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Abstract: Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically
two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this
study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous
extracts (AE) obtained from these plants, and the extraction yields were found to be different. The
in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial
strains. The results showed that the two extracts were effective against all three strains. Both extracts
displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was
evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to
inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin.
All phytoconstituents present good pharmacokinetic characteristics without toxicity except very
slight toxicity of terpineol and cineol and a maximum binding energy of −7.53 kcal/mol for its
anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals
could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs
(NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing
natural-based drugs with potential therapeutic benefits.

Keywords: antibacterial activity; antioxidant activity; anti-inflammatory activity; Eucalyptus radiata;
Eucalyptus cinerea

1. Introduction

Eucalyptus is a member of the Myrtaceae family [1,2] and is native to Australia [3,4]. It
is known for its adaptability to different environmental conditions, high productivity, and
effortless harvesting, making it a sustainable feedstock supply for phytoconstituents [5,6].
The plant contains a variety of volatile and non-volatile chemicals with diverse biologi-
cal functions [7]. Extracts from the leaves have been reported to contain phenolics and
flavonoids with antioxidant and antimicrobial properties [8], while constituents such as
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alkaloids, polyphenols, and propanoids exhibit anti-inflammatory, antibacterial, and anti-
septic properties [9].

Although most research on the phytochemistry of Eucalyptus has focused on the
plant’s essential oils, many non-volatile compounds, including triterpenoids, flavonoids,
and tannins, have been isolated from this genus [7]. However, little information is avail-
able regarding the potential bioactivities of crude extracts from Eucalyptus, particularly
traditional preparations [7].

To address this gap in knowledge, researchers used decoctions as it is the most usual
way people take it [7]. Given current ethical concerns about animal testing, the researchers
opted to use in vitro and in silico methods to investigate the antibacterial, antioxidant,
and anti-inflammatory properties of aqueous extracts of two species of Eucalyptus [10,11].
In silico methods such as virtual screening can be used to examine plant compounds’
receptor interactions quickly and cost-effectively [11]. The study focused on two species of
Eucalyptus cultivated in Algeria, for which no reports on the bioactivities of the aqueous
extract of the leaves have been found [7].

2. Results
2.1. Extraction Yield

In this context, “yield” refers to the ratio of the amount of extract collected to the total
mass of the plants used. The percentages of E. radiata and E. cinerea recovered during the
extraction were 27.83 and 4.84%, respectively.

Antibacterial Activity

It was shown that both extracts had substantial antibacterial activity against the tested
microorganisms (Table 1). Even so, E. cinerea demonstrated a zone of inhibition of 22.6 mm
in diameter against S. aureus, which is a remarkable result. P. aeruginosa, on the other hand,
was resistant from the 100 mg/mL concentration. Therefore, only its minimal diameters at
200 and 150 mg/mL were displayed.

Table 1. Inhibition diameters (mm) of the extracts against the strains tested.

Plant E. radiata E. cinerea GM

Concentration
(mg/mL) 200 150 100 50 200 150 100 50 10 µg/disc

E. coli 20 ± 7.07 14 ± 1.00 13 ± 0 9 ± 00 19 ± 2.64 20 ± 0 20 ± 0 19 ± 1.73 40
S. aureus 18 ± 2 15.5 ± 0.70 16 ± 1.41 - 23.5 22.6 ± 2.51 18 ± 0 18.6 ± 1.15 40

P. aeruginosa 11.66 ± 1.52 12 ± 00 - - 15.33 ± 0.57 12 - - 27

-: no activity, GM: Gentamicin.

2.2. Antioxidant Activity

Globally, the two AEs have antioxidant activity. The reduction in DPPH was dose-
dependent (Figure 1) with an IC50 of 0.19 + 0.03 mg/mL by E. radiata and 0.15 ± 0.08 mg/mL
by E. cinerea compared to the BHT (0.94 ± 0.37 mg/mL).

2.3. Anti-Inflammatory Test

An excellent inhibitory effect on protein denaturation was observed (Figure 2), but
no dose-response relationship could be established. The extract from E. radiata was more
effective than that from E. cinerea AE in preventing protein denaturation (85.21–85.91%
inhibition). At a concentration of 250 µg/mL, the most common NSAID, aspirin, had an
inhibition of 110.09%. Statistically, the Tukey’s multiple comparison test revealed that
aspirin was significantly more active than the two extracts at a p-value < 0.05.
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Figure 2. Inhibition of protein denaturation by the extracts and aspirin (p < 0.05), ns: 
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Figure 2. Inhibition of protein denaturation by the extracts and aspirin (p < 0.05), ns: non-significant,
*: Slightly significant difference.

