further processing steps if needed.

3.5. Predicted Outputs

The neural network has two outputs, representing both φ and ψ angles. Hence, only
one model was trained for the simultaneous prediction of φ and ψ angles. Each pair
of φ and ψ was associated with one vector with dimensions of 420 × 1, accounting for
both angles within one sliding window combination. The angles were managed directly,
accommodating their periodicity (−180◦ to 180◦) within the custom loss function of the
DNN applied, eliminating the need for using sine and cosine ratios.

4. Conclusions

Our research provides an in-depth analysis of a neural network model that employs
a relatively small sliding window in relation to the entire protein length. This approach
facilitates our model’s ability to predict dihedral angles without the need for detailed
descriptors or the involvement of molecular dynamics simulations. While this stream-
lined methodology offers clarity in terms of computational understanding, it introduces
limitations. Particularly, our model does not effectively capture intra-protein interactions
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between amino-acid residues located more than ten residues apart, and consequently, it
might miss essential molecular interactions such as disulfide bonds, hydrophobic and
hydrophilic interactions, hydrogen bonds, and salt bridges.

Despite these challenges, our model represents a perspective application for ab initio
structure prediction and the preliminary stages of refinement by providing a basic yet
informative representation of the protein backbone structure. Through our evaluations, the
model has shown the ability to identify Ramachandran trends and categorize dihedrals
into secondary structure elements effectively. While it is not designed to compete directly
with advanced, complete folding workflows, its potential within a broader protein folding
framework is evident. It is worth noting that many leading protein prediction models
integrate multiple simpler models to produce initial structures, which are then refined. Our
FCNN model can be envisioned as capable of integrating within such a layered prediction
system or being supplemented with additional data to enhance its predictive capabilities.

The central theme of our research has been the exploration of the relationship between
model complexity and predictive accuracy. The results from our FCNN model suggest
that a model built on a 21-residue primary sequence can achieve notable accuracy in
predicting φ and ψ dihedral angles. This emphasizes the importance of simplicity in model
selection and development—an aspect that sometimes gets overlooked in the current
landscape of multi-layered prediction systems. Through our work, we aim to highlight
the benefits of balancing performance with computational simplicity. In conclusion, our
study encourages the scientific community to reflect on the role of model complexity in
determining predictive outcomes. It offers researchers insights into selecting the right
model structure and computational approach for their protein folding investigations. In the
spirit of open science, our complete work, including the datasets used, is freely available at:
https://github.com/maticbroz/phi_psi_prediction_FCNN (accessed on).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28207046/s1, Table S1: Exact values of stan-
dard deviations of real φ and ψ angles in the train and test datasets; Table S2: Real and predicted
amino acid conformational propensites of the test dataset; Table S3: Per-model mean absolute errors
of the predicted phi and psi dihedral angle of our model com-pared to an online tool DISSpred;
Figure S1: A bar graph of standard deviations of real φ and ψ angles in the entire dataset by amino-
acid residue; Figure S2: Mean absolute error of the current amino-acid residue in relation to the amino-
acid residues at different positions of the sliding window for the φ (left) and ψ (right) dihedral angles;
Figure S3: Ramachandran plots of actual and predicted dihedral angles; Figure S4: Secondary struc-
ture areas in the Ramachandran plot. The areas represent secondary structure elements: helices
(red), sheets (purple), and undesignated (white). The areas are enclosed by the following points:
helix = [(−180.0, −34.9), (−164.3, −42.9), (−133.0, −42.9), (−109.5, −32.2), (−106.9, −21.4), (−44.3,
−21.4), (−44.3, −71.1), (−180.0, −71.1)] AND [(62.6, 14.7), (62.6, 96.7), (45.6, 79.2), (45.6, 26.8), (62.6,
14.7)]; sheet = [(−180.2, 42.9), (−140.8, 16.1), (−86.0, 16.1), (−74.3, 45.6), (−74.3, 72.5), (−44.3, 102.0),
(−44.3, 161.1), (−46.9, 179.9), (−180, 180)] AND [(−180.0, −163.8), (−75.6, −163.8), (−46.9, −180.0),
(−180.0, −180.0)]; Figure S5: Real and predicted φ and ψ angles for the protein structure PDB
ID: 1CRN (φ error = 24.91◦; ψ error = 80.86◦); Figure S6: Real and predicted φ and ψ angles for
the protein structure PDB ID: 2FAK (φ error = 25.71◦; ψ error = 41.96◦); Figure S7: Real and pre-
dicted φ and ψ angles for the protein structure PDB ID: 3QOB (φ error = 17.76◦; ψ error = 36.43◦);
Figure S8: Real and predictedφ andψ angles for the protein structure PDB ID: 4DUH (φ error = 29.86◦;
ψ error = 48.16◦); Figure S9: Real and predicted φ and ψ angles for the protein structure PDB ID:
6JHD (φ error = 24.57◦; ψ error = 39.91◦); Figure S10: Real and predicted φ and ψ angles for the
protein structure PDB ID: 6KR0 (φ error = 12.27◦; ψ error = 16.10◦); Figure S11: Real and pre-
dicted φ and ψ angles for the protein structure PDB ID: 6KWY (φ error = 22.78◦; ψ error = 42.43◦);
Figure S12: Real and predictedφ andψ angles for the protein structure PDB ID: 6LQ9 (φ error = 18.83◦;
ψ error = 40.67◦); Figure S13: Real and predicted φ and ψ angles for the protein structure PDB ID:
6XLZ (φ error = 17.45◦; ψ error = 23.29◦); Figure S14: Real and predicted φ and ψ angles for the
protein structure of MnSOD_ALA (φ error = 26.82◦; ψ error = 51.12◦); Figure S15: Real and pre-
dicted φ and ψ angles for the protein structure of MnSOD_VAL (φ error = 26.41◦; ψ error = 50.44◦);
Figure S16: The process of generating output, which involves accessing the PISCES and RCSB datasets,