2.4. Docking Results

The scoring phytocompounds and gentamicin are summarized in Table 2. The ellagic
acid recorded the best binding energy (−7.53 kcal/mol), but it was still less than gentamicin
scoring (−10.04 kcal/mol) and that of the native ligand.

Table 2. Phytocompound scoring results.

Compound Best Run Free Energy of
Binding (kcal/mol)

Inhibition Constant,
Ki (µM)

vdW + H-Bond + Desolv
Energy (kcal/mol)

Ellagic acid 8 −7.53 3.03 −8.48
Epicatechin 7 −6.75 11.31 −7.88
α-Terpineol 3 −6.43 19.31 −6.92
1,8-Cineol 7 −5.59 79.89 −5.55

Gentamicin 8 −10.04 44.00 −5.40
The native ligand 2 −10.42 23.10 nM −10.88
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The interactive amino acids of the protein target with phytocompounds are listed as
follows (Table 3):

Table 3. The amino acids involved in the active site of the TyrRS.

H Bonds VdW C-H Bond Pi-Alkyl
Bonds Alkyl Bonds Pi-Anion

Ellagic acid-1TYA
Asp 243, Asp
244, Glu101,

Glu 245
Ser45, Lys98, Lys246 Lys 105

Epicatechin
Asp 40, Asp

195, Gly38, Tyr
36, Val 191

Leu70, Gln174, Ala39,
Tyr170, Lys84,
Gln196, Ile200,
Gly192, Gln190

Cys 37 Asp 80

α-Terpineol-
1TYA Thr 75

Asp40, Gln174,
Gln196, Gln190,

Ile200, Val191, Gly38,
Leu70, Gly72,

Asn124, Tyr170,
Ala39

Tyr 36, Cys 37 Tyr 36, Cys 37

1,8-Cineol-1TYA

Cys37, Gly38, Ala39,
Asp40, Thr75, Gly72,

Gln174, Asp177,
Asn124, Gln190.

Tyr 36, Tyr 170,
Leu 70

Tyr 36, Tyr 170,
Leu 70

Gentamicin
-1TYA

Glu 101, Asp
243, Asp 44,

Glu 245
Lys246, Ser45, Lys98 Lys 105

The native ligand
Glu 101, Asp
243, Asp 44,

Glu 245

Ser 45, Lys 98,
Lys 246 Lys 105

Figure 3 presents the interactions with the molecular surface around the studied
phytocompounds, as ligands, at the binding site of TyrRS. The pink area shows the electron
donor region, and the green represents the electron acceptor region. The 2-D structures
show the amino acids involved in the active site of the enzyme as well as the nature of the
bonds established.

2.5. Drug Likeness and ADME Prediction

As a result of the drug-likeness filters, expensive late-stage preclinical and clinical
failure can be avoided, allowing for earlier medication development [12], phytocompounds
were evaluated for their drug-like characteristics using the SWISS ADME web-based tool,
and it was discovered that all compounds followed Lipinski’s rule of five, much like
gentamicin (Table 4). The other calculated parameters also show that all compounds
were water soluble with high intestinal absorption. Ellagic acid and epicatechin had no
toxic risks, while α-terpineol could be moderately irritant. However, 1,8-cineol presented
mutagenic and reproductive risks.
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Table 4. Calculated physicochemical and pharmacokinetic parameters of the docked phytocompounds.

Compound

Ellagic Acid Epicatechin α-Terpineol 1,8-Cineol GM

Physicochemical and pharmacokinetic parameters (Molinspiration Cheminformatics)

miLogP < 5 0.94 1.37 2.60 2.72 −4.21

TPSA (oA) < 500 141.33 110.37 20.23 9.23 199.74

MW < 500 (g/mol) 302.19 290.27 154.25 154.25 477.60

MV 221.78 244.14 170.65 166.66 450.66

nON < 10 8 6 1 1 12 (vio)

nOHNH < 5 4 5 1 0 11 (vio)
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Table 4. Cont.

Compound

Ellagic Acid Epicatechin α-Terpineol 1,8-Cineol GM

Lipinski’s violation 0 0 0 0 2

Solubility and pharmacokinetics properties (SwissADME)

Water solubility Soluble Soluble Soluble Soluble Highly soluble

Lipophilicity Yes Yes Yes Yes

Gastrointestinal absorption High High High High Low

Log Kp (skin permeation: cm/s) −7.36 −7.82 −4.83 −5.30 −12.12

Cytochromes
inhibitors

CYP1A2 Yes No No No No

CYP2C19 No No No No No

CYP2C9 No No No No No

CYP2D6 No No No No No

CYP3A4 No No No No No

Toxicity risks (OSIRIS Property Explorer)

Mutagenic No No No Yes No

Tumorigenic No No No No No

Irritant No No MR No No

Reproductive effective No No No Yes No

miLogP: Logarithm of partition coefficient between n-octanol and water. TPSA: Topological polar surface area.
MW: Molecular weight. MV: Molecular volume. nON: Number of hydrogen bond acceptors. nOHNH: Number
of hydrogen bond donors. No: no indication found, MR: medium risk.

3. Materials and Methods
3.1. The Choice of Plants

An ethnopharmacological survey (on anti-infectious plants) preceded this work spread
over four months and covered all the communes of Setif (northeastern Algeria). A random
sample of 75 interviewed people aged between 20 and 67. Eucalyptus (8%) after Origanum
11% and Ginger 10% among the most used plants (Figure 4). Furthermore, leaves repre-
sented 48% of plant parts used. A decoction is the most used preparation mode, with the
highest rate at 60%.
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In March 2017, young leaves of E. radiata (Figure 5) were harvested from cultivated
plants on the Setif 1 university campus. After that, they are dried in the shade at room
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temperature. A neighborhood herbalist was the source from which we acquired the E.
cinerea leaves (Figure 5). Dr. Nouioua provided the botanical confirmation of the species
from the Department of Ecology in the FNLS of Sétif 1 University. A temperature of four
degrees Celsius is maintained on the plants while they are being stored.
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Figure 5. (a) E. radiata, (b) E. cinerea.

For this investigation, water was selected as the solvent due to its favorable charac-
teristics, including being the least hazardous, least expensive, and most environmentally
friendly solvent. The decoction as a conventional extraction method was employed, which
involved boiling 20 g of dried leaves with 500 milliliters of cold, distilled water and sim-
mering the mixture for 20 min. After filtration, the aqueous extract (AE) was obtained
and air-dried to obtain the final product. The yield percentage was calculated by the ratio
between the weight of the obtained dry extract and the initial weight of the plant.

Yield =
The weight of the obtained dried xtract

the weight of the initial plant material used
× 100 (1)

3.2. Antibacterial Activity

Three ATCC bacterial strains, including Escherichia coli (ATCC 25922), Pseudomonas
aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC 25922), were tested for antibacte-
rial activity using the disc diffusion technique [13]. Filter paper discs impregnated with 50,
100, 150, and 200 mg/mL of the AE are placed on Mueller-Hinton Agar (MHA) inoculated
with a 0.5 Mc Farland (108 cell/mL) standard inoculum and then incubated at 37 ◦C for
24 h. As a reference, we employed gentamicin. As a result, we can calculate the diameter of
the inhibition zones for each disc.

3.3. Antioxidant Activity

The antioxidative activity may be tracked by measuring the rate at which the DPPH
radical’s absorbance at 517 nm decreases. The method used was that of [14] with slight
modifications. First, 50 µL of each AE, at varying concentrations, was mixed with 1250 µL of
a methanolic solution of DPPH at 0.004%. After 30 min of incubation at room temperature
in the dark, the absorbance was recorded at 517 nm. Butylated hydroxytoluene (BHT) was
the standard. Thus, it was treated the same way. As a result, we may calculate the DPPH
scavenging activity as follows:

% of DPPH scavenging effect =
(At − Ac)

Ac
(2)

where At represents the absorbance of the test and Ac represents the absorbance of the
reference.
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3.4. In-Vitro Anti-Inflammatory Test

Protein denaturation inhibition is measured using a modified approach version [15].
When 100 µL of plant extract at varying concentrations (250, 500, and 1000 µg/mL) was
mixed with 500 µL of Bovine Serum Albumin (BSA at 1%, the resulting mixture is called a
“standard” preparation. For the first 10 min, this combination was left at room temperature
and then was heated to 51 ◦C for 20 min. After bringing the resultant solution to room
temperature, its absorbance was measured at 660 nm. As a reference point for success, we
used acetylsalicylic acid. Triplicates of the experiment were performed, and the percentage
of inhibition of protein denaturation was determined as follows.