https://github.com/maticbroz/phi_psi_prediction_FCNN
https://www.mdpi.com/article/10.3390/molecules28207046/s1
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converting the coordinates to dihedral angles, and transforming the sequence into a sliding window
format; Figure S17: Training and validation loss function values during the φ and ψmodel training.
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Abbreviations

7PCP 7 physicochemical properties
AMD Advanced Micro Devices
ASA accessible surface area
B isolated β-bridge
BAP protein backbone angle predictions
BLAST Basic Local Alignment Search Tool
BRNN bidirectional recurrent neural network
C carbon atom ooil
CASP Critical Assessment of protein Structure Prediction
CNN convolutional neural network
CoDNas Conformational Diversity of Native State
Cα alpha carbon atom
DNN deep neural network
E parallel/anti-parallel β sheet conformation
E sheet
FCNN fully connected neural network
FM free modeling
G 310 helix
H α-helix
HHBlits HMM-HMM-based lightning-fast iterative sequence search
HMM hidden Markov model
I π-helix
LSTM long short-term memory
LSTM-BRNNs long short-term memory and bidirectional recurrent neural networks
MAE mean absolute error
MD molecular dynamics
MTS mitoargetingtargetting sequence
MnSOD manganese superoxide dismutase
N nitrogen atom
PDB Protein Data Bank
PISCES Protein sequence culling server
PSP protein structure prediction
PSSM position-specific scoring matrix
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PSSP protein secondary structure prediction
Q3 three-state model
Q8 eight-state model
R-free Free R-value
RMSE root mean squared error
ReLU Rectified Linear Unit
ResNets Residual Networks
ResNets residual networks
S bend
SAP structure analysis and prediction
SNP single nucleotide polymorphism
SS secondary structure
SSPro Secondary Structure Prediction
SVM support vector machine
T turn
Å Angstrom
τ tao
ψ psi dihedral angle
ω omega dihedral angle
φ phi dihedral angle
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