% Inhibition =

(
100 − A1 − A2

A0

)
× 100 (3)

In this equation, A1 represents the sample absorbance, A2 denotes the product control
absorbance, and A0 represents the absorbance of the positive control (aspirin solution).

GraphPad Prism 5 version 5.03 was used to create the graphs for the ethnopharmacol-
ogy survey and the in vitro activities.

3.5. Molecular Docking
Phyto-Compounds

After a thorough literature analysis, the chemicals 1,8-cineol (CID 2758), ellagic acid
(CID 5281855), α-terpineol (CID 17100), and epicatechin (CID 72276) were chosen as rep-
resentative compounds to carry out the molecular docking investigation (Table 5). The
standard antibiotic used was gentamicin (CID 3467).

Table 5. The main phytocompounds found in aqueous extracts of Eucalyptus species.

Species Compound Extract References

E. radiata 1,8-Cineol The main compound in
EOs of most species [16,17]

E. cinerea
Ellagic acid Sideroxylonal B

Macrocarpal A
Aqueous extract [18]
Aqueous extract [3]

E. camaldulensis Ellagic acid Gallic acid Aqueous soluble fraction [8]

E. globulus

1,8-Cineol α-Terpineol Aqueous extract [19]
Ellagic acid Quercetin Aqueous extract [20]
1,8-Cineol Epicatechin Aqueous extract [21]

Ellagic acid Hydrodistillation
residual water [22]

Ellagic acid Aqueous extract [23]

E. robusta Epicatechin Quercetin Aqueous extract [24]
E. microcorys Ellagic acid Epicatechin Aqueous extract [25]

Different species 1,8-Cineol α-Terpineol Aqueous Volatile
Fractions [26]

In Figure 6, the 2-D structures and functional groups of the four main compounds
present in the extracts are displayed, along with gentamicin and the native ligand of the en-
zyme. These compounds were subjected to in silico testing to assess their ability to impede
the aminoacylation process facilitated by TyrRS (PDB code 1JII). To determine their binding
affinities, components of the highly effective in vitro extracts were evaluated and compared
to the standard antibiotic, gentamicin. The 3-D structures of the phytocompounds and
gentamicin were obtained in CID format from the PubChem database.
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3.6. Docking Analysis and Protein Preparation

AutoDock Tools 1.5.7 was utilized to determine the binding affinity of the selected
phytoconstituents to the binding site of the bacterial tyrosyl-tRNA synthetase. The program
implements the gradient optimization method in its local optimization process and ranks
the ligands based on the empirical binding free energy (∆G in kcal/mol) function [12]. The
3D structures of the target enzymes were obtained in PDB format from the Protein Data
Bank. PDBQT format files were generated by removing water molecules, polar hydrogen,
and Kollman charges were added to protein residues, and the protein’s native ligand was
eliminated (2-Amino-3-(4-Hydroxyphenyl)Propionylamino)-(2,4,5,8-Tetrahydroxy-7-Oxa-
2-Aza-Bi cyclo[3.2.1]Oct-3-Yl) Acetic Acid). The Lamarckian Genetic docking algorithm
was employed and executed ten times. The open-source program Babel 2.4.1 was used to
convert the SDF files of the substances under investigation into PDB files. The interactions
were visualized in two dimensions using Discovery Studio v.16.1.0.15350 software. H-
bonds between the ligands and interacting residues are depicted as lines and balls with a
distance range of Å.

3.7. Drug Likeness, ADME/Toxicity Prediction

Lipinski’s method was employed to assess the drug-like properties of phytocom-
pounds, which sets limits on four specific physicochemical parameters [27]. Typically,
these are the characteristics of an orally active drug: the octanol-water partition coefficient
(milogP) and the number of hydrogen bond donors (n-OH and n-NH) should not exceed 5,
and the number of hydrogen bond acceptors (n-ONs) should be less than 10. The molecular
weight (MW) should be below 500 D, and no more than one violation should occur [28].
Molinspiration Cheminformatics online tools and SwissADME online tools were used to
predict physicochemical and pharmacokinetic parameters, while OSIRIS Property Explorer
online tools were used to predict toxicity risks.

4. Discussion

According to research studies [29–31], decoction is Algeria’s most commonly used
method for obtaining active plant chemicals. Water is preferred over organic solvents due to
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its safety, affordability, environmental friendliness, and accessibility for extracting phenolic
compounds [32]. Traditional healers and practitioners mostly use it as a solvent [33].
However, the boiling process involved in decoction may lead to the degradation of the
medicinal components of plants [34]. It has been reported that conventional extraction at
100 ◦C yields the highest amount of flavonoids and phenols (active compounds). However,
it is impossible to obtain the best yield of all compounds simultaneously [35], as the
chemical content of the extract varies depending on the preparation method [36]. A study
on the aqueous leaf extracts of E. camaldulensis revealed high levels of polyphenols, saponins,
and flavonoids in both qualitative and quantitative analyses [37]. The main component of
Eucalyptus essential oils is 1,8-cineol, a monoterpene that dissolves in water at 19.85 ◦C [19]
and is commonly found in Eucalyptus species [38–43].

4.1. Efficacy against Bacteria

According to [44], antibiotic-resistant bacteria significantly threaten public health
globally. These synthetic antibiotics, especially in developing nations, are expensive and
deficient for the treatment of diseases caused by pathogenic microorganisms and have inci-
dental effects and adulterations [45]. However, medicinal plants have yielded antimicrobial
compounds that offer a new tool for combatting bacterial illnesses [1]. The presence of
phytochemicals in plant fractions, such as flavonoids and polyphenols, may be responsible
for the disruptive bacterial membrane effect [8]. For bacterial illnesses such as sinusitis, sore
throat, angina, cough, bronchitis, and urinary tract infections, [46] recommends a decoction
of Eucalyptus leaves in water at 10–20 g/L as a daily beverage.

Similarly, the phenolic and saponin contents of the E. microcorys aqueous extract have
been credited with its antibacterial capabilities [7]. Eucalyptus species have revealed strong
antibacterial abilities against various bacteria [47], such as S. aureus, L. monocytogenes,
Bacillus, K. pneumoniae, E. faecalis, P. aeruginosa, S. enteritidis, and E. coli. Leaf extract from
E. camaldulensis showed anti-virulence and membrane disruption actions against Gram-
positive L. monocytogenes [8]. However, P. aeruginosa is frequently resistant to multiple
antibiotics [48] due to its outer membrane’s low permeability [49], leading to therapeutic
failures [50]. It should be noted that antibacterials also target DNA topoisomerase [51] and
other bacterial proteases [52].

Antioxidants in Eucalyptus extracts indicate the likely presence of compounds that
can interact with free radicals by acting as an electron donor or hydrogen atom donor
and producing a scavenging activity [53]. Eucalyptus leaf extracts effectively ameliorate
hydrogen peroxide-induced oxidative stress by increasing cell viability, glutathione levels,
and antioxidant enzyme activity and by decreasing the production of free radicals and lipid
peroxidation levels [54]. The rich phenolic content of the aqueous fraction is responsible
for superior antioxidant activity [8] by capturing free radicals through hydroxyl groups to
reduce oxidative stress [55]. Polyphenolic substances, such as ellagic acid and epicatechin,
are particularly plentiful in the Eucalyptus genus and responsible for the antioxidant effects
of its extracts [32]. Ellagic acid, in particular, found in E. cinerea, has been demonstrated
to possess potent antioxidant activity [39] that surpasses tocopherol [18]. Additionally,
flavonoids increase the likelihood of antioxidant activity in Eucalyptus extracts [47]. No-
tably, conventional extraction at 90 ◦C for phenols is crucial for optimizing antioxidant
efficiency [35].

4.2. Results in Reducing Inflammation

The determination of protein denaturation is a valuable tool for detecting anti-
inflammatory compounds without the need for animal testing [56]. Protein denatura-
tion is the primary cause of inflammation [15]. It is associated with the denaturation of
tissue proteins (in vivo) and the onset of inflammatory and arthritic complications due to
auto-antigen production [57]. Herbal extracts, which serve as safe and novel sources, can
be evaluated for their anti-inflammatory efficacy [58], as an alternative to non-steroidal anti-
inflammatory drugs, which have undesirable side effects such as gastrointestinal toxicity,



Molecules 2023, 28, 7153 12 of 16

renal injury, hepatotoxicity, hypertension, and allergic skin reactions [59,60]. Additionally,
1,8-cineol can be used for chronic inflammation management as a potent cytokine suppres-
sant [39]. Inhalation of 1,8-cineol prior to the ovalbumin challenge was found to reduce
the levels of pro-inflammatory cytokines TNF-α and IL-1β and prevent the decrease of the
anti-inflammatory cytokine IL-10 in the bronchoalveolar fluid [41]. It is speculated that
the activity may be due to the polyphenolic content, including flavonoids [61], such as
ellagic acid and epicatechin. The extracts in the present study exhibited higher activity
at lower concentrations. In contrast, the standard drug Aspirin showed the best activity,
indicating that the anti-inflammatory activity of these extracts is not related to protection
against protein denaturation.

4.3. Investigation of Docking

The use of in silico models as a preliminary screening tool for predicting a medication’s
effect on cells and aiding in experimental research trial design has potential. The predictions’
results are noteworthy and helpful in designing experiments due to the likelihood of false
positives in the selected chemical leads for biological activity [11]. This approach has been
successful in the pharmaceutical sector [62]. The binding affinity of phytocompounds
to their respective protein targets determines their scores. A higher binding affinity is
achieved with lower binding energies [12]. In our study, ellagic acid (EA) exhibited the best
free binding energy (−7.53 kcal/mol) and the best specific bond energies (vdW + Hbond +
Desolvation) (−8.48 kcal/mol) among the docked compounds. EA has been reported to
be effective against various pathogens, including bacteria, fungi, and parasites [63], and
has antioxidant and anti-inflammatory properties [64]. Polyphenols such as ellagic acid
and epicatechin interact with proteins primarily through hydrophobic interactions and
hydrogen bonds via their aromatic and phenolic nuclei [65], consistent with our findings
(Table 3). α-Terpineol also exhibited antibacterial properties [66,67], demonstrating in vitro
activity against P. slundensis, E. coli, and S. aureus, while 1,8-cineol only demonstrated
activity against E. coli [68]. It can be concluded that cineol, widely recognized as an
antibacterial agent [69–73], does not act via the same mechanism as the other compounds
and therefore does not have the same enzymatic target. The binding energies of the
phytocompounds were ranked in the following order: Native ligand > gentamicin >
ellagic acid > epicatechin > α-terpineol > 1,8-cineol. Hydrogen bonds are essential for the
interaction between inhibitors and receptors [28]. The absence of hydrogen bonds in cineol
(No H bonds) resulted in its inactivity and demonstrated that its primary target differs
from TyrRS.

4.4. Prediction of ADME/Toxicity and Similarity to Existing Drugs

An in silico analysis was performed to investigate the pharmacokinetic and toxicity
properties of the compounds. Lipinski’s drug-likeness rules were met by all compounds
without any violations, except gentamicin which had two violations. Furthermore, the
compounds showed a high potential for absorption by the human intestine, which is in
contrast to gentamicin, which has low gastrointestinal absorption and thus is administered
in the injectable form [55]. The LogP and TPSA values indicate that the compounds have
the potential for intramuscular, cutaneous, and intravenous administration. Notably, all
compounds demonstrated good solubility, which is a critical factor for successful drug
development, as poor solubility may affect xenobiotics’ pharmacokinetic and pharmacody-
namic properties [74]. Regarding their safety profile on cytochromes P450 (1A2, 2C1, 2C9,
2D6, and 3A4), all phytoconstituents were deemed safe except for ellagic acid, which was
found to be an inhibitor of CYP1A2. Despite this, Japan has approved it as an existing food
additive [64]. P450 (CYP) enzymes are ubiquitous enzymes that play a crucial role in the
metabolism of pharmaceuticals [75] and are involved in the activation and detoxification
of endogenous and xenobiotic chemicals [76]. Interestingly, flavonoids have been shown
to induce the biosynthesis of several CYPs, and the enzymatic activities of CYPs can be
modulated (inhibited or stimulated) by these compounds [77].
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5. Conclusions

Several factors, including availability, ease of preparation, safety, and affordability,
drive herbal preparations’ consumption. In Algeria, Eucalyptus extracts are widely used
in traditional medicine, but their use lacks standardization. The aqueous extract obtained
from leaves of E. radiata and E. cinerea was tested for eventual bioactivities. In general, the
results of this study indicated that the extracts possess potent antibacterial activity where E.
coli and S. aureus were susceptible to the two Eucalyptus probably because of the presence
of Ellagic acid and Epicatechin which showed strong TyRS bond energies. The extracts were
found to possess radical scavenging on the DPPH radical and anti-inflammatory activities
during albumin denaturation assay. In silico, results show a prominent binding of the
ligand with the bacterial enzyme target. In addition, phytoconstituent docked were found
to be free of cytotoxicity, supporting their future exploitation for oral or topical application.
Thus, it can be concluded that aqueous extract of leaves of E. radiate and E. cinerea can be
used as antibacterial, antioxidant, and anti-inflammatory agents or for the preparation of
nutraceutical products and in food industries.
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